
How does the string in flat space-time know about
curved space-time?

Paolo Di Vecchia

Niels Bohr Institute, Copenhagen and Nordita, Stockholm

Perugia, 25.06.10

Paolo Di Vecchia (NBI+NO) Curved space in string theory Perugia, 25.06.10 1 / 35



Foreword

I This talk is based on the work done together with

Giuseppe D’Appollonio, Rodolfo Russo and
Gabriele Veneziano, to appear.

Paolo Di Vecchia (NBI+NO) Curved space in string theory Perugia, 25.06.10 2 / 35



Plan of the talk

1 Introduction

2 The large distance behaviour of the classical solution

3 The approach of Amati, Ciafaloni and Veneziano(ACV)

4 The classical deflection angle in brane background

5 Scattering of a closed string on a Dp brane: disk

6 Deflection angle from string theory

7 The annulus diagram

8 Conclusions and outlook

9 The absorption cross section from a D3 brane

Paolo Di Vecchia (NBI+NO) Curved space in string theory Perugia, 25.06.10 3 / 35



Introduction

I String theory, as originally formulated, is a theory in flat
Minkowski space-time.

I It contains in its spectrum a massless spin 2 particle that has all
the properties of a graviton.

I It turns out that the low-energy string effective action that one
derives from scattering of strings is a (super)gravity theory with
string corrections.

I Curved space-time is not put by hand, as in GR, but emerges from
string scattering amplitudes.

I At the perturbative level (gs ∼ 0) string theory is only a theory of
strings.

I If we take into account non-perturbative effects string theory
contains additional p-dimensional states called D(irichlet)p branes.
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I On the one hand, they are classical solutions of the low-energy
10-dim string effective action:

S =
1

2κ2
10

∫
d10x

√
−g
[
R − 1

2
(∇φ)2 − 1

2(p + 2)!
e−aφ (Fp+2

)2
]

coupled to graviton, dilaton and RR (p + 1)-form potential given by:

ds2 = [H(r)]2A
(
ηαβdxαdxβ

)
+ [H(r)]2B (δijdx idx j)

with r2 ≡ δijx ix j and

e−φ(x) = [H(r)]
p−3

8 , C01...p(x) =
(

[H(r)]−1 − 1
)

I A, B and are equal to

A = −7− p
16

, B =
p + 1

16
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I H(r) is an harmonic function given by

H(r) = 1 +

(
R
r

)7−p

; R7−p
p =

2κ10TpN
(7− p)Ω8−p

=
gsN(2π

√
α′)7−p

(7− p)Ω8−p

κ10 =
(2π)7/2
√

2
gs(α′)2 ; Tp =

√
π

(2π
√
α′)p−3

; Ωq =
2π

q+1
2

Γ(q+1
2 )

I Mass per unit volume and RR charge

Mp =
Tp

κ10
N =

(2π
√
α′)1−p

2πα′gs
N ; µp =

√
2Tp N

Non-perturbative in gs.
I The low-energy string effective action is an action in curved

space-time and therefore the classical solution will inherit all the
properties of a theory of (super)gravity.
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I On the other hand, in string theory the Dp branes are
characterized by having open strings attached to their (p + 1)-dim
world-volume.

I Therefore, the open strings satisfy Dirichlet boundary conditions
along the directions transverse to the world-volume of the Dp
brane.

I In string theory a Dp brane is described by a closed string state,
called the boundary state.

I Dp branes interact by exchanging open strings and therefore the
lowest order interaction is given by the annulus diagram.
[Polchinski, 1995]

I By open/closed string duality the annulus diagram satisfies the
following identity:

−Tr log(L0 − a) =

∫ ∞
0

dτ
τ

Tr
(

e−2πτ(L0−a)
)

= 〈B|D|B〉

that determines the boundary state

|B〉 ≡
Tp

2
N|BX 〉|Bψ〉 ; D =

α′

4π

∫
|z|≤1

d2z
|z|2

zL0−az̄
eL0−a
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I The bosonic part of the boundary state is equal to

|BX 〉 = δd−p−1(q̂i − y i)

( ∞∏
n=1

e−
1
nα−nS·eα−n

)
|0〉α|0〉eα|p = 0〉

S ≡ (ηαβ;−δij)

I Using the boundary state and the vertex operators for open and
closed strings one can compute any amplitude involving scattering
of strings on the D branes.

I In particular, these amplitudes determine the structure of the
Born-Infeld action.

I All calculations are done in flat space where we are able to
quantize the string.

I On the other hand, the D branes are classical solutions of the
low-energy string effective action in curved space.

I How are we going to recover the curved space properties of the
Dp branes computing scattering of strings in flat space?

I This is what I am going to show in some example in this seminar.
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The large distance behaviour of the classical solution
[M. Frau, A. Lerda, I. Pesando, R. Russo, S. Sciuto and PDV, 1997]

I Given the boundary state one can compute the large distance
behaviour of the various fields of the classical solution as follows:

〈ψ|D|B〉 ; D =
α′

4π

∫
d2z
|z|2

zL0−az̄ L̃0−a

〈ψ| is the string state corresponding to the field of the classical
solution.

I Let us start by computing the expression for the generic NS-NS
massless field which is given by

Jµν ≡ −1〈0̃,
k⊥
2
|−1〈0,

k⊥
2
|ψν1/2 ψ̃

µ
1/2|D|B〉NS = −

Tp

2k2
⊥

Vp+1Sνµ

I Specifying the different polarizations corresponding to the various
fields we get for the dilaton

δφ =
1√
8

(ηµν − kµ`ν − kν`µ) Jµν =
3− p
4
√

2
Tp

Vp+1

k2
⊥
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I For the graviton we get:

δhµν(k) =
1
2

(
Jµν + Jνµ

)
− δφ√

8
ηµν

= Tp
Vp+1

k2
⊥

diag (−A,A . . .A,B . . .B) ,

where A = −7−p
16 and B = p+1

16
I For the Kalb-Ramond field we get:

δBµν(k) =
1√
2

(
Jµν − Jνµ

)
= 0

I In the R-R sector we get instead

δC01...p(k) ≡ 〈P(C)
01···p|D |B〉R = ∓µp

Vp+1

k2
⊥

; Tp =
√

2µp

Paolo Di Vecchia (NBI+NO) Curved space in string theory Perugia, 25.06.10 10 / 35



I We can express the previous fields in configuration space using
the following Fourier transform valid for p < 7∫

d (p+1)x d (9−p)x
eik⊥·x⊥

(7− p) r7−p Ω8−p
=

Vp+1

k2
⊥

,

I We must rescale the various fields according to

ϕ =
√

2κ10φ , h̃µν = 2κ10hµν , C01...p =
√

2κ10C01...p

I We get the following large distance behaviour for the dilaton

δϕ(r) =
3− p

4

(
Rp

r

)7−p
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I For the graviton we get

δh̃µν(r) = 2
(

Rp

r

)7−p

diag (−A, . . .A,B . . .B) ,

I For the RR field we get

δC01...p =

(
Rp

r

)7−p

I The previous equations reproduce exactly the behavior for r →∞
of the metric, the dilaton and the R-R potential of the solution.

I The next to the leading behaviour is expected to come from the
one-point function with two boundary states:

N
∑
α,β

〈B|
∫

d2z1 W (z1, z̄1) D |B〉α,β

W is the vertex operator corresponding to the massless closed
string.

I The explicit calculation gave zero after the sum over the spin
structures [R. Marotta, I. Pesando, PDV (1998), unpublished].
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I Two alternative ways of getting the classical solution.
I One is by solving the classical supergravity equations of motion

with the Dp brane as a source.
I The other is by computing the one-point function for the closed

string fields in an action that contains their interaction in the bulk
and their interaction with the D brane:

〈Φ(x) eiSbulk +iSboundary 〉

where

Sboundary =

∫
dp+1x Tp

[
−ηαβhαβ +

3− p
2
√

2
φ+
√

2C01...p

]
I By explicit calculation one can reproduce the leading and the next

to the leading behaviour of the classical solution.
I It is still not clear why the stringy calculation does not work as in

field theory. One may need an off-shell extrapolation.
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The approach of Amati, Ciafaloni and Veneziano(ACV)
[ACV, 1987; Sundborg, 1987]

I The starting point of the ACV approach is the four graviton
scattering amplitude on the sphere in the Regge limit
(s = 4E2 →∞ and small t):

aTree

s
=

32πGN

α′s
Γ(−α′

4 t)
Γ(1 + α′

4 t)

(
α′

4
s
)2+α′

2 t

e−iπ α
′

4 t =⇒ 8πGN
s

(−t)

I At high energy its Fourier transform in the space of impact
parameter exponentiates and one can compute the classical
deflection angle for large impact parameter:

Θ =

√
π Γ(D

2 )

Γ(D−1
2 )

( rs

b

)D−3
; rD−3

s =
16πGN

√
s

(D − 2)ΩD−2

D is the number of non-compact directions and rs is the
Schwarzschild radius.

I Then there are classical next to the leading corrections in the
large impact parameter and string corrections.
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I It corresponds to the deflection angle of a particle moving in the
Aichelburg-Sexl metric that can be seen as the boosted
Schwarzschild metric.

I It is the metric created by a fast moving particle as seen from the
other particle.

I In the case of a scattering on a Dp brane, there is a background
metric, namely the metric created by the Dp brane.

I How can we see the effect of this metric in the scattering of a
massless closed string on a Dp brane?
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The classical deflection angle in brane background
I At the classical level we can compute the deflection angle of a

massless probe moving in the metric created by a Dp brane.
I Consider a general metric of the kind:

ds2 ≡ gµν(x)dxµdxν = −α(r)dt2 + β(r)(dr2 + r2dθ2)

where we have neglected coordinates that are not involved for a
geodesic in which only t , r and θ vary.

I The geodesic equations can be best derived from the action of a
massless point-particle in this metric:

S =
1
2

∫
dτ
e

ẋµẋνgµν(x) =
1
2

∫
dτ
e

(
−ṫ2α(r) + β(r)

(
ṙ2 + r2θ̇2

))
where e is the einbein to take care of the reparametrization
invariance of the world line coordinate τ .

I The conjugate momenta are given by:

pt ≡
∂L
∂ ṫ

= − ṫα
e

; pr ≡
∂L
∂ ṙ

=
β(ρ)ṙ

e
; pθ =

∂L
∂θ̇

=
θ̇r2β(r)

e
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I The Eq. of motion for e gives:

β(r)ṙ2 + β(r)r2θ̇2 = α(r)ṫ2

I Since the Lagrangian does not depend explicitly on either t or θ
there are two conserved quantities: the energy and the angular
momentum

E = −α(r)ṫ ; J = β(r)r2θ̇

where a dot denotes derivative with respect to τ and we have
taken e = 1.

I Combining the three previous equations we get

θ̇

ṙ
=

J
βr2

1√
E2

αβ −
J2

β2r2

=
b
r2

1√
β
α −

b2

r2

where b ≡ J/E is the impact parameter.
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I The deflection angle is therefore given by:

Θp = 2
∫ ∞

r∗

dr
r2

b√
β
α −

b2

r2

− π

r∗ is the turning point i.e. the largest root of the equation
β
α −

b2

r2 = 0.
I The result depends only on α/β.
I It is therefore invariant under a r -dependent rescaling of the whole

metric.
I Therefore, we can work alternatively in either the string or the

Einstein frame.
I In our case we find, for a Dp brane:

β

α
= 1 +

(
Rp

r

)7−p
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I Changing variable to u = b
r one gets:

Θp = 2
∫ u∗

0

du√
1− u2 +

(
Rp
b

)7−p
u7−p

− π

where u∗ is the smallest root of the equation:

1− (u∗)2 +

(
Rp

b

)7−p

(u∗)7−p = 0

I The integral can be done exactly for the cases p = 5,6:

tan
Θ6

2
=

R6

2b
; Θ5 =

π√
1−

(
R5
b

)2
− π

I For the case p = 3 we get instead:

Θ3 = 2
√

1 + k2K (k)− π ; K (k) =

∫ 1

0

dv√
(1− v2)(1− k2v2)

K is the complete elliptic integral of first kind.
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I For general p we have not yet been able to write the deflection
angle in closed form.

I We have computed the leading and the next to the leading
behaviour for large impact parameter:

Θp =
√
π

[
Γ(8−p

2 )

Γ(7−p
2 )

(
Rp

b

)7−p

+
1
2

Γ(15−2p
2 )

Γ(6− p)

(
Rp

b

)2(7−p)

+ . . .

]
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Scattering of a closed string on a Dp brane: disk
I We consider the scattering of a massless closed string of the

NS-NS sector on a Dp brane.
I The two closed strings have respectively momentum p1 and p2.
I Along the directions of the world-volume of a Dp brane there is

conservation of energy and momentum:

(p1 + p2)‖ = 0 ; p2
1 = p2

2 = 0

I The scattering is described by two Mandelstam variables:

t = −(p1⊥ + p2⊥)2 = −4E2 cos2 θ

2
; s = E2 = |p1⊥|2 = |p2⊥|2

θ = the angle between the d-dim (d ≡ 9−p) vectors p1⊥ and p2⊥.
I At high energy we consider the following kinematical configuration:

p1 = (E ,0 . . . 0︸ ︷︷ ︸; E , ~p1) ; p2 = (−E ,0 . . . 0︸ ︷︷ ︸;−E , ~p2)

~p1, ~p2 are (d − 1)-dim vectors orthogonal to the (p + 1) direction.
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I At high energy (s →∞) only the coefficient of the term Tr(ε1εT2 )
survives:

A1 = −
(
κ10TpN

2

)
(α′E2)2 Γ(−α′E2)Γ(−α′

4 t)
Γ(1− α′E2 − α′

4 t)

where N is the number of D branes,

κ10 =
(2π)7/2
√

2
gs(α′)2 ; Tp =

√
π

(2π
√
α′)p−3

;
κ10TpN

2
=

R7−p
p π

9−p
2

Γ(7−p
2 )

[ Ademollo et al, 1974, Klebanov and Thorlacius, 1995;
Klebanov and Hashimoto, 1996, Garousi and Myers, 1996]

I The poles in the t-channel correspond to exchanges of closed
strings, while those in the s-channel correspond to exchanges of
open strings:

2 +
α′

2
t = 2m ; m = 2,4, . . . ; 1 + α′E2 = n ; n = 1,2 . . .
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I Regge behaviour at high energy:

A1 =

(
κ10TpN

2

)
e−i α

′
4 t (
√
α′E)2+α′

2 t Γ(−α
′

4
t)

I A1 diverges when E →∞ and this creates problems with the
unitarity of the S matrix.

I This problem is cured by higher orders in the perturbative
expansion.

I They contribute with higher power of the energy in such a way that
they can be summed to get an imaginary exponential: eikonal
approximation =⇒ no problems with unitarity.

I The properly normalized S matrix is:

S = 1 + iT = 1 + i
A√

2E1
√

2E2
= 1 + i

A
2E

; E1 = E2 ≡ E
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I The quantity that exponentiates at high energy and small t is:

iT1 ≡ i
A1

2E
=⇒ i

(
κ10TpN

2

)
e−i α

′
4 t (
√
α′E)2+α′

2 t

2E
Γ(−α

′

4
t)

I Assume that the amplitude is dominated by the graviton massless
pole at t ∼ 0 (α′ → 0):

iT1(t ,E) = i
(
κ10TpN

2

)(
2E

(−t)
+ iπ

α′E
2

(√
α′E

)α′
2 t
)

I The real part describes the scattering of the closed string on the
Dp brane, while the imaginary part describes the absorption of the
closed string by the Dp brane.

I Go to impact parameter space:

T R
1 (b,E) + iT I

1(b,E) =

∫
dd−1qt

(2π)d−1 e−ib·qt T1(t = −q2
t ,E)
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Deflection angle from string theory
I For the real part one gets:

iT R
1 (b,E) ≡ 2iδ(E ,b) = i

E
√
π Rd−2

p

(d − 3)bd−3 ·
Γ(d−1

2 )

Γ(d−2
2 )

; d ≡ 9− p

I Assuming that it exponentiates, we get:

S(E ,b) ≡ e2iδ(E ,b) = e
i

E
√
π Rd−2

p
(d−3)bd−3 ·

Γ( d−1
2 )

Γ( d−2
2 )

I Going back to momentum space, we get:∫
dd−1b ei(b·qt +2δ(E ,b))

I For large impact parameter we have the saddle point equation:

~qt − ~b
E
√
π Rd−2

p

bd−1 ·
Γ(d−1

2 )

Γ(d−2
2 )

= 0
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I From which we compute the deflection angle:

Θp =
|qt |
E

=
√
π

(
Rp

b

)7−p

·
Γ(8−p

2 )

Γ(7−p
2 )

I It agrees with the classical calculation for large impact parameter!!

I Assuming that also the imaginary part exponentiates, we get the
absorption amplitude:

Sabs(E ,b) = e−gs
√
α′E (2π)

d−1
2

16 (log(
√
α′E))

1−d
2 e
− b2

2α′ log(
√
α′E)

that is a purely stringy effect.
I To check the exponentiation and to compute the next to the

leading behaviour in the expansion for large impact parameter we
need to compute the annulus diagram.
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The annulus diagram

I The annulus diagram is given by:

A2 = N
∫

d2zad2zb
∑
α,β

〈B|Wa(za, z̄a)Wb(zb, z̄b)D|B〉α,β

Wa,b(za,b, z̄a,b) are the closed string vertices, N is a normalization
factor and

∑
α,β is the sum over the spin structures.

I The sum over the spin structures can be explicitly performed
obtaining in practice only the contribution of the bosonic degrees
of freedom without the bosonic partition function.

I The final result is rather explicit.
[Pasquinucci, 1997 and Lee and Rey, 1997]
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I In the closed string channel the coefficient of the term with
Tr(ε1εT2 ) (relevant at high energy) of annulus diagram is equal to:

A2 =
(κ10

π

)2
(8π2α′)−

p+1
2

(2π)4

2
N2 (α′s)2

×
∫ ∞

0

dλ
λ
λ

p+1
2

∫ 1
2

0
dρa

∫ 1
2

0
dρb

∫ 1
λ

0
dωa

∫ 1
λ

0
dωb

× e−α
′sVs−α

′
4 tVt ; za,b ≡ e2πi(ρa,b+iωa,b)

I where

Vs = −2πλρ2
ab + log

Θ1(iλ(ζ + ρab)|iλ)Θ1(iλ(ζ − ρab|)iλ)

Θ1(iλ(ζ + iωab)|iλ)Θ1(iλ(ζ − iωab)|iλ)

and

Vt = 8πλρaρb + log
Θ1(iλ(ρab + iωab)|iλ)Θ1(iλ(ρab − iωab)|iλ)

Θ1(iλ(ζ + iωab)|iλ)Θ1(iλ(ζ − iωab)|iλ)

ρab ≡ ρa − ρb ; ζ = ρa + ρb ; ωab ≡ ωa − ωb
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I The high energy behaviour (E →∞) of the annulus diagram can
be studied, by the saddle point technique, looking for points where
Vs vanishes.

I This happens for λ→∞ and ρab → 0.
I Performing the calculation one gets the leading term for E →∞:

A2(E , t)→ i
4E

∫
dd−1k

(2π)d−1 A1(E , t1)A1(E , t2)V (t1, t2, t)

where

t1 ≡ −(
q
2

+ k)2 ; t2 ≡ −(
q
2
− k)2 ; t = −q2

and

V (t1, t2, t) =
Γ(1 + α′

2 (t1 + t2 − t))

Γ2(1 + α′

4 (t1 + t2 − t))
=⇒ 1

in the field theory limit (α′ → 0).
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I Going to impact parameter space:

A2(E ,b) =

∫
dd−1q

(2π)d−1 e−ib·qA2(E ,−q2) =
i

4E
(A1(E ,b))2

I In terms of the matrix T ≡ A
2E :

T2(E ,b) =
i
2

(T1(E ,b))2

I This implies that:

S(E ,b) = 1 + iT1 + iT2 + · · · = 1 + iT1 −
1
2

(T1)2 + · · · = eiT1

I At high energy the amplitude exponentiates: no problems with
unitarity.

I We have extracted the leading behaviour at high energy:

T1 ∼ E ; T2 ∼ E2

But there is also a next to the leading contribution to T nl
2 ∼ E .
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I It can be extracted from the annulus amplitude.
I It must also exponentiate.
I It gives the next to the leading correction to the deflection angle

that agrees with the one obtained from the classical calculation.
I We have seen that both the leading and the next to the leading

terms in the expansion for large impact parameter are reproduced
by the string scattering amplitude.

I Being brave, one can assume that all the terms are reproduced.
I This implies an equation for the phase shift:

− 2
E
∂δ(E ,b)

∂b
= Θ + π

I Integrating the previous equation one gets, for the simple case
p = 5:

δ5(E ,b) =
πEb

2

1−

√
1−

(
R5

b

)2
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I The phase shift has an imaginary part for b ≤ R5.
I For b ≤ R5 the probe particle is absorbed by the brane with an

absorption cross section that is proportional to:

|S| ∼ e−2πER5

and is independent from b.
I Similar results for any p.
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Conclusion and outlook
I We have seen how from string scattering in flat space-time we can

recover properties of curved space-time.
I In particular, from the scattering of a massless closed string on a

Dp brane at high energy and low transfer momentum we have
computed the deflection angle of a probe particle moving in the
metric of the Dp brane.

I The result reproduces the leading and the next to the leading
contributions for large impact parameter computed from classical
gravity in the metric of a Dp brane.

I String corrections to the field theory results can also be computed.

I We have not seen any effect from the dilaton and the RR field on
the deflection angle.

I Work directly with the angular momentum J instead of the impact
parameter b (b ∼ J

E ).
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The absorption cross section from a D3 brane
[Klebanov, 1997]

I The low energy absorption cross section of a dilaton by a D3
brane can be calculated and one gets:

σabs.D3 =
π4

8
ω3R8 ; H(r) = 1 +

R4

r4

ω is the dilaton energy.
I This calculation is done using the curved space formalism in the

metric of a D3 brane.
I On the other hand, the same quantity can be computed from the

the scattering of a closed string on a D3 brane that generates two
open strings (gluons).

I At low energy the coupling of the DBI action that is relevant is the
one involving a dilaton and two gauge fields that gives the
following amplitude:

A = −κ10√
2
· 2 · p1 · p2√

2ω ω
= −κ10

√
ω√

2
; E1 = E2 =

ω

2
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I The absorption cross section is equal to:

1
2

∫
d3p1

(2π)3

∫
d3p2

(2π)3 (2π)4δ(E1 + E2 − ω)δ3(~p1 + ~p2)A2

Factor 1
2 because the two particles in the final state are identical.

I One gets:

σabs.D3 =
κ2

10N2ω3

32π
=
π4

8
ω3R8 ; R4 =

κ10N

2π
5
2

I The same result from the coupling of a dilaton with two gauge
fields that has apriori nothing to do with curved space-time.

I This calculation is at the origin of the Maldacena conjecture.
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