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Outline

Introduction
AdS/CFT in a nutshell

What are the cusp anomaly and generalized scaling
function?

Superstring in the light cone gauge
Extracting scaling function from string theory and
comparison to gauge theory
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Understand quantum gauge theories at any coupling.

Make best use of symmetries by choosing simplest non
trivial gauge theory.

Ideal candidate: N = 4 SYM
It has maximal symmetry

It is conformal

Infinite dimensional symmetry: Integrability

It is dual to a superstring theory in a non-trivial background
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AdS/CFT

By the AdS/CFT correspondence, this gauge theory is
believed to be dual to type IIB string theory on AdS5 × S5.

α′ expansion↔ 1√
λ

genus expansion↔ 1

N
expansion

This is a strong/weak duality which is in general very hard
to test directly.
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Can we bridge the gap between weak and strong coupling
regimes?
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...sometime we have “interpolating functions”.

Simplest example: Half-BPS circular Wilson loop
x2

x1

W ∼ TrP exp
(∮
A+ Φ

)

The VEV is non trivial and it is exactly computable for any λ!

〈W 〉 =
2√
λ
I1(
√
λ) , N →∞

See also Bassetto’s talk; Supersymmetry is the key.
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Non-supersymmetric example: cusp anomaly

No simple formula but an integral equation exists.
Beisert Eden Staudacher

A perturbative solution can be extracted at any desired order.

The cusp anomaly is almost ubiquitous:

Renormalization of a light-like Wilson loops with cusps

Gluon scattering amplitudes

It governs the logarithmic scaling of high spin “twist”
operators.
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The simplest case is “twist two” (i.e. only two Z fields)

O = Tr
(
ZDS

+Z
)
, Z = Φ1 + iΦ2

This is the N = 4 analogue of a QCD operator like

q̄ γ+D
S
+ q , q = quark

The conformal dimension can be read from the 2-point
correlator

〈O(x)O(y)〉 ∼ 1

(x− y)2∆(S)

∆(S) = 2 + S + δ(S)

For large spin we have a logarithmic scaling

δ(S) = f(λ) logS , S →∞
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Comparing the spectra on the two sides of the duality:

Gauge theory side: Compute the conformal dimension of
local operators of planar (N →∞) N = 4 SYM
AdS side: Compute the energy of free string in AdS5 × S5

According to AdS/CFT duality it is the same computation

Conformal dimension ∆(λ) = String energy E(α′)

What is the string in AdS5 × S5 dual to the twist operator?
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Folded spinning string

It is a spinning closed string (“folded” on itself) in AdS3

Gubser Klebanov Polyakov

AdS boundary

It is pointlike in S5
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Why this is the correct string dual?

Eclassical = S +

√
λ

π
logS ,

This logarithmic behaviour persists after including quantum
corrections

Eone loop = −3 log 2

π
logS Frolov Tseytlin

These results combined with the behaviour at weak coupling

∆ = S + (α1λ+ α2λ
2 + · · · ) logS

support the idea that we have interpolation between weak and
strong coupling

∆ = Estring = S + f(λ) logS
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Generalized scaling

A new interpolating function appears when we additionally turn
on one (large) angular momentum J in S5.
This corresponds in gauge theory to the operator

O ∼ Tr(DS
+ZJ)

The conformal dimension is a non-trivial function

∆(S, J,
√
λ)

It can be explored in various regimes of the parameters testing
important features of gauge/string duality.
Interpolation between BMN-like (large J , small S) and minimal
twist (J = 2) operators.
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Integrability allows to map the one-loop anomalous dimension
into the energy of an SL(2) Heisenberg spin-chain.

Tr (Z...Z...Z) ≡ | ↓ ... ↓ ... ↓〉 , spin chain vacuum

Tr
(
Z... D+Z ...Z

)
≡ | ↓ ... ↑ ... ↓〉 excitation (magnon)
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The Bethe equations determine the allowed momenta for the S
magnons. At one-loop (uk ∼ cot(pk/2)):(

uk + i/2

uk − i/2

)J
=

S∏
j 6=k

uk − uj − i
uk − uj + i

,

S∏
k=1

uk + i/2

uk − i/2
= 1

δ(J, S) = g2
S∑
k=1

2

u2
k + 1/4

An all loop generalization for the Bethe equations exists
Beisert Eden Staudacher
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Solve them at strong coupling and compare with string
prediction
Equations simplify in the semiclassical scaling limit

λ� 1
S√
λ
� 1

J√
λ
� 1 ` ≡ πJ√

λ logS
= fixed

The anomalous dimension scales logarithmically in the spin

δ(`, S) =

√
λ

π
f(`, λ) logS

f(`, λ) is the generalized scaling dimension: new interpolating
function
Belitsky Gorsky Korchemsky; Freyhult, Rej, Staudacher
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The string is a folded segment passing through AdS center up
to the boundary and rotating in S1 inside S5

θ

t

ρ

ϕ

Length of the string is controlled by the spin: logS
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Classically
f0(`) =

√
1 + `2

Quantum corrections ∼ 1/(
√
λ)n modify the classical result

f(`, λ) = f0(`) +
1√
λ

f1(`) +
1

λ
f2(`) + · · ·

Up to one-loop string theory and Bethe-Ansatz agree
Frolov-Tirziu-Tseytlin; Casteill-Kristjansen; Belitsky
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Two-loops string theory computation

f2(`, λ) = −K + `2
(

8 log2 `− 6 log `+ q0

)
+O(`4)

q0 = −3

2
log 2 +

7

4
− 2K , String (?)

Roiban-Tseytlin ‘07

Almost equal to the Bethe-Ansatz prediction

q0 = −3

2
log 2 +

11

4
, Bethe Ansatz

Gromov ‘08

K =

∞∑
k=0

(−1)k

(2k + 1)2
∼ 0.9159...
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Status so far:

We compared the results at strong coupling for the
conformal dimension of the operator

O ∼ Tr(DSΦJ)

in gauge theory (Bethe-Ansatz) and in string theory.

Disagreement emerges at 2-loops...

Breakdown of integrability in string theory??

We will perform the string computation again, but this time
using a different “gauge”.
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A thermodynamical analogy

We need to compute E − S and J for our semiclassical string.
Suppose we have a 2d σ-model with conserved charges Qi

H̃2d = H2d +
∑
i

µiQi , Z(hi) = e−βΣ(µi) = Tre−βH̃

Averages 〈Qi〉 can be computed differentiating w.r.t. µi. In our
context it is natural to consider

H̃2d = H2d + κ(E − S)− νJ

The parameters κ and ν explicitly appear in the string solution.
They are not independent

H̃2d = 0→ κ = κ(ν) Virasoro
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− logZgrand.can. = 〈U〉 − 1

β
〈S〉 − µ〈N〉

For an infinite worldsheet (β ∼ logS →∞)

Σ(ν) = 〈H2d〉+κ〈E−S〉−ν〈J〉 , dΣ(ν)

dν
=
dκ(ν)

dν
〈E−S〉−〈J〉

We can solve these two equations to extract 〈E − S〉 and 〈J〉.

Riccardo Ricci Generalized scaling and integrability from AdS5 × S
5



We obtain

〈E − S〉 =
√

1 + ν2

(
Σ(ν)− ν dΣ(ν)

dν

)
,

Remember

E − S =

√
λ

π
f(`, λ) logS

〈E − S〉 scales logarithmically because the effective action Σ is
proportional to the worldsheet volume:

Σ ∝ Vol ∝ logS

We can therefore read the generalized scaling

f(`, λ) =
√

1 + ν2

(
F(ν)− ν dF(ν)

dν

)
, F ∼ Σ/Vol
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AdS5 × S5 superstring
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It is based on the supercoset
G

H
=

PSU(2, 2|4)

SO(2, 3)SO(5)
⊃ AdS5 × S5

Metsaev, Tseytlin

S ∼
√
λ

∫
GMN∂X

M∂XN + θ̄(D + F5)θ∂X + · · ·

Classically integrable
Lüscher, Pohlmeyer; Bena, Polchinski, Roiban

Infinite tower of conserved charges:
local (Noether)+non-local charges
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Performing a conformal transformation on the folded string we
can do all computations in the Poincare patch which makes life
easier

ds2
AdS5

+ ds2
S5 =

dxadxa + dzMdzM

z2

We still need to fix the worldsheet symmetries.
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Light-cone

Superstring worldsheet symmetries

2d bosonic diffeomorphism

σ → σ̃(σ, τ) , τ → τ̃(σ, τ)

fermionic κ symmetry

Fix these symmetries by suitably choosing a gauge.
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Let us consider κ symmetry:

ΘI = (θ, η)

θ ↔ Q , η ↔ S

“S-gauge”
η = 0

Conformal gauge and S-gauge lead to a simple quadratic
fermionic action (after “T-duality”). ...but bosonic propagator is
not simple.

Disagreement with Bethe-Ansatz...!
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Let us consider κ symmetry:

ΘI = (θ, η)

θ ↔ Q , η ↔ S

“S-gauge”
η = 0

Conformal gauge and S-gauge lead to a simple quadratic
fermionic action (after “T-duality”). ...but bosonic propagator is
not simple.

Disagreement with Bethe-Ansatz...!
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Other possibility:

Γ+θI = 0

as for Green-Schwarz in flat space.

Left with 8 θ’s and 8 η’s.

Combine this with bosonic light-cone gauge

x0 + x1 = x+ = τ ,
√
−ggαβ = diag(−z2, 1/z2)

Metsaev Thorn Tseytlin

This “AdS light-cone” action was never tested at the quantum
level
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Other possibility:

Γ+θI = 0

as for Green-Schwarz in flat space.

Left with 8 θ’s and 8 η’s.

Combine this with bosonic light-cone gauge

x0 + x1 = x+ = τ ,
√
−ggαβ = diag(−z2, 1/z2)

Metsaev Thorn Tseytlin

This “AdS light-cone” action was never tested at the quantum
level
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Very schematically

LGS ∼ ẋẋ∗ + żM żM +
1

z4

(
x′x′∗ + z′Mz′M

)
+η∂η + θ∂θ + (η2)2 + η∂θ

Fermionic action is quadratic in θ and quartic η.

Bosonic propagator is simple (almost diagonal).

This is an encouraging property for higher loop computations.

We have a 2d QFT theory problem
Compute its partition function

Zstring =

∫
D[x, z, θ, η] exp

(
−
∫
LGS

)
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Expand bosonic fields around the semiclassical string solution

x = x0 + δx , zM = zM0 + δZM

Read vertices and compute bosonic and fermionic Feynman
diagrams at a given loop order

At one loop we simply need the fluctuation spectrum

Fone loop =

∫
d2p log det(KB KF ) Zone loop = e−

V
2π
Fone loop

Bosons and fermions conspire to give a finite answer
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At two-loops for the computation of

F2loop ∼ logZstring

we need to consider all connected Feynman diagrams
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Possible integrals

I

(
a

m2

)
=

∫
d2p

(2π)2

1

(p2 +m2)a

This integral is UV divergent for a = 1 (and IR divergent for
m = 0).

I

(
a1 a2 a3

m2
1 m

2
2 m

2
3

)
=

∫
d2p d2q d2r

(2π)4

δ(2)(p+ q + r)

(p2 +m2
1)a1 (q2 +m2

2)a2 (r2 +m2
3)a3

Catalan constant:

I

(
1 1 1

1 1
2

1
2

)
= K

Riccardo Ricci Generalized scaling and integrability from AdS5 × S
5



Summing up:

F2loop(`) = −K + `2(· · · ) + `4(· · · ) +O(`6)

All divergences cancel out!

The quantum superstring in AdS light cone gauge is finite

This proves the consistency of the light-cone superstring at the
quantum level.
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From the partition function we can extract the generalized
scaling:

f2 = −K

+ `2
(

8 log2 `− 6 log `− 3

2
log 2 + `2

)
+ `4

(
−6 log2 `− 7

6
log `+ 3 log 2 log `− 9

8
log2 2

+
11

8
log 2 +

3

32
K− 233

576

)
+O(`6)

In stupendous agreement with the Bethe-Ansatz prediction!
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Leading logarithms and all loops results

Summarising we have

f2 = h2(`) log2 `+ h1(`) log `+ h0(`)

The coefficients h1(`) and h2(`) can be computed exactly.
At N -loop the expansion looks like

fN = f (N)(`) logN ` + f (N−1)(`) logN−1 `+ · · ·

It is even possible to reconstruct the leading logarithm
coefficient at any loop order!

Again in perfect agreement with an all-loop prediction from
Bethe-Ansatz.
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Future directions

Computations were done in a more general background

ϕ = ντ + wσ , w = “winding”

The solution with winding is a bended arc passing through AdS
center
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The partition function now depends on both momentum and
winding:

F(ν, w)

It is again finite at two-loops

The exchange of ν and w is a symmetry: T-duality!

We can extract a generalized scaling function in presence
of winding
Prediction confirmed at leading order from Bethe-Ansatz.
Kruczenski-Tirziu

One-loop/two-loops?
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Finite size corrections

Compute finite spin subleading terms to cusp anomaly (J = 0).

The worldsheet’s length is no longer infinite

L = logS <∞

Exact 1 loop result Beccaria, Dunne, Forini, Pawellek, Tseytlin

γ(g, S) = f(g) logS + γ(0)(g) +
γ(−1)(g)

logS
+ ...

? γ(−1) = 0 2 loops

in preparation

In agreement with Bethe-Ansatz expectations
Fioravanti, Grinza, Rossi
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Going up...

q3q2

q1
q1

q2 q3 q2q1 q3

q1

q2
q3

q2
q3

q1 q1
q2

q3 q1 q2q3q1
q3q2

(f) (g) (h)(e)

(b)(a) (d)(c)
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The most feasible computation is the cusp anomaly (J = 0)

f(λ) =
√
λ

(
1 +

a1√
λ

+
a2

λ
+

a3

λ3/2
+
a4

λ2
+ · · ·

)
Remarkable transcendentality properties

a1 = −3 log 2 , a2 = −K

a3 = − 1

32
(27ζ(3) + 96 K log 2)

a4 = − 1

16

(
84β(4) + 81ζ(3) log 2 + 32 K2 + 144 K log2 2

)
Degree of transcedentality

[log 2] = 1 [K] = 2 [ζ(n)] = n [β(n)] = n; β(2) = K
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Conclusion

The light-cone superstring computation solves a long
standing discrepancy between string and Bethe-Ansatz.

It provides a highly non trivial check of quantum
integrability beyond one-loop string semiclassical level.

Viceversa it provides an important consistency check of
all-loop Bethe-Ansatz.
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