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• Worldline formalisms (or 1st quantized approaches) have
seen a comeback with the advent of string theory

• An example: scalar contribution to scalar QED at 1-loop

S[φ, φ∗,A] =

∫
dDx ( |(∂µ + iqAµ)φ|2 + m2|φ|2 )

e−Γ[A] =

∫
DφDφ∗ e−S[φ,φ∗,A] = Det−1(−∇2

A + m2)

Γ[A] = Tr log (−∇2
A + m2) = −

∫ ∞
0

dT
T

Tr e−(−∇2
A+m2)T

= −
∫ ∞

0

dT
T

∫
PBC

Dx e−
∫ T

0 dτ
(

1
4 ẋ2+iqAµ(x)ẋµ+m2

)
=�

• Notice the (gauge fixed) action of the scalar particle
running in the loop
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• Use Aµ(x) =
∑N

i=1 ε
(i)
µ eipi ·x and expand interaction to get

averages of “photon vertex operators”〈
ε(1)
µ1

ẋµ1(τ1)eip1·x(τ1) · · · ε(N)
µN

ẋµN (τN)eipN ·x(τN )
〉

• Obtain “Bern-Kosower master formula”

Γ[p1, ε1; ..; pN , εN ] = (2π)DδD
( N∑

i=1

pi

)
(−iq)N

∫ ∞
0

dT
T

e−m2T

(4πT )
D
2( N∏

i=1

∫ T

0
dτi

)
exp

N∑
i,j=1

[1
2

∆ij pi · pj − i •∆ij εi · pj +
1
2
••∆ij εi · εj

]∣∣∣∣∣
lin εi

=� ε1, p1

ε2, p2
.

.

.

.
.

εN , pN
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• action of scalar particle
S[x ] =

∫
dτ
(

1
2e−1ẋ2 + 1

2em2 + iqA(x) · ẋ
)

• can describe spin 1/2 and 1 with the N=1 and N=2
worldline supersymmetric extensions of the particle action

• need to manipulate quantum mech. path integrals
• can study also coupling to background gravity:

QM path integrals in curved space subtle but understood,
they require regularization with corresponding (finite)
counterterms

F. Bastianelli and P. van Nieuwenhuizen
"Path Integrals and Anomalies in Curved Space"
(CUP 2006)
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�
• N=0: scalar (with Zirotti)

• N=1: fermion (Corradini, Zirotti)
• N=2: vector and differential forms (Benincasa, Giombi)
• Applications on photon-graviton mixing (Schubert)
• Higher N: can study higher spin fields (Corradini, Latini;

Bonezzi)
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N = 2 spinning particle

Dynamical variables (xµ,pµ, ψµ, ψ̄µ︸ ︷︷ ︸
X

; e, χ, χ̄,a︸ ︷︷ ︸
G

)

S =

∫
dt

[
pµẋµ + iψ̄µψ̇µ − eH − iχ̄Q − iχQ̄ − aJ]

]

where

H =
1
2

pµpµ, Q = pµψµ, Q̄ = pµψ̄µ, J = ψ̄µψµ

are first class constraints

{Q, Q̄} = −2iH, {J,Q} = iQ, {J, Q̄} = −iQ̄
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Canonical quantization [x̂µ, p̂ν ] = iδµν , {ψ̂µ, ψ̂†ν} = δµν

Wave functions

φ(x , ψ) = F (x) + Fµ(x)ψµ +
1
2

Fµ1µ2(x)ψµ1ψµ2 + . . .

Constraints

Ĥ = −1
2
∂µ∂

µ, Q̂ = −iψµ∂µ, ˆ̄Q = −i∂µ
∂

∂ψµ
, Ĵ = −ψµ ∂

∂ψµ
+p+1

Ĵφphys = 0 ⇒ φphys ∼ Fµ1...µp+1(x)ψµ1 · · ·ψµp+1

Q̂φphys = 0 ⇒ dFp+1 = 0, ˆ̄Qφphys = 0 ⇒ d†Fp+1 = 0

⇒ Maxwell equations for a p-forms gauge field Ap
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, Ĵ = −ψµ ∂

∂ψµ
+p+1
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Using the N=2 spinning particle one can obtain a nice
representation on the one-loop effective action of massless
(and massive) p-forms in a gravitational background

ΓQFT
p [g] =

∫
S1

DGDX
Vol(gauge)

e−S[G,X ;g]

=

∫ ∞
0

dβ
β︸ ︷︷ ︸

proper−time

∫ 2π

0

dφ
2π︸ ︷︷ ︸

U(1) mod.

(
2 cos

φ

2

)−2

︸ ︷︷ ︸
FP det.

∫
S1
DX e−S[X ,Ĝ;gµν ]︸ ︷︷ ︸

path integral for N=2 nlσm

where we used PBC for (e, x), ABC for (ψ, ψ̄, χ, χ̄), and chose
the gauge G = Ĝ = (ê, χ̂, ˆ̄χ, â) = (β,0,0, φ).

It allows to compute amplitudes and heat kernel coefficients,
and derive and check duality relations.
F.B., P. Benincasa, S. Giombi, JHEP 0504 (2005) 010
[hep-th/0503155]; JHEP 0510 (2005) 114 [hep-th/0510010]
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O(N) spinning particle
• Consider worldline action (i = 1, ..,N)

S =

∫
dt
[
pẋ +

i
2
ψi ψ̇i −

1
2

p2
]

• Rigid SO(N) extended supersymmetry

H =
1
2

p2, Qi = pψi , Jij = iψiψj

{Qi ,Qj}PB = −2iδijH

{Jij ,Qk}PB = δjkQi − δikQj

{Jij , Jkl}PB = δjkJil − δikJjl − δjlJik + δilJjk
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O(N) spinning particle action

• Algebra is first class → can be gauged

S =

∫
dt
[
pẋ +

i
2
ψi ψ̇i − eH − iχiQi −

1
2

aijJij

]
• Eliminating momenta p

S =

∫
dt
[1

2
e−1(ẋ − iχiψi)

2 +
i
2
ψi(δij∂τ − aij)ψj

]
(model originally worked out by Gershun and Tkach)
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Bargmann-Wigner equations
• Canonical analysis:

D = 4 → spin N
2 particle (Bargmann-Wigner eq.)

• wave function |Ψ〉 is a multispinor Ψα1···αN (x)

• constraints Ĵij |Ψ〉 = 0 → reduce the number of
independent components of the multispinor

• constraints Q̂i |Ψ〉 = 0 → ∂/αi

α̃i Ψα1..α̃i ..αN (x) = 0

• Study 1-loop quantization ⇒ path integral on the circle

�
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Bargmann Wigner eq. in different base

• Consider N = 2s (integer spin)
Use complex combinations ψµI and ψ̄µ

Ī
≡ ψ̄µI , I = 1, .., s.

Wave function:

Ψ(x , ψ) ∼
∑

Rµ1µ2.,...,ν1ν2..(x)ψµ1
1 ψµ2

1 ., ..., ψν1
s ψ

ν2
s ..

• J constraints → tensor R:

• has s blocks of n = D
2 indices each: R[µ1

1..µ
1
n],...,[µs

1..µ
s
n]

• antisymmetric inside each block
• satisfies algebraic Bianchi identities
• symmetric under exchanges of the s blocks of indices
• traceless
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︸ ︷︷ ︸
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Bargmann Wigner eq. in different base

• Half of the Q constraints: differential Bianchi identities

∂[µRµ1
1..µ

1
n],...,µs

1..µ
s
n

= 0

Other half of the Q constraints: Maxwell equations

∂µRµµ1
2..µ

1
n,...,µ

s
1..µ

s
n

= 0

• Gauge invariant description of higher spin fields

• Integrate Bianchi identities → HS gauge fields
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HS gauge fields

Manifest U(s) ⊂ O(2s) Jij = (JIJ̄ , JIJ , JĪ J̄) ≡ (JI
J ,KIJ , K̄ IJ)

JI
J |R〉 = 0 ⇒ R ∼ n

︸ ︷︷ ︸
s

K̄ IJ |R〉 = 0 ⇒ R traceless

KIJ |R〉 = 0 ⇒ already satisfied (R traceless)

QI |R〉 = 0 ⇒ R closed (Bianchi identities)

Q̄I |R〉 = 0 ⇒ R co− closed (Maxwell equations)
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HS gauge fields

• Solve QI by
|R〉 = Q1Q2..Qs|ϕ〉

• Solve JI
J by

JI
J |ϕ〉 = −iδI

J |ϕ〉 ϕ ∼ (n − 1)

{
︸ ︷︷ ︸

s

• To solve last nontrivial constraints K̄ IJ compute

K̄ 12 Q1..Qs|ϕ〉 = Q3..Qs i
[
− 2H + QIQ̄I +

i
2

QIQJ K̄ JI
]

︸ ︷︷ ︸
Fronsdal−Labastida operator G

|ϕ〉 = 0
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HS gauge fields

• Solve QI by
|R〉 = Q1Q2..Qs|ϕ〉

• Solve JI
J by

JI
J |ϕ〉 = −iδI

J |ϕ〉 ϕ ∼ (n − 1)
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HS gauge fields
• Solution described by the equation

G|ϕ〉 = QIQJQK |ρKJI〉

where the compensators can be presented as

|ρKJI〉 = W̄ K W̄ JW̄ I |ρ〉

(Wµ arbitrary vector field, W̄ I ≡Wµψ̄I
µ, |ρ〉 with same YT as |ϕ〉)

• Gauge symmetries (|ξI〉 = V̄ I |ξ〉)

δ|ϕ〉 = QK |ξK 〉

δ(|ρKJI〉) =
i
2

J̄ [KJ |ξI]〉

• Can gauge fix compensator to get Fronsdal-Labastida eq.

G|ϕ〉 = 0
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Fronsdal-Labastida equation

[
− 2H + QIQ̄I +

i
2

QIQJ K̄ JI
]
|ϕ〉 = 0

|ϕ〉 is double traceless (for consistency with gauge fixing)

• For D = 4 and N = 2s it gives Fronsdal eq.

R ∼ ︸ ︷︷ ︸
s

, ϕ ∼ ︸ ︷︷ ︸
s

−2H ∼ �, QI ∼ ψµI ∂µ, Q̄I ∼ ∂

∂ψµI
∂µ, K̄ IJ ∼ ∂

∂ψµI
ηµν

∂

∂ψνJ

�ϕµ1...µs − (∂µ1∂
αϕαµ2...µs + ...) + (∂µ1∂µ2ϕ

α
αµ3...µs + ...) = 0

ϕαα
β
βµ5...µs = 0 ; δϕµ1...µs = ∂(µ1

ξµ2...µs) , ξααµ3...µs−1 = 0
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U(N) spinning particle
We now consider a similar model of a spinning particle,
constructed by Marcus from the particle limit of N = 2 strings.
It is defined on a (flat) complex space.

• Consider a worldline action (i = 1, ..,N)

S =

∫
dt
[
pµẋµ + p̄µ̄ ˙̄x µ̄ + iψ̄i

µψ̇
µ
i − pµp̄µ

]
• Rigid U(N) extended supersymmetry

H = pµp̄µ, Qi = pµψ
µ
i , Q̄i = p̄µ̄ψ̄µ̄i , J j

i = ψµi ψ̄
j
µ

{Qi , Q̄j}PB = −iδj
i H

{J j
i ,Qk}PB = −iδj

kQi , {J j
i , Q̄

k}PB = iδk
i Q̄j

{J j
i , J

l
k}PB = iδl

i J
j
k − iδj

kJ l
i
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U(N) spinning particle action

• Algebra is first class → can be gauged

S =

∫ 1

0
dτ
[
pµẋµ+p̄µ̄ ˙̄x µ̄+ iψ̄i

µψ̇
µ
i −eH− iχ̄iQi− iχiQ̄i−ai

jJ
j
i

]
• Eliminating momenta p and p̄

S =

∫ 1

0
dτ
[
e−1(ẋµ−iχ̄iψµi

)(
˙̄xµ−iχj ψ̄

j
µ

)
+iψ̄i

µ

(
δj

i∂τ−iaj
i

)
ψµj
]
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Canonical analysis

• Choose coordinates (xµ, x̄ µ̄, ψµi ) and momenta (pµ, p̄µ̄, ψ̄i
µ)

Wave functions:

Ψ(x , x̄ , ψ) ∼
∑

Fµ1µ2.,...,ν1ν2..(x , x̄)ψµ1
1 ψµ2

1 ., ..., ψν1
N ψ

ν2
N ..

• J constraint → tensor F :

• has N blocks of m indices each: F[µ1
1..µ

1
m],...,[µN

1 ..µ
N
m]

• antisymmetric inside each block
• satisfies algebraic Bianchi identities
• symmetric under exchanges of the s blocks of indices

• i.e. Young tableau of GL(d), where d are the complex
dimensions of the manifold
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Canonical analysis

• Q constraints: "Bianchi" identities

∂[µFµ1
1..µ

1
m],...,µN

1 ..µ
N
m

= 0

Q̄ constraints: "Maxwell" equations

∂̄µFµ..µ1
m,...,µ

N
1 ..µ

N
m

= 0

• This formulation gives a gauge invariant description for a
class of higher spin fields on complex manifolds

• Can integrate Bianchi identities → HS gauge fields
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Complex HS gauge fields

Ji
j |F 〉 = 0 ⇒ F ∼ m

︸ ︷︷ ︸
N

Qi |F 〉 = 0 ⇒ F closed (Bianchi identities)

Q̄i |F 〉 = 0 ⇒ F coclosed (Maxwell equations)
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complex HS gauge fields
• Solve Qi constraint by

|F 〉 = Q1Q2..QN |φ〉

• Solve Ji
j constraint by choosing

Ji
j |φ〉 = −iδi

j |φ〉 φ ∼ p ≡ (m − 1)

{
︸ ︷︷ ︸

N

• Impose last constraints (Q̄i ) and compute

Q̄1 Q1..QN |φ〉 = −Q2..QN

[
− H + QiQ̄i

]
︸ ︷︷ ︸

operator G

|ϕ〉 = 0
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Complex HS gauge fields

• Solution described by(
− H + QiQ̄i)|φ〉 = QiQj |ρij〉

where the compensators can be represented by

|ρij〉 = V̄ i V̄ j |ρ〉

(Vµ arbitrary vector field, V̄ i ≡ Vµψ̄i
µ, |ρ〉 with same YT as |φ〉)

• Gauge symmetries

δ|φ〉 = Qi |ξi〉
δ|ρij〉 = −Q̄[i |ξj]〉
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Complex HS equations

• Can gauge fix compensator to get simpler eq.(
− H + QiQ̄i)|φ〉 = 0

• For consistency with partial gauge fixing, |φ〉 is double
divergence-less

Q̄iQ̄j |φ〉 = 0

and gauge symmetry (δ|φ〉 = Qi |ξi〉) has constrained gauge
parameters (i 6= j)

Q̄i |ξj〉 = 0
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Explicit examples
Case with p = 1 and arbitrary N without compensators

ϕ ∼ ︸ ︷︷ ︸
N

→ ∂α∂̄
αϕµ1...µN −

N∑
i=1

∂µi ∂̄
αϕµ1..α..µN = 0

gauge invariance

δϕµ1...µN = ∂µ1λµ2...µN + cyclic perm.

constrained fields
∂̄α∂̄βϕαβµ3...µN = 0

∂̄αλαµ3...µN = 0

Very much reminiscent of Fronsdal’s equations: no invariant
concept of taking traces on holomorphic indices, usual trace
constraints naturally substituted by differential constraints.
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Case with p = 1 and N = 2 with compensator

ϕ ∼

∂α∂̄
αϕµν − ∂µ∂̄αϕαν − ∂ν ∂̄αϕµα = ∂µ∂νρ

gauge symmetry

δϕµν = ∂µλν + ∂νλµ , δρ = −2∂̄αλα

Reminiscent of the Francia-Sagnotti construction for relaxing
the trace constraints on standard higher spin gauge theories
using compensator fields.
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Worldline formalism

• These field equations can be quantized and described
using the worldline formalism

• At free field level can just compute the number of degrees
of freedom

• Coupling to curved manifolds:
for N > 2 it is possible to extend these equations on
manifold with constant holomorphic curvature, and more
generally to manifolds with vanishing Bochner tensor (a
Kähler analogue of the Weyl tensor)
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Worldline formalism

• O(N) particles on maximally symmetric spaces⇒ zero
mode of the nonlinear Bershadsky–Knizhnik O(N)
superconformal algebras in 2D (quantum version of
couplings to (A)dS by Kuzenko and Yarevskaya)

(works with Olindo Corradini and Emanuele Latini,
JHEP 0702:072,2007 [hep-th/0701055],
JHEP 0811:054,2008. [arXiv:0810.0188], ....)

• U(N) particles on spaces with constant holomorphic
curvature⇒ zero mode of the nonlinear
Bershadsky–Knizhnik U(N) superconformal algebras in 2D

(work with Roberto Bonezzi,
JHEP 0903:063,2009 [arXiv:0901.2311],
JHEP 1005:020,2010 [arXiv:1003.1046], ...)
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Summary and outlook

• O(N) and U(N) spinning particles as a way of describing
HS fields in 1st quantization

• U(N) model has produced some amusing gauge invariant
field equations on complex manifolds

• Can extend these models to OSp(N|2M) and U(N|M)

• Maybe not the best formalism to study interactions, but one
can at least study possible couplings to background fields
(good enough for studying 1-loop structure of the theory)

• and to conclude ....
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