On SUSY-breaking in metastable

vacua of perturbed $\mathcal{N} = 2$ theories

In collaboration with E. Rabinovici

Introduction

Long-lived metastable vacua which break supersymmetry are a generic feature in $\mathcal{N} = 1$ SQCD with massive fundamental matter (as shown by ISS)

Strong coupling makes the calculability of models of dynamical supersymmetry breaking challenging

In the ISS a weakly coupled dual description is used

Another setting where this is calculable is in perturbed $\mathcal{N}=2$ theories

$\mathcal{N}=2$ theories

Vector multiplet: $SU(N_c)$ gauge field A_{μ} , 1 complex scalar Φ in the adjoint representation, two Weyl fermion in the adjoint representation

Hypermultiplets: 2 comples scalars Q, \tilde{Q}^{\dagger} , two Weyl fermions ψ_q , $\psi_{\tilde{q}}^{\dagger}$ in the same representation (for example fundamental or adjoint)

$$W = Q_k \Phi \tilde{Q}_k + m_k Q_k \tilde{Q}_k$$

The VEV of Φ breaks $SU(N_c) \rightarrow U(1)^{N_c-1}$: Coulomb Branch of the moduli space

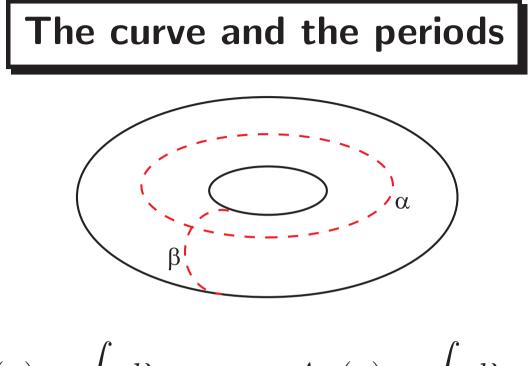
Seiberg-Witten solution: $N_c = 2$

Moduli space coordinate $u = Tr\Phi^2$ Effective U(1) theory:

$$\frac{1}{4\pi} Im \left[\int d^4\theta \frac{\partial \mathcal{F}}{\partial A} \bar{A} + \int d^2\theta \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial A^2} W_{\alpha} W^{\alpha} \right]$$

$$A_D = \frac{\partial \mathcal{F}}{\partial A}.$$

 $A_D(u), A(u)$ are function of the moduli space coordinate which can be be computed from the SW curve



$$A(u) = \oint_{\alpha} d\lambda_{SW}, \qquad A_D(u) = \oint_{\beta} d\lambda_{SW},$$

$$ds^2 = g = (\operatorname{Im} \tau_e) A' \bar{A}' du d\bar{u}, \qquad \tau_e = \frac{dA_D}{dA}$$

.

Potential

Metastable vacua correspond to local maxima of

$$\frac{1}{V} = (\operatorname{Im} \tau_e) \left| \frac{a'}{W'} \right| \,.$$

This is a product of two factors which does not have local maxima (an harmonic function and the squared modulus of an holomorphic function)

Perturbing the theory

$$\delta W = \mu (u + \alpha u^2 + \beta u^3) \,.$$

Irrelevant operators α,β are needed

Theorem (Ooguri, Ookouchi, Park): for almost every point of the moduli space u_0 , we can find (α, β) in such a way that a metastable vacuum is generated in u_0 . Due to the fact that the sectional curvature of the moduli space metric is positive definite

 $\langle w_1, R(w_2, w_2)w_1 \rangle > 0.$

Condition for metastability

$$\mathcal{W} = \tilde{\mu} W = \tilde{\mu} \left((u - u_0) + \kappa (u - u_0)^2 + \lambda (u - u_0)^3 \right)$$

$$V = |\tilde{\mu}|^2 g^{-1}(u, \bar{u}) W'(u) \bar{W}'(\bar{u})$$

$$\kappa = -\frac{1}{2}g \frac{\partial g^{-1}}{\partial u}$$

$$\left|\lambda - \lambda_0\right| < \frac{g}{6} \left(\frac{\partial^2 g^{-1}}{\partial u \partial \bar{u}} - g \left| \frac{\partial g^{-1}}{\partial u} \right|^2 \right) = r_\lambda, \qquad \lambda_0 = \frac{g^2}{3} \left(\frac{\partial g^{-1}}{\partial u} \right)^2 - \frac{g}{6} \frac{\partial^2 g^{-1}}{\partial u^2}$$

Condition for metastability

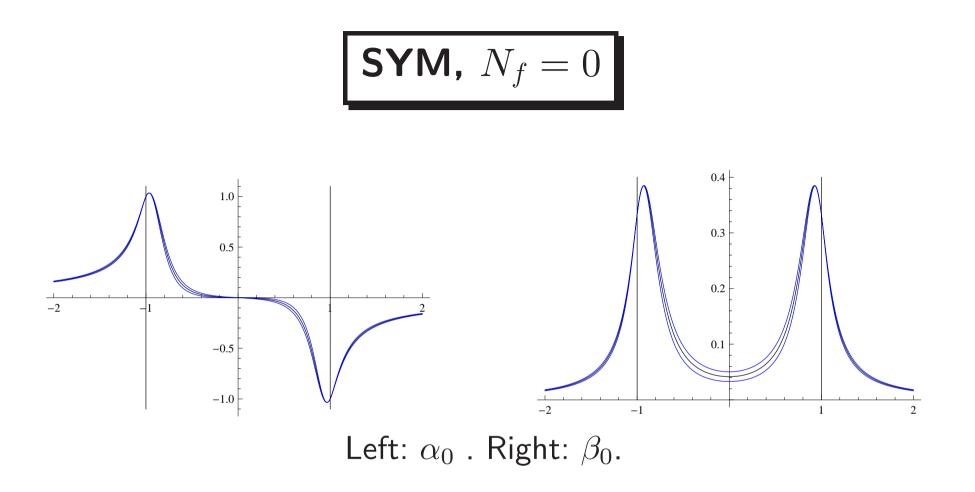
In order to obtain a metastable vacuum in u_0 :

$$\alpha = \alpha_0 + \delta \alpha \, \epsilon$$

$$\beta = \beta_0 + \delta\beta \,\epsilon$$

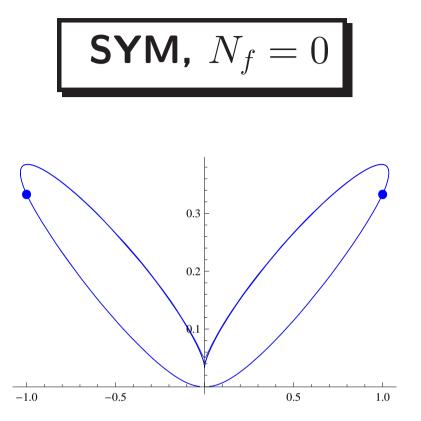
 ϵ is a complex number with $|\epsilon|<1$

 $(\alpha_0, \beta_0, \delta\alpha, \delta\beta)$ are functions of u_0 that can be computed from the moduli space metric (which can be computed from the SW curve)



SYM,
$$N_f = 0$$

Left: $\delta \alpha$. Right: $\delta \beta$.



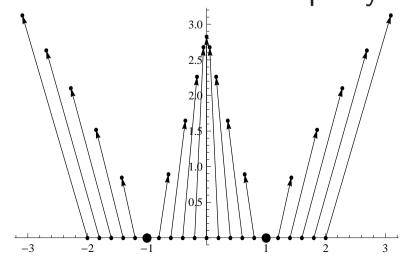
Region of parameters which achieve a metastable vacuum on the real axis of the moduli space u_0 .

Is the vacuum long-lived ?

The tunneling rate proportional to e^{-S} , where

$$S \propto \frac{(\Delta u/\Lambda)^4}{\Delta V},$$

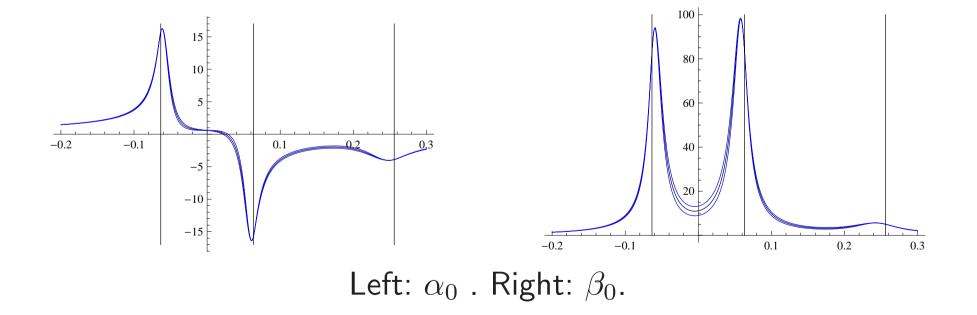
This can be achieved for very small μ , because $\Delta V \propto \mu^2 \Lambda^2$, and Δu is independent of μ ...this must be checked for all the supersymmetric vacua...

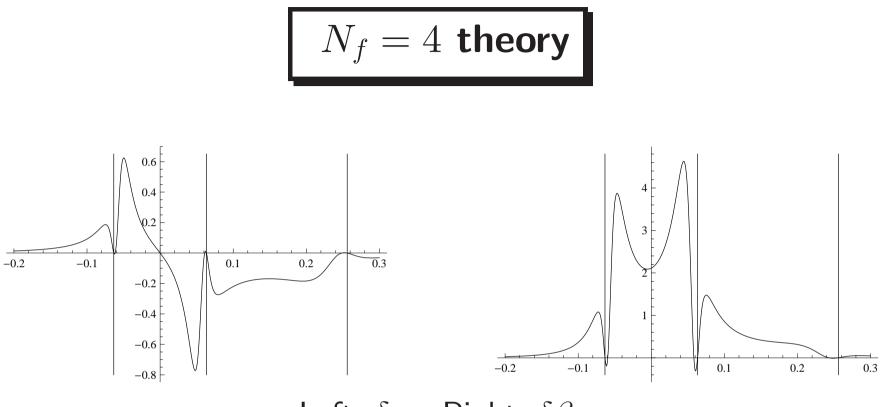


$$N_f = 4$$
 theory

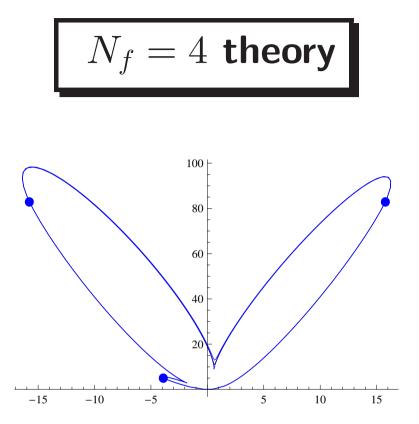
Can we do this for conformal theories, such as the $\mathcal{N} = 4$ or the theory with $N_f = 4$?

In order to do it we must add a mass for the hypermultiplets





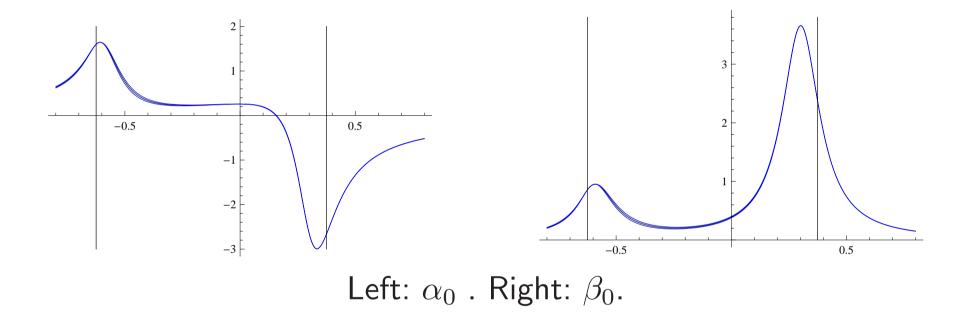
Left: $\delta \alpha$. Right: $\delta \beta$.

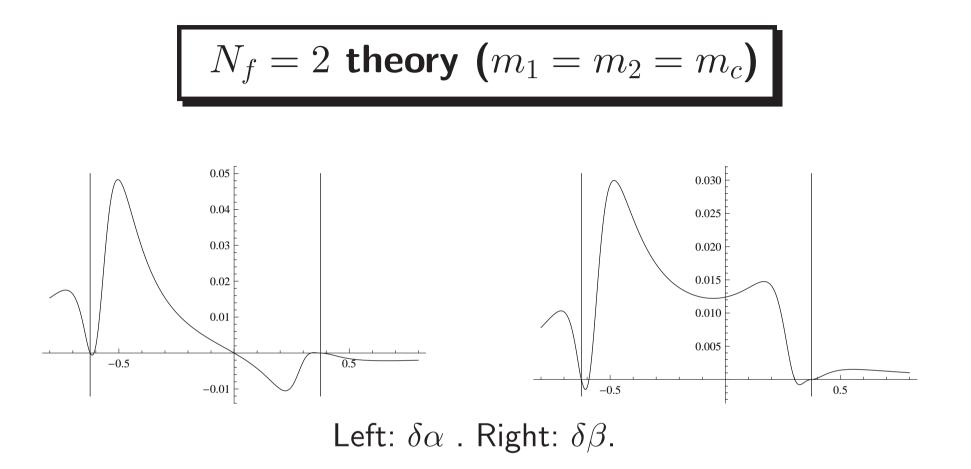


Region of parameters which achieve a metastable vacuum on the real axis of the moduli space u_0 .

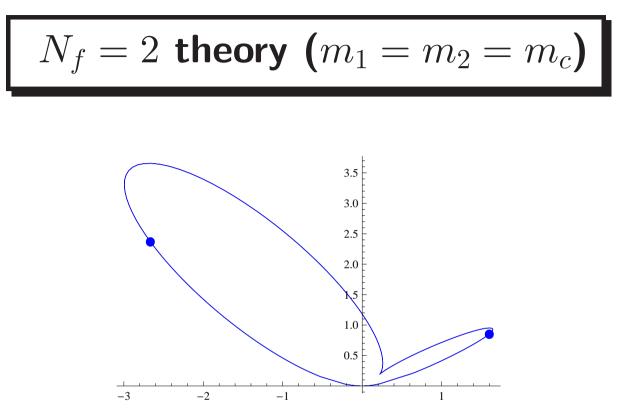
$$N_f=2$$
 theory ($m_1=m_2=m_c$)

An example with a conformal Argyres-Douglas fixed point





Nearby a conformal point $\delta \alpha, \delta \beta \propto (u - u_{AD})^3$



Region of parameters which achieve a metastable vacuum on the real axis of the moduli space u_0 .

Direct gauge mediation

In these examples, a global flavor symmetry $U(1) \times SU(N_f)$ can be gauged and coupled to an external supersymmetric sector, in order to realize direct gauge mediation

$$m_{\lambda} = \frac{\alpha_r}{4\Pi} \Lambda_G, \qquad m_{\tilde{f}}^2 = 2C_{\tilde{f}} \left(\frac{\alpha_r}{4\pi}\right)^2 \Lambda_S^2,$$

$$\Lambda_G = F^a \left(\partial_a (\log \det \mathcal{M}) \right) , \qquad \Lambda_S^2 = \frac{1}{2} |F^a|^2 \frac{\partial^2}{\partial a \partial \bar{a}} \sum_i \left(\log |\mathcal{M}_i|^2 \right)^2 ,$$

Direct gauge mediation

At weak coupling, the squarks can be identified with the messengers:

$$W = \sqrt{2}Q_k \left(a - \frac{m_k}{\sqrt{2}}\right) \tilde{Q_k} \,.$$

What about strong coupling ? The picture in principle is complex because in the spectrum there are monopoles or dyons carrying flavor quantum numbers

A formula for the gaugino masses

It is possible to gauge a global symmetry using another $\mathcal{N} = 2$ gauge theory; with this trick an exact expression at the leading order in SUSY-breaking can be found (arXiv:0806.4733, Ooguri, Ookouchi, Park, Song)

$$\mathcal{L} = \ldots + \frac{i}{16\pi} \mathcal{F}_{IJK} F^I \lambda^J \lambda^K \,,$$

In this expression the prepotential \mathcal{F} is also function of the mass terms m^a , which correspond to the eigenvalues of the spectator gauge group.

An example

Let us gauge the $U(1)_F$ symmetry of the $N_f=N_c=2$ theory, m=0

$$(m_{\lambda}^{GGM})_{ab} = g_F^2 \frac{i}{8\pi} F^i \mathcal{F}_{iab}$$

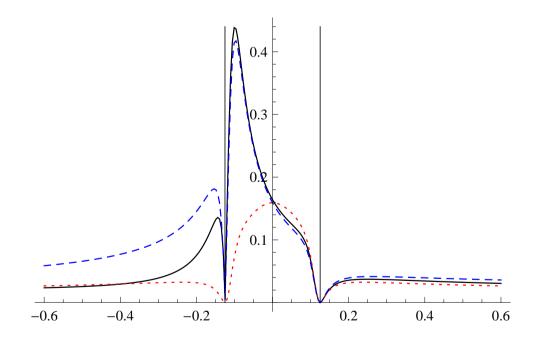
We can compare this formula with the contribution from the dyon which carry $U(1)_F$ and which is massless at one of the singularities

$$W = \sqrt{2}(a + a_D)D\tilde{D}$$

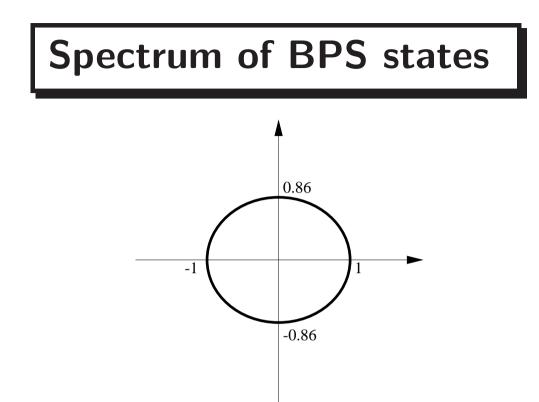
$$m_{\lambda}^{\mathrm{D}} = \frac{g_F^2}{8\pi^2} \left| F^a \frac{1+\tau_e}{a+a_D} \right| \,.$$

A comparison

Let us compare the contribution of the dyon (blue) with the exact formula (black)



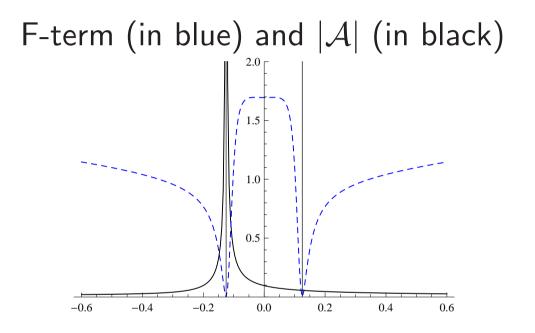
There is a good agreement inside the marginal stability curve



Inside the marginal stability curve the only BPS states are the monopole $(U(1)_F \text{ singlet})$ and the (1,1) dyon (which is charged under $U(1_F)$)

Outside the curve the spectrum of BPS states is semiclassical

A cross-check



$$m_{\lambda}^{\text{GGM}} = g_F^2 \left| F^a \mathcal{A} \right| \,, \qquad \mathcal{A} = \frac{i}{8\pi} \left(\frac{\partial^2 a_D}{\partial m^2} - \left(\frac{\partial \tau_e}{\partial m} \right)^2 \frac{\partial a}{\partial \tau_e} \right)$$

Conclusions

Long-lived metastable vacua are possible in $\mathcal{N} = 2$ theories perturbed by a superpotential, even if they are not too generic (the allowed region of parameters (α, β) is rather small, especially in the weakly coupled region of the moduli space)

For conformal theories $(N_f = 2N_c, \mathcal{N} = 4)$ we need also to explicitly break conformal invariance by a mass for the hypermultiplets. Nearby a conformal point even more fine tuning is needed, $\delta \alpha, \delta \beta \propto (u - u_{AD})^3$

An explicit example of Direct Gauge Mediation where the messenger is a dyon was discussed