Stringy Instanton Corrections To Gauge Couplings

Alberto Lerda

U.P.O. "A. Avogadro" & I.N.F.N. - Alessandria

Perugia, June 26, 2010

Alberto	Lerda	(U.P.O.)
---------	-------	----------

Stringy Instantons

Foreword

- This talk builds over a rather vast (± recent) literature (apologies for missing references). For a review, see
 - R. Blumenhagen, M. Cvetic, S. Kachru and T. Weigand, "D-brane Instantons in Type II String Theory," arXiv:0902.3251 [hep-th].
- The results presented here mostly come from
 - M. Billò, M. Frau, F. Fucito, A. L., J. F. Morales and R. Poghosyan, "Stringy instanton corrections to $\mathcal{N} = 2$ gauge couplings," JHEP **1005** (2010) 107, arXiv:1002.4322 [hep-th]
- Previous results are contained in

M. Billò, L. Ferro, M. Frau, L. Gallot, A. L. and I. Pesando, "Exotic instanton counting and heterotic/type I' duality," JHEP 0907 (2009) 092, arXiv:0905.4586 [hep-th]

・ロト ・ 同ト ・ ヨト ・ ヨト

Plan of the talk

1 Introduction and motivations

- 2 The set-up
- 3 D-instanton effects
- 4 Conclusions and perspectives

Introduction and motivations

- The possibility of acquiring control over non-perturbative effects has been a unifying theme behind many developments in string theory.
- Recently, there has been a growing interest in the effects induced by D-instantons or, more generally, by Euclidean D-branes (E-branes):
 - They allow to reproduce the (standard) instanton calculus in string theory
 Polchinski, 1994; ...; Green+Gutperle, 2000; ...; Billò et al. 2002; ...
 - They may give rise to non-perturbative couplings that are forbidden in perturbation theory but necessary for phenomenological applications (neutrino masses, Yukawa couplings, ...)
- Like instantons in gauge theories, also the instantonic branes lead to a particularly tractable class of non-perturbative phenomena in string models.

Alberto Lerda (U.P.O.)

D-brane worlds

Our set-up will be that of "D-brane worlds":

- SM-like gauge sector from open strings on stacks of space-filling D(3+p) branes wrapped on some internal p-cycle Cp
- Gravitational sector from closed strings propagating in the bulk

D-brane worlds

Our set-up will be that of "D-brane worlds":

 SM-like gauge sector from open strings on stacks of space-filling D(3+p) branes wrapped on some internal p-cycle Cp

- Gravitational sector from closed strings propagating in the bulk
- Gauge groups from multiple branes, bifundamental chiral matter from "twisted" strings, replicas from multiple intersections see, e.g., Uranga, 2003; Kiritsis, 2004; Lust, 2004; Blumenhagen et al., 2005;...
- (String) topology of the internal space + choice of branes lead to very rich model building scenarios

Alberto Lerda (U.P.O.)

Perugia, June 26, 2010 5 / 34

きょうきょう

- In brane-world models, instantons are engineered with E(uclidean) branes, *i.e.* D-branes that are point-like in the 4d space-time and are totally wrapped in the internal Y₆ space.
- First possibility:
 - The gauge and the instantonic branes wrap the SAME internal cycle in Y_6 .

• These are the usual gauge instantons.

Their effects are suppressed by

$$e^{-\frac{V(C_p)}{g_s}} = e^{-\frac{8\pi^2}{g_{YM}^2}}$$

- In brane-world models, instantons are engineered with E(uclidean) branes, *i.e.* D-branes that are point-like in the 4d space-time and are totally wrapped in the internal Y₆ space.
- First possibility:
 - The gauge and the instantonic branes wrap the SAME internal cycle in Y_6 .

- These are the usual gauge instantons.
 - * ADHM moduli from strings attached to the instantonic branes

Witten, 1995; Douglas, 1995-1996; ...

글 > - < 글 >

- Non-trivial instanton profile of the gauge field
- Billo et al., 2002
- Techniques to embed the instanton calculus in string theory have been developed

Polchinksi, 1994; Green-Gutperle, 2000...; Turin/Rome/Münich/UPenn/Madrid groups...

• • • • • • • • •

Alberto Lerda (U.P.O.)

Stringy Instantons

Perugia, June 26, 2010 6 / 34

- In brane-world models, instantons are engineered with E(uclidean) branes, *i.e.* D-branes that are point-like in the 4d space-time and are totally wrapped in the internal Y₆ space.
- Second possibility:
 - The gauge and the instantonic branes wrap the DIFFERENT cycles in Y_6 .

• These are the so-called exotic or stringy instantons.

Their effects are suppressed by

$$e^{-\frac{V'(C'_{p})}{g_{s}}} = e^{-\frac{V(C_{p})}{g_{s}}} \frac{V'(C'_{p})}{V(C_{p})} = e^{-\frac{8\pi^{2}}{g_{YM}^{2}}} \frac{V'(C'_{p})}{V(C_{p})} \neq e^{-\frac{8\pi^{2}}{g_{YM}^{2}}}$$

- In brane-world models, instantons are engineered with E(uclidean) branes, *i.e.* D-branes that are point-like in the 4d space-time and are totally wrapped in the internal Y₆ space.
- Second possibility:
 - The gauge and the instantonic branes wrap the DIFFERENT cycles in Y_6 .

- These are the so-called exotic or stringy instantons.
 - * Exotic instantons may lead to interactions that are perturbatively forbidden but of great phenomenological relevance (neutrino Majorana masses, Yukawas in certain GUT models,...).
 - * Need to understand their status in 4d gauge theories and to construct precise rules for the "exotic" instanton calculus.

Alberto Lerda (U.P.O.)

Stringy Instantons

Our strategy

 Stringy computational techniques for ordinary instantonic branes reproduce the standard instanton calculus

Billò et al. 2002; ...

- Same kind of techniques techniques should extend to exotic instantonic branes
- Our strategy to test this assumption is to select a set-up such that:
 - exotic instantonic branes contribute to the gauge effective action
 - all exotic instanton numbers contribute to gauge couplings (like for ordinary instantons in $\mathcal{N} = 2$ SYM)
 - the theory possesses a computable heterotic dual, so that the results of the exotic calculus can be tested against it

Alberto Lerda (U.P.O.)

Stringy Instantons

・ロト ・ 同ト ・ ヨト ・ ヨト

We start from Type I', namely Type IIB on a two-torus T₂ modded out by

 $\Omega = \omega \left(-1 \right)^{F_L} I_2$

 ω = w.-s. parity, F_L = left-moving fermion #, I_2 = inversion on T_2

We start from Type I', namely Type IIB on a two-torus T₂ modded out by

 $\Omega = \omega \left(-1 \right)^{F_L} I_2$

 ω = w.-s. parity, F_L = left-moving fermion #, I_2 = inversion on T_2

▶ Then we compactify Type I' on $K3 \sim (T_2 \times T_2)/\mathbb{Z}_2$

There are 64 O3 fixed-planes + 4 O7 fixed-planes.

Alberto I	Lerda (U.P.O.)
-----------	---------	---------

Image: A matrix and a matrix

We start from Type I', namely Type IIB on a two-torus T₂ modded out by

 $\Omega = \omega \left(-1\right)^{F_L} I_2$

 ω = w.-s. parity, F_L = left-moving fermion #, I_2 = inversion on T_2

▶ Then we compactify Type I' on $K3 \sim (T_2 \times T_2)/\mathbb{Z}_2$

 Local tadpole cancellation requires to put 4 D7-branes plus their images at each O7 fixed-plane.

Alberto Lerda (U.P.	0.)	l
---------------------	-----	---

・ロト ・ 同ト ・ ヨト ・ ヨト

Let us focus on one of the O7 planes where we have 4 D7-branes + their orientifold images

- The orientifold action on the Chan-Paton factors implies that the gauge group on the D7's is U(4) (↔ SO(8))
- ► The D7/D7 strings organize in 1 adjoint N = 2 vector multiplet + 2 antisymm. hypers of U(4)
- The U(4) gauge coupling is

$$g_{\rm YM}^2 \sim \frac{g_s}{Vol(\mathcal{T}_2 \times \mathcal{T}_2)}$$

 O3 tadpole cacellation requires 4 D3-branes plus their images, to be distributed on the various O3 fixed points.

- We place 4 D3's at 4 distinct O3 fixed points on top of the chosen D7 stack
- The D7/D3 strings give rise to 4 hypers in the fundamental of U(4).
- This theory is conformal: for the SU(4) part, the 1-loop β-function coefficient is

 $b_1 \propto (4-m) = 0$ with m = 4 fundamental hypers

< <p>Image: A marked black

Summary:

- On each stack of D7's we have a conformal N = 2 U(4) gauge theory containing:
 - 1 adjoint vector mult. + 2 antisymm hypers (\rightarrow D7/D7 strings)
 - 4 fundamental hypers (\rightarrow D7/D3 strings)

∃ ► < ∃ ►</p>

< D > < A > <</p>

Summary:

- On each stack of D7's we have a conformal N = 2 U(4) gauge theory containing:
 - 1 adjoint vector mult. + 2 antisymm hypers (\rightarrow D7/D7 strings)
 - 4 fundamental hypers (→ D7/D3 strings)
- The quadratic effective action for the gauge fields can be written using holomorphic couplings f_{ab} as

$$S = \int d^4x \left\{ \operatorname{Re} f_{ab} \operatorname{Tr} \left(F^a_{\mu\nu} F^{b\mu\nu} \right) + \operatorname{Im} f_{ab} \operatorname{Tr} \left(F^a_{\mu\nu} * F^{b\mu\nu} \right) \right\}$$

• In terms of the $\mathcal{N} = 2$ U(4) vector multiplet Φ

$$\Phi(x,\theta) = \varphi(x) + \theta^{\alpha} \Lambda_{\alpha}(x) + (\theta \gamma^{\mu \nu} \theta) F_{\mu \nu}(x) + \dots ,$$

we have two color structures

$$S = \int d^4x d^4\theta \left\{ f \operatorname{Tr}(\Phi^2) + f'(\operatorname{Tr}\Phi)^2 \right\} + \mathrm{c.c.}$$

Alberto Lerda (U.P.O.)

The holomorphic couplings f and f' have tree-level, 1-loop and non-perturbative terms:

Single trace : $f = f_{(0)} + f_{(1)} + f_{n.p.}$

Double trace :
$$f' = f'_{(0)} + f'_{(1)} + f'_{n.p.}$$

글 🖌 🔺 글 🕨

The holomorphic couplings f and f' have tree-level, 1-loop and non-perturbative terms:

Single trace : $f = f_{(0)} + f_{(1)} + f_{n.p.}$

Double trace :
$$f' = f'_{(0)} + f'_{(1)} + f'_{n.p.}$$

At tree level:

$$F \longrightarrow F \Rightarrow f_{(0)} = \frac{4\pi}{g_{YM}^2} - i\frac{\theta_{YM}}{2\pi} = -it$$
$$= \frac{Vol(\mathcal{T}_2 \times \mathcal{T}_2)}{g_s} - i\int_{\mathcal{T}_2 \times \mathcal{T}_2} C_4$$
$$F = 0$$

< <p>Image: A marked black

The holomorphic couplings f and f' have tree-level, 1-loop and non-perturbative terms:

Single trace : $f = f_{(0)} + f_{(1)} + f_{n.p.}$

Double trace : $f' = f'_{(0)} + f'_{(1)} + f'_{n.p.}$

At 1-loop:

The holomorphic couplings f and f' have tree-level, 1-loop and non-perturbative terms:

Single trace : $f = f_{(0)} + f_{(1)} + f_{n.p.}$

Double trace :
$$f' = f'_{(0)} + f'_{(1)} + f'_{n.p.}$$

At the non-perturbative level:

How do we compute

$$f_{n.p.}$$
 and $f'_{n.p.}$?

Intermezzo

э

Heterotic dual

• Our type I' model has a computable heterotic dual: the U(16) compactification of the SO(32) heterotic string on $T_2 \times (T_2 \times T_2)/\mathbb{Z}_2$ plus Wilson lines on T_2 breaking U(16) to U(4)⁴

Heterotic dual

• Our type I' model has a computable heterotic dual: the U(16) compactification of the SO(32) heterotic string on $T_2 \times (T_2 \times T_2)/\mathbb{Z}_2$ plus Wilson lines on T_2 breaking U(16) to U(4)⁴

The holomorphic gauge couplings for each U(4) factor can be derived from a protected 1-loop threshold computation. This was not present in the literature, so we carried it out finding:

$$f_{(1)}^{H} = 8 \log \left(\frac{\eta \left(\frac{T}{4} \right)^2}{\eta \left(\frac{T}{2} \right)^2} \right) \quad , \quad f_{(1)}^{\prime H} = 8 \log \left(\frac{\eta \left(\frac{T}{2} \right)^2}{\eta (U)^2 \eta \left(\frac{T}{4} \right)^4} \right)$$

where T and U are the Kähler and complex structures of T_2 .

Alberto Lerda (U.P.O.)

- ▶ Type I' variables : (τ, u) $(\tau = C_0 + i/g_s = axio-dilaton)$
- Heterotic variables : (T, U)
- ► Type I' / Heterotic map: $\tau \leftrightarrow T/4$, $u \leftrightarrow U$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののの

- ▶ Type I' variables : (τ, u) $(\tau = C_0 + i/g_s = axio-dilaton)$
- Heterotic variables : (T, U)
- ► Type I' / Heterotic map: $\tau \leftrightarrow T/4$, $u \leftrightarrow U$
- Expanding the heterotic threshold coefficients for $T \rightarrow \infty$, we have

$$f_{(1)}^{H} = 8\log\left(\frac{\eta\left(\frac{T}{4}\right)^{2}}{\eta\left(\frac{T}{2}\right)^{2}}\right) \simeq \dots - 16\sum_{k=1}^{\infty}\sum_{d|k}\frac{1}{d}\left(e^{2\pi i k\frac{T}{4}} - e^{2\pi i k\frac{T}{2}}\right)$$

$$f'_{(1)}^{H} = 8 \log \left(\frac{\eta \left(\frac{T}{2} \right)^2}{\eta (U)^2 \eta \left(\frac{T}{4} \right)^4} \right) \simeq \dots - 16 \sum_{k=1}^{\infty} \sum_{d|k} \frac{1}{d} \left(e^{2\pi i k \frac{T}{2}} - 2 e^{2\pi i k \frac{T}{4}} \right)$$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ▶ Type I' variables : (τ, u) $(\tau = C_0 + i/g_s = axio-dilaton)$
- Heterotic variables : (T, U)
- ► Type I' / Heterotic map: $\tau \leftrightarrow T/4$, $u \leftrightarrow U$
- In Type I' language we have

$$f_{(1)}^{H} = 8 \log \left(\frac{\eta(\tau)^{2}}{\eta(2\tau)^{2}} \right) \simeq \dots - 16 \sum_{k=1}^{\infty} \sum_{d|k} \frac{1}{d} \left(e^{2\pi i k \tau} - e^{4\pi i k \tau} \right)$$
$$f_{(1)}^{H} = 8 \log \left(\frac{\eta(2\tau)^{2}}{\eta(u)^{2} \eta(\tau)^{4}} \right) \simeq \dots - 16 \sum_{k=1}^{\infty} \sum_{d|k} \frac{1}{d} \left(e^{4\pi i k \tau} - 2 e^{2\pi i k \tau} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののの

- ► Type I' variables : (τ, u) $(\tau = C_0 + i/g_s = axio-dilaton)$
- Heterotic variables : (T, U)
- ► Type I' / Heterotic map: $\tau \leftrightarrow T/4$, $u \leftrightarrow U$
- In Type I' language we have

$$f_{(1)}^H = \cdots - 16 q^2 - 8 q^4 + \cdots$$

$$f'^{H}_{(1)} = \cdots + 32 q^{2} + 32 q^{4} + \cdots$$

where
$$q = e^{i\pi\tau} \neq e^{-\frac{8\pi^2}{g_{YM}} + i\theta_{YM}} \rightarrow$$

Alberto Lerda (U.P.O.) Stringy Instantons Perugia, June 26, 2010 14/34

14/34

Back to non-perturbative corrections

э

Type I' non-perturbative corrections

We focus on the D-instanton contributions

- Work in progress on the E3 sectors
- The D(-1)'s correspond to exotic instantons w.r.t. to the D7 gauge theory. Their effects are weighted by

$$q^{k} = \mathrm{e}^{-k \, S_{D(-1)}} \sim \mathrm{e}^{-k \, \frac{\pi}{g_{s}}} \sim \mathrm{e}^{-k \, \frac{8\pi^{2}}{g_{\mathrm{YM}}^{2} \, \mathrm{Vol}(\mathcal{I}_{2} \times \mathcal{I}_{2})}}$$

which is not the usual gauge istanton factor $e^{-k \frac{8\pi^2}{g_{YM}^2}}$.

This is the right weight expected from the duality with the heterotic theory.

Effective action from D-instantons

 Open strings with at least one end on a D(-1) carry no momentum: they are moduli rather than dynamical fields.

 Effective interactions between gauge fields (encoded in Φ) can be mediated by D-instanton moduli through mixed disks

$$F$$
 = F + ...

connected by integration over the instanton moduli $\mathcal{M}_{(k)}$

Effective action from D-instantons

 Open strings with at least one end on a D(-1) carry no momentum: they are moduli rather than dynamical fields.

▶ We must sum over D(-1) conf.s and instanton #'s k and compute

$$\sum_{conf.s} \sum_{k} q^{k} \int d\mathcal{M}_{(k)} e^{-\mathcal{S}(\mathcal{M}_{(k)}, \Phi)}$$

- S(M_(k), Φ) arises from (mixed) disk diagrams describing interactions of the moduli among themselves and with the gauge fields
- From this we should extract the n.p. effective action in the form

$$S_{n.p.}(\Phi) = \int d^4x \, d^4\theta \, \mathcal{F}_{n.p.}(\Phi)$$

Adding D-instantons

Let us add k D-instantons:

э

Adding D-instantons

Let us add k D-instantons:

- In this case the D(-1)'s are both on top of the D7's and of the D3's.
 - \Rightarrow both D(-1)/D7 and D(-1)/D3 strings have massless modes.

Adding D-instantons

Let us add k D-instantons:

- ▶ In this case D(-1)'s are on top of the D7's but not on the D3's.
 - \Rightarrow only D(-1)/D7 strings have massless modes.
- The fermionic D(-1)/D7 mixed moduli are always present (only fermionic: typical of exotic instantons)
- The bosonic and fermionic D(-1)/D3 mixed moduli can or cannot be present.

Alberto Lerda (U.P.O.)

Computing D-instanton effects

We face a very complicated matrix integral:

$$\sum_{conf.s}\sum_{k}q^{k}\int d\mathcal{M}_{(k)}e^{-\mathcal{S}(\mathcal{M}_{(k)},\Phi)}$$

the moduli spectrum contains bosonic and fermionic moduli with transformation properties under the Chan-Paton groups

$U(k) \times U(4) \times U(m)$

corresponding to strings ending on the k D(-1)'s, the 4 D7's and the m D3's (with m = 0, 1)

• The moduli action $S(\mathcal{M}_{(k)}, \Phi)$ contains many moduli interactions

Computing D-instanton effects

We face a very complicated matrix integral:

$$\sum_{conf.s}\sum_{k}q^{k}\int d\mathcal{M}_{(k)}e^{-\mathcal{S}(\mathcal{M}_{(k)},\Phi)}$$

the moduli spectrum contains bosonic and fermionic moduli with transformation properties under the Chan-Paton groups

$U(k) \times U(4) \times U(m)$

corresponding to strings ending on the k D(-1)'s, the 4 D7's and the m D3's (with m = 0, 1)

- The moduli action $S(\mathcal{M}_{(k)}, \Phi)$ contains many moduli interactions
- However,...

Computing D-instanton effects

- Substantial progress can be made by exploiting the SUSY properties of the moduli action, which lead to:
 - an equivariant cohomological BRST structure
 - a localization of the moduli integrals (after suitable closed string deformations)
- Similar techniques have been successfully used to
 - compute the YM integrals in d = 10, 6, 4 and the D-instanton partition function
 - compute multi-instanton effects in $\mathcal{N} = 2$ SYM in d = 4 and compare with the Seiberg-Witten solution

Nekrasov, 2002; + ...

・ロト ・ 同ト ・ ヨト ・ ヨト

derive the multi-instanton calculus using D3/D(-1) brane systems

Fucito et al, 2004; Billò et al, 2006; ...

General idea

- Our brane system is BPS.
- There are SUSY transformations under which $S(\mathcal{M}_{(k)}, \Phi)$ is invariant.

3

General idea

- Our brane system is BPS.
- ► There are SUSY transformations under which S(M_(k), Φ) is invariant.
- Select a particular component of the SUSY charges as BRST charge Q:
 - The "Lorentz" symmetry SO(4)×SO(2) is restricted to the SU(2)³ subgroup that leaves Q invariant
 - \blacktriangleright Organize the D-instanton moduli in BRST doublets $(\mathcal{M}_0, \mathcal{M}_1)$ such that

$$QM_0 = M_1$$

• The moduli action $\mathcal{S}(\mathcal{M}_{(k)}, \Phi)$ is BRST exact:

$$S(\mathcal{M}_{(k)}, \Phi) = Q\Xi$$

sector	$(\mathcal{M}_0, \mathcal{M}_1)$	$U(k) \times U(4) \times U(m)$	<i>SU</i> (2) ³
D(-1)/D(-1)	(B_l, M_l) (B_i, M_i) $(N_{\dot{\alpha}\dot{a}}, D_{\dot{\alpha}\dot{a}})$ (N_m, d_m) $(\bar{\chi}, \eta)$ χ	$(adj, 1, 1) (\Box, 1, 1) + h.c. (\Box, 1, 1) + h.c.(adj, 1, 1)(adj, 1, 1)(adj, 1, 1)(adj, 1, 1)$	(2, 1, 2) (1, 2, 2) (2, 2, 1) (1, 1, 3) (1, 1, 1) (1, 1, 1)
D(-1)/D7	(µ', h')	$\left(\Box, \overline{\Box}, 1\right) + h.c.$	(1, 1, 1)
D(-1)/D3 (m = 0 or 1)	$(w_lpha,\mu_lpha) \ (\mu_{\dot{a}},h_{\dot{a}})$	$(\Box, 1, \overline{\Box}) + h.c.$ $(\Box, 1, \Box) + h.c.$	(1, 1, 2) (1, 2, 1)

- ▶ B_{ℓ} ~ positions of the D(-1)'s in spacetime; M_{ℓ} superpartner
- Component along the identity ~ Goldstone modes of broken (super)-translations ~ supercoordinates (x, θ).

sector	$(\mathcal{M}_0, \mathcal{M}_1)$	$U(k) \times U(4) \times U(m)$	<i>SU</i> (2) ³
D(-1)/D(-1)	(B_{l}, M_{l}) $(B_{\dot{l}}, M_{\dot{l}})$ $(N_{\dot{\alpha}\dot{a}}, D_{\dot{\alpha}\dot{a}})$ (N_{m}, d_{m}) $(\bar{\chi}, \eta)$ χ	$ \begin{array}{c} \left(\text{adj, 1, 1} \right) \\ \left(\square, 1, 1 \right) + \text{h.c.} \\ \left(\square, 1, 1 \right) + \text{h.c.} \\ \left(\text{adj, 1, 1} \right) \end{array} $	(2, 1, 2) (1, 2, 2) (2, 2, 1) (1, 1, 3) (1, 1, 1) (1, 1, 1)
D(-1)/D7 D(-1)/D3 (<i>m</i> = 0 or 1)	(μ', h') (w_{lpha}, μ_{lpha}) (μ_{a}, h_{a})	$\left(\Box, \overline{\Box}, 1\right) + h.c.$ $\left(\Box, 1, \overline{\Box}\right) + h.c.$ $\left(\Box, 1, \Box\right) + h.c.$	(1, 1, 1) (1, 1, 2) (1, 2, 1)

• (B_i, M_i) ~ positions of the D(-1)'s in $(T_2 \times T_2)/\mathbb{Z}_2$.

э

sector	$(\mathcal{M}_0, \mathcal{M}_1)$	$U(k) \times U(4) \times U(m)$	<i>SU</i> (2) ³
D(-1)/D(-1)	(B_l, M_l) (B_i, M_i) $(N_{\dot{\alpha}\dot{\alpha}}, D_{\dot{\alpha}\dot{\alpha}})$ (N_m, d_m) $(\bar{\chi}, \eta)$ χ	$ \begin{array}{c} \left(adj, 1, 1 \right) \\ \left(\Box , 1, 1 \right) + h.c. \\ \left(\Box, 1, 1 \right) + h.c. \\ \left(adj, 1, 1 \right) \end{array} $	(2, 1, 2) (1, 2, 2) (2, 2, 1) (1, 1, 3) (1, 1, 1) (1, 1, 1)
D(-1)/D7 D(-1)/D3 (<i>m</i> = 0 or 1)	(μ', h') (w _α , μ _α) (μ _à , h _à)	$\left(\Box, \overline{\Box}, 1\right) + h.c.$ $\left(\Box, 1, \overline{\Box}\right) + h.c.$ $\left(\Box, 1, \Box\right) + h.c.$	(1, 1, 1) (1, 1, 2) (1, 2, 1)

• χ , $\bar{\chi}$ ~ positions on T_2

> χ has a particular rôle and does not belong to a BRST doublet.

sector	$(\mathcal{M}_0, \mathcal{M}_1)$	$U(k) \times U(4) \times U(m)$	<i>SU</i> (2) ³
D(-1)/D(-1)	(B_{l}, M_{l}) (B_{i}, M_{i}) $(N_{\dot{\alpha}\dot{a}}, D_{\dot{\alpha}\dot{a}})$ (N_{m}, d_{m}) $(\bar{\chi}, \eta)$ χ	$ \begin{array}{c} \left(\text{adj, 1, 1} \right) \\ \left(\Box , 1, 1 \right) + \text{h.c.} \\ \left(\Box , 1, 1 \right) + \text{h.c.} \\ \left(\text{adj, 1, 1} \right) \end{array} $	(2, 1, 2) (1, 2, 2) (2, 2, 1) (1, 1, 3) (1, 1, 1) (1, 1, 1)
D(-1)/D7 D(-1)/D3	(μ', h') (w _α , μ _α)	$\left(\Box, \overline{\Box}, 1\right) + h.c.$ $\left(\Box, 1, \overline{\Box}\right) + h.c.$	(1 , 1 , 1) (1 , 1 , 2)
(<i>m</i> = 0 or 1)	(μ_a, h_a)	(□, 1 , □) + h.c.	(1, 2, 1)

 The physical D(-1)/D7 moduli µ' are only fermionic: typical of exotic instantons (h' are auxiliary)

BRST structure

 The components of each doublet are connected by BRST transformations

$$QM_0 = M_1$$

such that

$$Q^2 \bullet = \left[T_{U(k)}(\chi) + T_{U(4)}(\Phi) \right] \bullet$$

where

- $T_{U(k)}(\chi) = \text{inf.mal } U(k) \text{ rotation parametrized by } \chi$ (D(-1)/D(-1) scalar)
- $T_{U(4)}(\Phi) = \text{inf.mal } U(4) \text{ rotation parametrized by } \Phi$ (D7/D7 scalar)

BRST structure

 The components of each doublet are connected by BRST transformations

$$QM_0 = M_1$$

such that

$$Q^2 \bullet = \left[T_{U(k)}(\chi) + T_{U(4)}(\Phi) \right] \bullet$$

where

- $T_{U(k)}(\chi) = \text{inf.mal } U(k) \text{ rotation parametrized by } \chi$ (D(-1)/D(-1) scalar)
- $T_{U(4)}(\Phi) = \text{inf.mal } U(4) \text{ rotation parametrized by } \Phi$ (D7/D7 scalar)
- ▶ However, the moduli action $S(\mathcal{M}_{(k)}, \Phi)$ is invariant also under
 - U(m) (associated to the m = 0, 1 D3's)
 - the residual "Lorentz" group SU(2)³

・ロット (雪) (日) (日) (日)

BRST structure

► We could replace Q with a modified BRST charge Q, nilpotent also up to U(m) and SU(2)³ transformations, *i.e.* such that

 $\widetilde{Q}^2 \bullet = \left[T_{\mathsf{U}(k)}(\chi) + T_{U(4)}(\phi) + T_{U(m)}(\pi) + T_{\mathsf{SU}(2)^3}(\epsilon) \right] \bullet$

where

- $T_{U(k)}(\chi) = \text{inf.mal } U(k) \text{ rotation parametrized by } \chi$ (D(-1)/D(-1) scalar)
- $T_{U(4)}(\Phi) = \text{inf.mal U(4) rotation parametrized by } \Phi$ (D7/D7 scalar)
- $T_{U(k)}(\pi) = \text{inf.mal } U(m) \text{ rotation parametrized by } \pi$ (D3/D3 scalar)
- $T_{SU(2)^3}(\epsilon) = \text{inf.mal } SU(2)^3 \text{ rotation parametrized by } \epsilon \text{ (R-R fields)}$

 \tilde{Q} is equivariantly closed

This equivariant BRST structure allows to suitably rescale the integration variables, and show that the the semiclassical approximation is exact.

Alberto Lerda (U.P.O.)

Scaling to localization

 The integrals over all moduli (except χ) become quadratic and yield in the end

$$\prod_{\mathcal{M}_0} det_{\mathcal{M}_0}^{\pm \frac{1}{2}}(\tilde{Q}^2)$$

where M_0 = first components of BRS doublets in the spectrum and \pm depend on their fermionic or bosonic nature.

• The action of \widetilde{Q}^2 on \mathcal{M}_0 is completely determined by the symmetry properties of \mathcal{M}_0

Scaling to localization

 The integrals over all moduli (except χ) become quadratic and yield in the end

$$\prod_{\mathcal{M}_0} det_{\mathcal{M}_0}^{\pm \frac{1}{2}}(\tilde{Q}^2)$$

where M_0 = first components of BRS doublets in the spectrum and \pm depend on their fermionic or bosonic nature.

- The action of \widetilde{Q}^2 on \mathcal{M}_0 is completely determined by the symmetry properties of \mathcal{M}_0
- ▶ By taking the parameters χ , ϕ , π and ϵ in the Cartan directions, we get a rational function determined by the weights of the rep.s to which M_0 belongs

・ロト ・ 同ト ・ ヨト ・ ヨト

D-instanton partition function

At instanton # k we get

$$Z_{k}^{(m)}(\Phi, \pi, \epsilon) = \left(\frac{s_{3}}{\epsilon_{1}\epsilon_{2}}\right)^{k} \int \prod_{i=1}^{k} \frac{d\chi_{i}}{2\pi i} \prod_{i

$$\times \prod_{i

$$\times \prod_{i=1}^{k} \left[\prod_{\ell=1}^{2} \frac{1}{\left(4\chi_{i}^{2} - \epsilon_{\ell+2}^{2}\right)} \prod_{r=1}^{m} \frac{\left((\chi_{i} + \pi_{r})^{2} - \frac{(\epsilon_{3} - \epsilon_{4})^{2}}{4}\right)}{\left((\chi_{i} - \pi_{r})^{2} - \frac{(\epsilon_{1} + \epsilon_{2})^{2}}{4}\right)} \prod_{u=1}^{4} \left(\chi_{i} - \Phi_{u}\right)\right]$$$$$$

(here $\{\epsilon_A\}$ with $\sum_{A=1}^4 \epsilon_A = 0$ are the Cartan param.s of SU(2)³ embedded in SO(4)× SO(4) rot.s and $s_1 = \epsilon_2 + \epsilon_3$, $s_2 = \epsilon_1 + \epsilon_3$, $s_3 = \epsilon_1 + \epsilon_2$)

The χ integrals can be done as contour integrals and the final result for Z_k(Φ, π, ε) comes from a sum over residues
More+Nekrasov+Shatashvili. 1998

D-instanton partition function (continued)

- Once the integrals are done, we can obtain the non-perturbative effective action.
- But there are some caveats:
 - At instanton number k, there are disconnected contributions from smaller instantons k_i (with $\sum_i k_i = k$). To isolate the connected components we have to take the log of the "grand-canonical" partition function:

$$\mathcal{Z}^{(m)}(\Phi, \pi, \epsilon) \equiv \sum_{k} Z_{k}^{(m)}(\Phi, \pi, \epsilon) q^{k} \rightarrow \log \mathcal{Z}^{(m)}(\Phi, \pi, \epsilon)$$

• In obtaining $Z_k^{(m)}(\Phi, \pi, \epsilon)$ we integrated over all moduli, and hence also over the superspace coordinates x and θ .

∜

We expect a divergence $1/(\epsilon_1\epsilon_2)$ representing the (regularized) super-volume factor.

An 8-dimensional contribution

• However, $\log \mathcal{Z}^{(m)}(\Phi, \pi, \epsilon)$ is divergent as $1/(\epsilon_1 \epsilon_2 \epsilon_3 \epsilon_4)$.

- This factor arises from the integral over the moduli corresponding to the (super)coordinates in the first 8 directions
- To remove this contribution we make the replacement

 $\log \mathcal{Z}^{(m)}(\Phi, \pi, \epsilon) \to (\epsilon_1 \epsilon_2 \epsilon_3 \epsilon_4) \log \mathcal{Z}^{(m)}(\Phi, \pi, \epsilon)$

and then turn-off the ϵ -deformations, obtaining

$$\mathcal{F}_{IV}(\Phi) = \lim_{\epsilon \to 0} \left[\epsilon_1 \epsilon_2 \epsilon_3 \epsilon_4 \log \mathcal{Z}^{(m)}(\Phi, \pi, \epsilon) \right]$$

F_{IV}(Φ) is finite and has an 8d interpretation as a quartic prepotential for Φ. It agrees with the one computed in the D7/D(-1) system in type I'

Billo et al, 2009

• It does not depend on the D3 d.o.f. π (hence not on m)

Alberto Lerda (U.P.O.)

・ロット (雪) (日) (日) (日)

The 4d prepotential

- ► log $\mathcal{Z}^{(m)}(\Phi, \pi, \epsilon)$ has also a subleading divergence in $1/(\epsilon_1 \epsilon_2)$ corresponding to the 4d (super)coordinates.
- To isolate this 4d term, we define

$$\mathcal{F}_{II}^{(m)}(\Phi,\pi) = \lim_{\epsilon \to 0} \left(\epsilon_1 \epsilon_2 \log \mathcal{Z}^{(m)}(\Phi,\pi,\epsilon) - \frac{1}{\epsilon_3 \epsilon_4} \mathcal{F}_{IV}(\Phi) \right)$$

The 4d prepotential

- ► log $\mathcal{Z}^{(m)}(\Phi, \pi, \epsilon)$ has also a subleading divergence in $1/(\epsilon_1 \epsilon_2)$ corresponding to the 4d (super)coordinates.
- To isolate this 4d term, we define

$$\mathcal{F}_{II}^{(m)}(\Phi,\pi) = \lim_{\epsilon \to 0} \left(\epsilon_1 \epsilon_2 \log \mathcal{Z}^{(m)}(\Phi,\pi,\epsilon) - \frac{1}{\epsilon_3 \epsilon_4} \mathcal{F}_{IV}(\Phi) \right)$$

Explicitly, up to 3 instantons and neglecting the π -dependence to focus on the D7 d.o.f., we find the quadratic prepotentials

$$\mathcal{F}_{II}^{(m=0)}(\Phi) = \left(-\sum_{i < j} \Phi_i \Phi_j\right) q + \left(\sum_{i < j} \Phi_i \Phi_j - \frac{1}{4} \sum_i \Phi_i^2\right) q^2 + \left(-\frac{4}{3} \sum_{i < j} \Phi_i \Phi_j\right) q^3 + \cdots,$$

$$\mathcal{F}_{II}^{(m=1)}(\Phi) = \left(3 \sum_{i < j} \Phi_i \Phi_j\right) q + \left(\sum_{i < j} \Phi_i \Phi_j + \frac{7}{4} \sum_i \Phi_i^2\right) q^2 + \left(4 \sum_{i < j} \Phi_i \Phi_j\right) q^3 + \cdots.$$

The 4d prepotential (continued)

We still have to sum over configurations with m = 0 and m = 1, with the correct combinatorial factors, namely

$$\mathcal{F}_{n.p.}(\Phi) = 48 \, \mathcal{F}_{ll}^{(m=0)}(\Phi) + 16 \, \mathcal{F}_{ll}^{(m=1)}(\Phi)$$

$$= 0 q + \left[-16 \text{Tr} \Phi^2 + 32 (\text{Tr} \Phi)^2 \right] q^2 + 0 q^3 + O(q^4)$$

 Thus, the non-perturbative corrections to the quadratic gauge couplings are

$$f_{n.p.} = -16 q^2 + O(q^4)$$
 and $f'_{n.p.} = +32 q^2 + O(q^4)$

- No contributions in q and q^3 (as effect of sum over conf.s)
- At order q^2 , a ratio of -2 between f and f' in perfect agreement with the dual heterotic calculation!!

Alberto Lerda (U.P.O.)

Conclusions and perspectives

э

Conclusions

- We have considered a consistent string set-up where the 4d gauge theory living on a D-brane stack receives non-perturbative corrections from "exotic" brane instantons
- We explicitly computed such corrections by integrating over exotic instanton moduli space by means of localization techniques
- We successfully checked the result against a dual heterotic computation

Conclusions

- We have considered a consistent string set-up where the 4d gauge theory living on a D-brane stack receives non-perturbative corrections from "exotic" brane instantons
- We explicitly computed such corrections by integrating over exotic instanton moduli space by means of localization techniques
- We successfully checked the result against a dual heterotic computation
- The string instanton calculus is on solid ground also for the "exotic" configurations which have a very different spectrum of moduli as compared to ordinary gauge instantons

・ロト ・ 同ト ・ ヨト ・ ヨト

Perspectives

▶ In our set-up, there are other possible non-perturbative corrections from E3 branes wrapped on $(T_2 \times T_2)/\mathbb{Z}_2$. They correspond to usual gauge instantons for the D7 theory, and would be n.p. on the heterotic side. We're investigating them.

Perspectives

- ▶ In our set-up, there are other possible non-perturbative corrections from E3 branes wrapped on $(T_2 \times T_2)/\mathbb{Z}_2$. They correspond to usual gauge instantons for the D7 theory, and would be n.p. on the heterotic side. We're investigating them.
- The non-perturbative description of D7 backgrounds should be geometrized by F-theory. D7/D3/D(-1) systems are a testing ground to link directly F-theory curves to non-perturbative prepotentials both in 8d and 4d. Work in progress.

Annecy-Torino Torino-Roma Tor Vergata

・ロト ・ 同ト ・ ヨト ・ ヨト

Perspectives

- ▶ In our set-up, there are other possible non-perturbative corrections from E3 branes wrapped on $(T_2 \times T_2)/\mathbb{Z}_2$. They correspond to usual gauge instantons for the D7 theory, and would be n.p. on the heterotic side. We're investigating them.
- The non-perturbative description of D7 backgrounds should be geometrized by F-theory. D7/D3/D(-1) systems are a testing ground to link directly F-theory curves to non-perturbative prepotentials both in 8d and 4d. Work in progress.

Annecy-Torino Torino-Roma Tor Vergata

 Most important, the exotic instanton calculus might be applied in different set-ups and to different kind of couplings, possibly of more direct (string)-phenomenological interest

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Grazie !

Alberto Lerda (U.P.O.)

Stringy Instantons

Perugia, June 26, 2010 34 / 34

æ