
Stato dell'esperimento NA48

P. Cenci - INFN Perugia

10 settembre 2001 **Gruppo I - Castel Gandolfo**

Argomenti

- Stato del run 2001 e qualità dei dati
- Decadimenti rari in NA48 e prospettive
- Preparazione del run 2002

NA48: Cagliari Cambridge CERN Dubna Edinburgo Ferrara Firenze Mainz Orsay Perugia Pisa Saclay Siegen Torino Vienna Varsavia

Stato del run 2001

- ◆ DURATA: 12 luglio → 17 ottobre 2001
- \Rightarrow ultima presa dati per ϵ'/ϵ : raccogliere $\sim 1.5 \times 10^6~K_L \to \pi^0\pi^0$
- ⇒ installate le 4 DCH ricostruite
- ⇒ inizio presa dati ritardato (riparazione filo rotto in DCH1)
- \Rightarrow dati per ϵ'/ϵ a partire dal 3 agosto

◆ PARAMETRI DEL FASCIO:

- ⇒ Energia dei protoni: 400 GeV (450 GeV nel 1999)
- \Rightarrow Ciclo dell'SPS: 5 s/16.8 s (2.36–2.58 s/14.4 s nel 1999)
- \Rightarrow Intensità: $2.3 \times 10^{12}~ppp$ sul bersaglio ${
 m K_L}$

♦ MODIFICHE RISPETTO AL 1999:

- → nuove DCH
- → nuova beam pipe (Al, spessore 1mm)
- ⇒ online PCfarm potenziata (LKr r/o, event-building, software)

QUALCHE DATO:

- \Rightarrow rate 2001/1999 misurato ~ 0.7
- $\Rightarrow \sim 30$ K eventi per burst (1999: 17K ev/bu)
- \Rightarrow data volume: \sim 350 Mbytes per burst (1999: 270 Mbytes/burst)
- \Rightarrow trasferimento dati: \sim 20 MBytes/s (\sim 1999) (16.8 s vs 14.4 s spill)

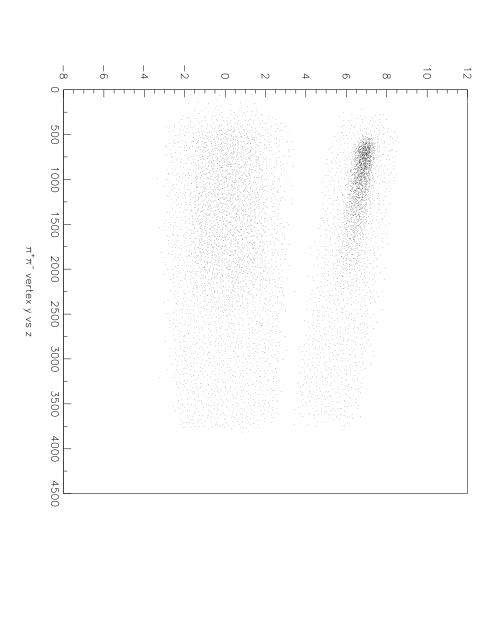
Programma del run 2001

- ◆ PROGRAMMA SPERIMENTALE 2001:
- \Rightarrow dati ϵ'/ϵ : raccogliere $\sim 1.5 \times 10^6~K_L \to \pi^0\pi^0$
- \Rightarrow run speciali per ϵ'/ϵ :

 K_S soli: \sim 3 h/settimana (efficienza tagging, accidentali, in-time background, overflows ...)

 $m K_L$ soli: ~ 1 h/15 giorni (effetti tagging, accidentali, eventi ad alto P_T ...)

 η run: 10 h (4/9) (LKr)


⇒ run speciali per proposte future:

 K^+/K^- : 16 h (3/9) per misure di rates, studi di nuovi schemi di trigger ed efficienze nelle 4 combinazioni carica K/segno campo magnetico (8 h ulteriori se possibile)

 $K_{\rm S}$ ad alta intensitá: \geq 48 h a fine run per misure di rates e test di configurazioni diverse di trigger

Le nuove DCH

Dati 2001: distribuzione della posizione verticale y vs posizione longitudinale z del vertice di decadimento

Stato dell'esperimento NA48

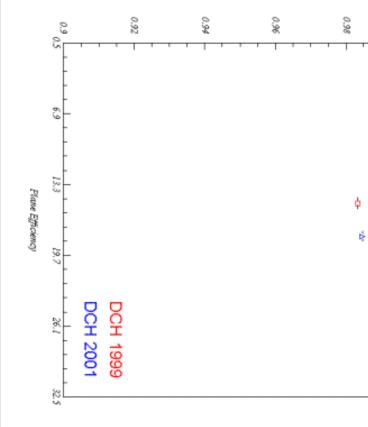
DCH: efficienza

Efficiencies

From online monitoring

のあっているよう 中の中のですると

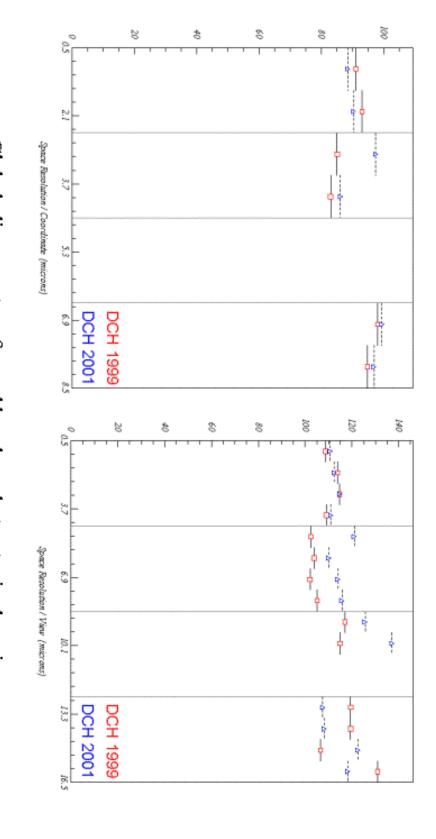
おからいのからい


Global efficiencies per plane:

DCH1 : $\varepsilon = 99.7 \%$

DCH2 : $\varepsilon = 99.7 \%$

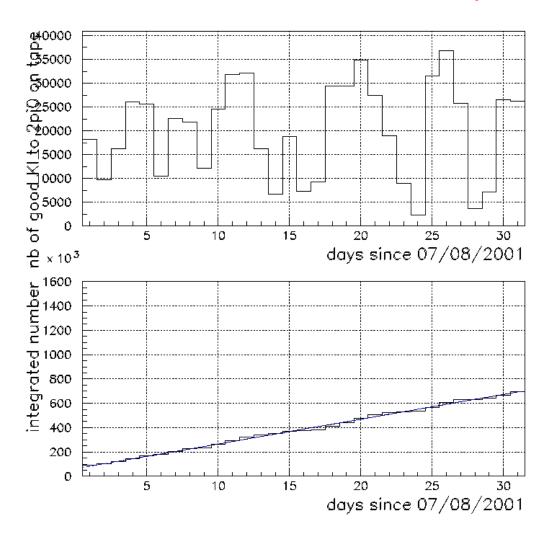
DCH4 : $\varepsilon = 99.7 \%$


→ Slightly better than 1999

GOUGE Guillaume

2/21

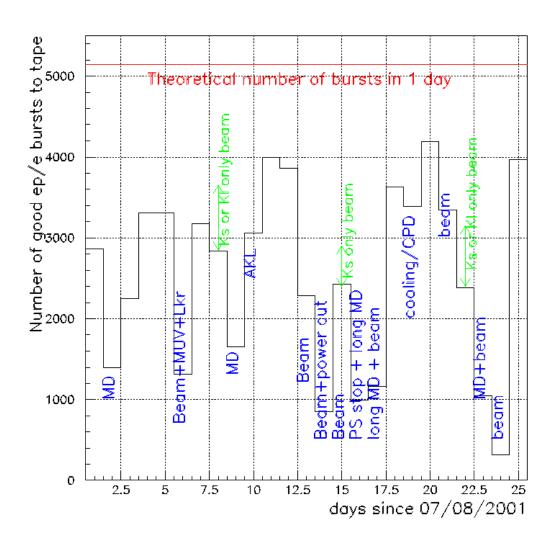
Space resolutions



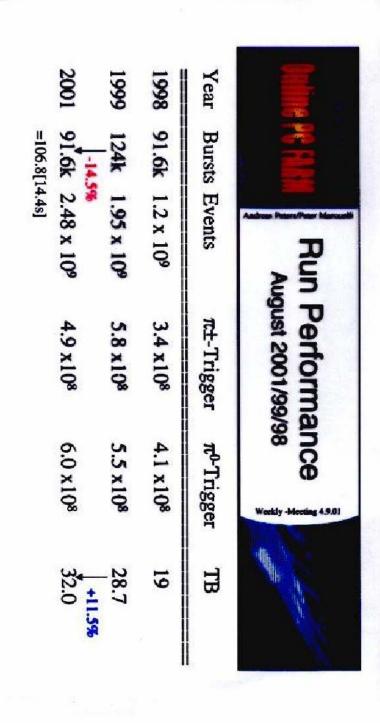
Global alignement performed by plane, but not wire by wire

GOUGE Guillaume 10/08/01 4/21

Efficienza del run e statistica


Efficienza globale del run e statistica dei candidati $\pi^0\pi^0$ in funzione del tempo

- ullet efficenza globale SPS+NA48 attuale \simeq 62 %
- lacktriangle eventi ricostruiti in \sim 5 settimane di presa dati: \sim 600 $imes 10^3~{
 m K_L}~
 ightarrow \pi^0\pi^0$
- lacktriangle estrapolazione a fine run pari a quella prevista $\sim 1.5 \times 10^6 \ \mathrm{K_L} \ \rightarrow \pi^0 \pi^0$ sotto le ipotesi di: intensità nominale di fascio mantenimento di alta efficienza

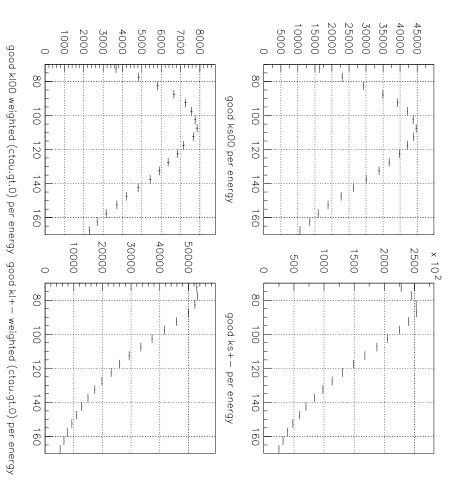

Efficienza del run

Numero di bursts buoni acquisiti in funzione del tempo (~ 1 mese, intensità media: $\simeq 2.4 \times 10^{12}~ppp$ sul bersaglio K_L)

Indicato il numero atteso di burst buoni e i motivi delle inefficienze

Prestazioni del run

We -14.5% have less bursts, but +11.5% higher DAQ load during August compared to 1999!!

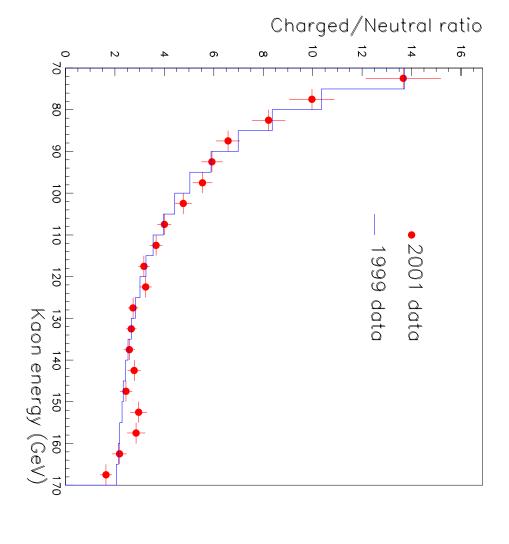


Stato dell'esperimento NA48

Statistica dei dati 2001

Distribuzioni degli eventi $\pi\pi$ in funzione dell'energia del K nei 4 canali $K_{\rm L}$, $K_{\rm S}$ \to $\pi^0\pi^0$, $\pi^+\pi^-$

(PRELIMINARE, 5 settimane di run)

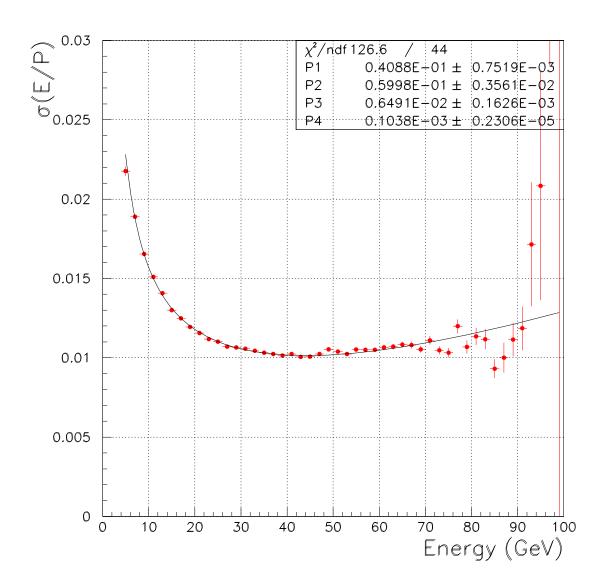


Statistica degli eventi:
(aggiornata alla prima settimana di settembre)

 $K_L
ightarrow \pi^0 \pi^0 \sim$ 600K eventi ricostruiti dopo tutti i tagli

Rapporto eventi carichi su neutri

Rapporto tra numero di eventi carichi e eventi neutri in funzione dell'energia del K per dati 2001 e 1999

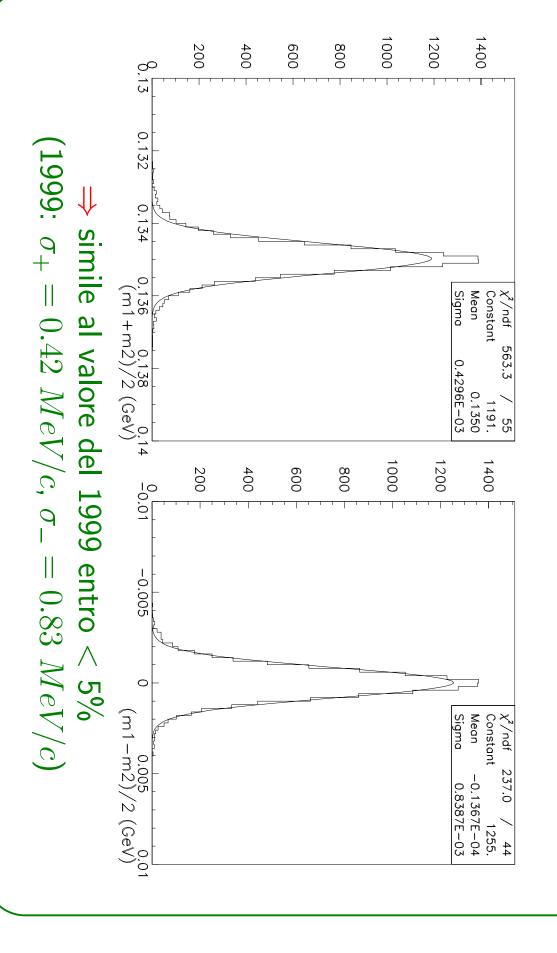


⇒ distribuzioni simili entro qualche %

Risoluzione E/p

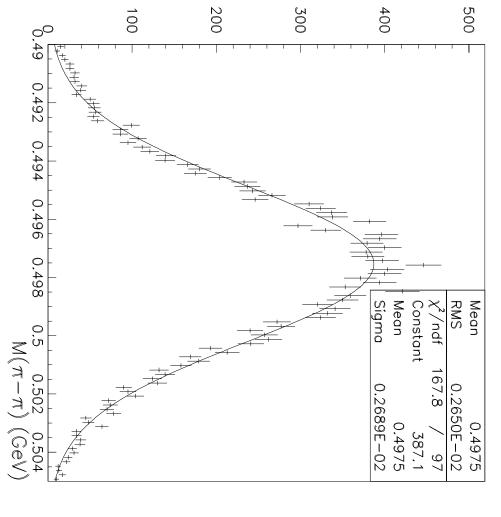
Eventi Ke3: energia misurata in 7×7 celle

$$\frac{\sigma(E)}{p} = \frac{0.04}{\sqrt{E}} \oplus \frac{0.06}{E} \oplus 0.0065 \oplus 0.0001 \times p$$

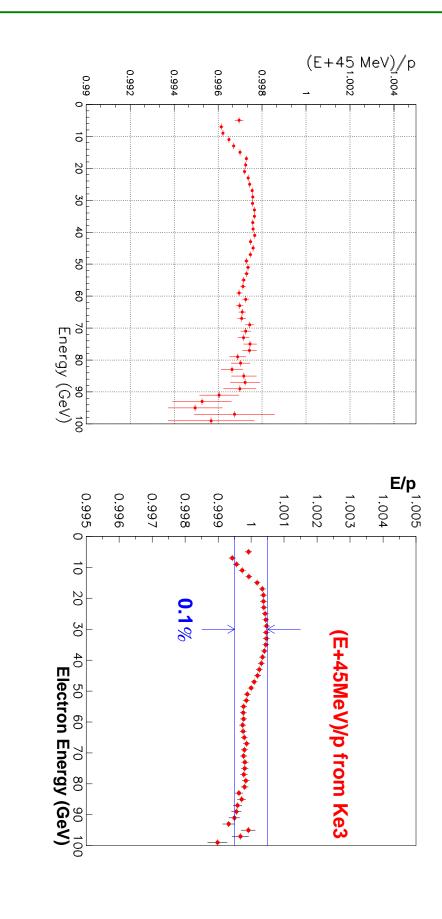

Consistente con le risoluzioni in E e p del 1999:

$$\frac{\sigma(E)}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\% \ (E \ in \ GeV/c)$$

$$\frac{\sigma(p)}{p} = 0.48\% \oplus 0.009\% \ p \ (p \ in \ GeV/c)$$


Eventi $2\pi^0$

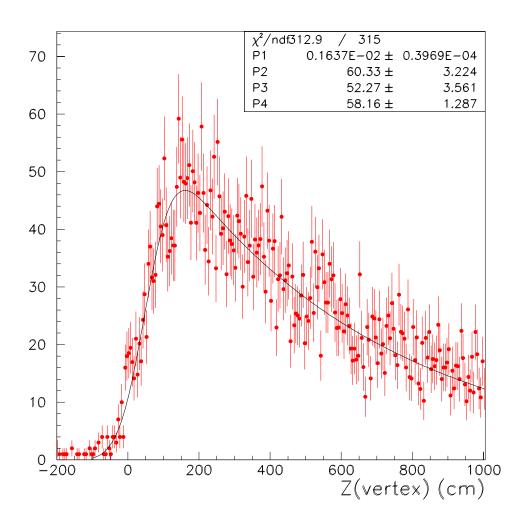
Risoluzione in massa del π^0


Eventi π^+

Risoluzione in massa del K

distribuzione online \sim 5% peggiore di camere filo a filo allineamento non corretta per delle

Linearità in energia


Eventi Ke3: linearità in energia nel 2001 (sinistra) e nel 1999 (destra)

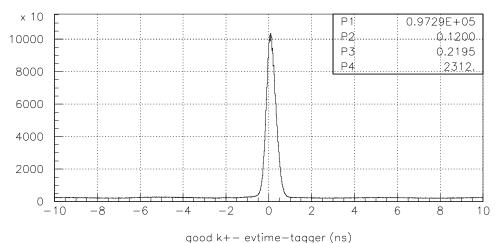
(dati non corretti per allineamento delle DCH filo a filo (ightarrow reprocessing))

Stato dell'esperimento NA48

Scala di energia neutra

Scala di energia neutra ⇔ posizione longitudinale del vertice di decadimento

Distribuzione della posizione longitudinale del vertice di decadimento dei K_S prima della correzione finale sulla scala di energia


Correzione: $\sim 4.8 \times 10^{-3}$

⇒ paragonabile a quella del 1999

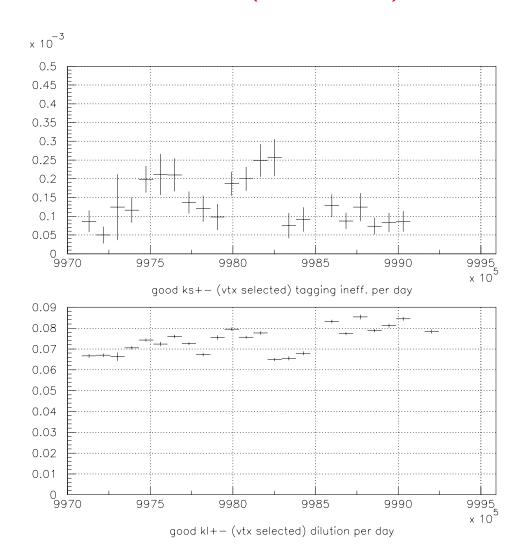
Tagging: tempo degli eventi

Identificazione $K_S \Leftrightarrow \text{protone nel tagger}$ entro $\pm 2ns$ rispetto al tempo dell'evento

Distribuzioni del tempo degli eventi $\pi\pi$ rispetto a tutti i protoni nel tagger (dati raccolti in ~ 1 mese)

20000 P1 0.1803E+05
P2 0.1537
P3 0.2538
P4 497.4

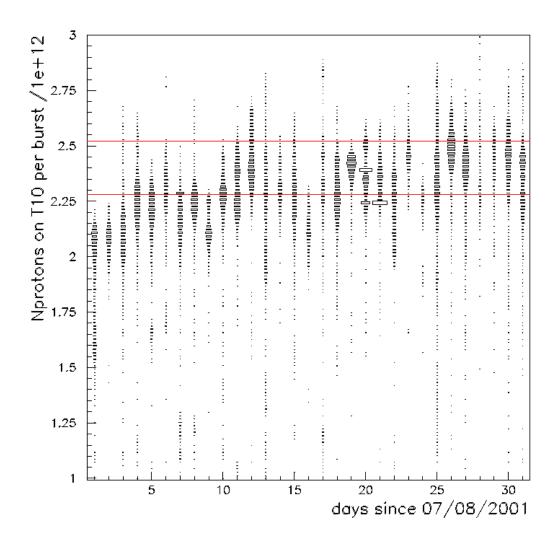
12500
10000
7500
2500
0
-10 -8 -6 -4 -2 0 2 4 6 8 10


good k00 evtime-proton time (all protons)

Risoluzione temporale:

$$\pi^+\pi^- = \sim$$
 220 ps (odoscopio) $\pi^0\pi^0 = \sim$ 250 ps (calorimetro LKr)

Errori di identificazione $K_S \Leftrightarrow K_L$


Inefficienza di tagging e tagging accidentale per decadimenti $\pi^+\pi^-$ in funzione del tempo ($\sim 1~{
m mese}$)

- Inefficienza di tagging $\rm K_S \Rightarrow K_L$: $\alpha_{SL}^{\pm} < 2 \times 10^{-4}$ (1999: $(1.63 \pm 0.03) \times 10^{-4}$)
- Tagging accidentale $K_L \Rightarrow K_S$: $\alpha_{LS}^{\pm} \sim 7.5\%$ (1999: (10.649 ± 0.0008) %)

Overflows e intensità di fascio

Intensità dei protoni sul bersaglio K_L (agosto 2001) \Rightarrow intensità nominale $\simeq 2.4 \times 10^{12}~ppp$

♦ Frazione di overflows:

(risultati preliminari ottenuti a $\approx 2 \times 10^{12}$ ppp)

- eventi random: (10.3 ± 0.2) %
- eventi $2\pi^0$: (10.7 ± 0.3) %
- valore atteso a intensità nominale: $\approx 12\%$
- valore precedente: $\approx 20 \%$

Efficienze di trigger

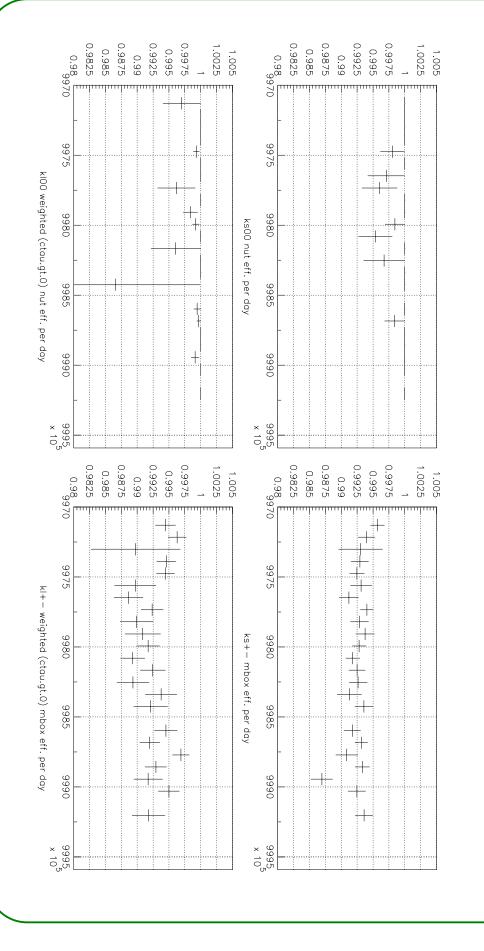
Risultati preliminari basati su ~ 1 mese di presa dati

- TRIGGER $\pi^0\pi^0$: $\epsilon(\mathrm{K_S}) \approx \epsilon(K_L^w) \approx 99.9\%$ efficienza 1999: $\epsilon({\rm K_S}) \approx \epsilon(K_L^w) = (99.920 \pm 0.009)\%$
- ♦ TRIGGER $\pi^+\pi^-$

```
QX (L1): \epsilon(\mathrm{K_S}) \approx \epsilon(K_L^w) > 99.9\%
```

Etot (L1): $\epsilon(\mathrm{K_S}) \approx \epsilon(K_L^w) \approx 99.6\%$

2tracks(L1): $\epsilon(\mathrm{K_S}) \approx \epsilon(K_L^w) > 99.9\%$

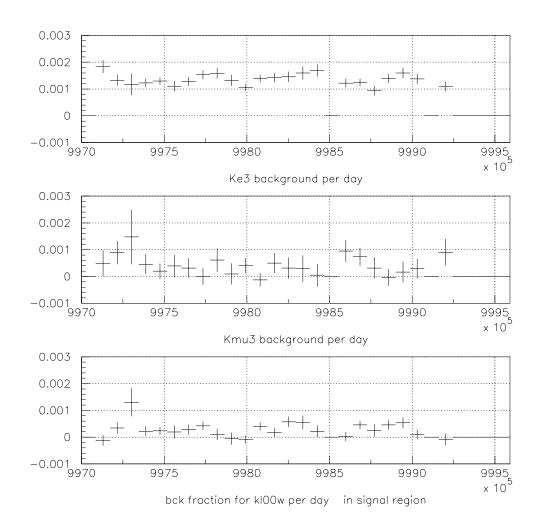

Mass Box (L2): $\epsilon(K_S) \approx \epsilon(K_L^w) \approx 99.25\%$ efficienza 1999: $\epsilon(K_S) = (98.353 \pm 0.022)\%$ $\epsilon(K_L^w) = (98.319 \pm 0.038)\%$ \Rightarrow migliore che nel 1999

Stato dell'esperimento NA48

Efficienze di trigger

Stabilità temporale delle efficienze del trigger neutro (sinistra) e trigger carico (destra)

(risultati preliminari basati su ~ 1 mese di presa dati)


Stato dell'esperimento NA48

Eventi di fondo

• FONDO CARICO:

$$K_{e3} \sim 1.4 \times 10^{-3}$$
 $K_{\mu 3} \sim 0.4 \times 10^{-3}$ (fondo carico totale 1999: $(1.69 \pm 3) \times 10^{-3}$

• FONDO NEUTRO: $K_{3\pi^0} < 10^{-3}$ (fondo neutro 1999: $(5.9 \pm 2) \times 10^{-4}$)

Frazione di eventi di fondo al segnale $\pi\pi$ in funzione del tempo (~ 1 mese)

Conclusioni

- Buona qualità dei dati delle DCH
- Dati 2001 più puliti che nel 1998-1999 migliore efficienza del trigger $\pi^+\pi^$ minore percentuale di overflow minore percentuale di tagging accidentale
- Per raggiungere il numero previsto di acquisire dati stabilmente ad una intensità di mantenendo elevata efficienza di presa dati protoni di $pprox 2.4 imes 10^{12}$ sul bersaglio ${
 m K_L}$, $\sim~1.5 imes10^6$ buoni candidati $K_L
 ightarrow \pi^0\pi^0$ occorre

Stato dell'esperimento NA48

II programma sperimentale di NA48

NA48 HA PRODOTTO MOLTI RISULTATI SPERIMENTALI:

- ⇒ PRINCIPALE OBIETTIVO: misura di precisione del parametro di violazione diretta di CP $\operatorname{Re}(\varepsilon'/\varepsilon)$ nei K neutri in corso l'ultima presa dati per ϵ'/ϵ pubblicato il risultato dell'analisi dei dati 1997-1999
- \Rightarrow IN PARALLELO: effettuati molti studi di decadimenti di ${
 m K}_{
 m S}$, ${
 m K}_{
 m L}$ e iperoni neutri (run per ϵ'/ϵ e run dedicati)
- ⇒ IN FUTURO: approvati 2 addenda alla proposta originale:

 $\mathsf{NA48/I}$: a high sensitivity investigation of K_{S} and neutral hyperon decays using a modified $K_{
m S}$ beam (2002)

paramenters with an extended NA48 setup (2003) NA48/II: a precision measurement of charged kaon decay

Stato dell'esperimento NA48

Decadimenti rari in NA48

Campioni utilizzati per analisi di decadimenti rari in NA48:

- lacktriangle 1997-1999 presa dati per $\mathrm{Re}(\varepsilon'/\varepsilon)$:
- energia protoni: 450 GeV (ciclo SPS: 2.4 s su 14.4 s)
- $-3.0 imes 10^7$ ppp sul bersaglio $K_{\rm S}$
- 1.5×10^{12} ppp sul bersaglio K_L
- flusso ${
 m K_S}$: $\sim 3 imes 10^2$ /ciclo
- flusso ${
 m K_L}$: $\sim 2 imes 10^7$ /ciclo
- Decadimenti per anno (120 giorni, efficienza 50%, energia del K entro 70–170 GeV): $6.5 \times 10^7~{
 m K_S}$ /anno \Rightarrow SES: $\sim 1.5 \times 10^{-7}$

```
6.5 \times 10^7~{
m K_S} /anno \Rightarrow SES: \sim 1.5 \times 10^{-6} 3.6 \times 10^{10}~{
m K_L} /anno \Rightarrow SES: \sim 3 \times 10^{-10} (accettanza 10%)
```

lacktriangle Run 1999 con $m K_S$ ad alta intensità (48 ore)

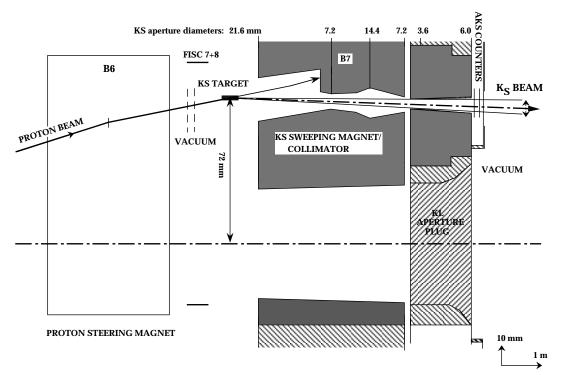
- no fascio $m K_L$
- 6.0×10^9 ppp sul bersaglio $K_{\rm S}$ (\times fattore ~ 200)
- decadimenti $m K_S$ (energia 60–190 GeV): $\sim 2.3 imes 10^8$
- \Rightarrow SES: $\sim 4 \times 10^{-8}$ (accettanza 10%)
- \Rightarrow run di 48 ore \simeq 3-4 anni di run nel modo ϵ'/ϵ

lacktriangle Run 2000 con $K_{\rm S}$ ad alta intensità

- no spettrometro carico
- vuoto esteso fino all'odoscopio di trigger
- rimosso il veto AKS
- tappo di bronzo sulla apertura del collimatore dei K_{L}
- − protoni a 400 GeV
- $-\sim 9.0 imes 10^9$ ppp sul bersaglio ${
 m K_S}$
- angolo di produzione modificato (3 mrad)
- ciclo macchina modificato (3.2 s ogni 14.4 s)
- $-\sim 10^{10}$ decadimenti di ${
 m K_S}$ in \sim 40 giorni

Fisica dei Decadimenti rari in NA48

Riepilogo dei principali risultati sui decadimenti rari in NA48 (verifiche di SM, di χ PT, studi di violazione di CP, ...)


$(3.7 \pm 0.5)10^{-3} (NA48)$	380			$\Sigma^0\gamma$
$(1.9 \pm 0.2)10^{-3} (NA48)$	497			$\Lambda \gamma$
$(2.7 \pm 0.4)10^{-4} (KTeV)$	176		60	$\Sigma^+e^-\bar{\nu}$
BR	Evt.	BR	Evt.	[I]
$< 1.1 \times 10^{-6} \text{ (NA31)}$	ı	$< 1.4 \times 10^{-7}$	ı	$\pi^{0}e^{+}e^{-}$
$(2.6 \pm 0.4)10^{-6} (NA48)$	149	ı		77
(8.0 ± 0.4) (8.0 ± 0.4)	56	$(4.3 \pm 0.4)10^{-5}$	921	$\pi^{+}\pi^{-}e^{+}e^{-}$
BR	Evt.	BR	Evt.	$ m K_S$
$(1.06 \pm 0.05)10^{-5} (NA48)$	6864			$e^+e^-\gamma$
$(5.84 \pm 0.35)10^{-7}$ (KTeV)	1543	$(6.3 \pm 0.5)10^{-7}$	492	$e^+e^-\gamma\gamma$
$(2.9^{+6.7}_{-2.4})10^{-9}$ (E7991)	1		19	$e^{+}e^{-}\mu^{+}\mu^{-}$
$(3.7 \pm 0.3)10^{-8}$ (KTeV)	441	$(3.7 \pm 0.4)10^{-8}$	132	$e^{+}e^{-}e^{+}e^{-}$
$(3.5 \pm 0.6)10^{-7} \ (KTeV)$	50	$(3.1 \pm 0.2)10^{-7}$	1337	$\pi^{+}\pi^{-}e^{+}e^{-}$
$(1.7 \pm 0.1)10^{-6} (KTeV)$	947	$(1.36 \pm 0.05)10^{-6}$	2558	$\pi^0\gamma\gamma$
BR	Evt.	BR	Evt.	$ m K_L$
Miglior risultato pubblicato	Mi	NA48 (Prel.)		Modo

II run 2002

- NA48 prenderà dati nel 2002 per il nuovo programma NA48/I di ricerca di decadimenti rari di $K_{\rm S}$ e iperoni neutri approvato dal RB del CERN (CERN SPSC 2000-002)
- nel 2002 il CERN ha allocato 150 giorni di tempo macchina per i programmi a bersaglio fisso, a partire dal 15 aprile: almeno 120 giorni richiesti da NA48 nel 2002
- modifiche linea di fascio:
 - installazione di un elettromagnete al 'beam defining collimator' presso il bersaglio $K_{\rm S}$ (deviazione di sciami carichi)
 - installazione di un convertitore mobile in piombo (riduzione del flusso di fotoni)
 - inserimento di un tappo di bronzo per chiudere la apertura del collimatore dei $K_{\rm L}$ (riduzione di fondo)
- installazione del nuovo readout delle DCH
- ottimizzazione di trigger e daq
- SCOPO: statistica di eventi almeno 50 volte maggiore di quella del run speciale 1999

II progetto NA48/I

Dettaglio del bersaglio K_S

SPS momentum (GeV/c) **Duty Cycle** Protons per pulse on target Production angle Total kaon flux/pulse K-decays (40-240 GeV)/pulse 1.1×10^5 K-decays (40-240 GeV)/year 3.0×10^{10} $(50\% \text{ efficiency} \times 120 \text{ days})$

400 GeV/c $5.2 \sec/16.8 \sec$ 1×10^{10} -2.5 mrad $\sim 1.5 \times 10^5$

- $\Rightarrow SES \sim 3 \times 10^{-11}/\alpha$ (α : accettanza per il decadimento dopo i tagli di analisi)
- ⇒ ulteriore fattore 2 sulla SES atteso grazie al miglioramento del sistema di readout/daq

La fisica di NA48/I

Programma di fisica dei Ks

Decadimento leoria Eventi in NA48/I

Decadimenti non-leptonici (χ PT)

$$K_{\rm S} \to \gamma \gamma$$
 2.1 × 10⁻⁶ 24000
 $K_{\rm S} \to \pi^0 \gamma \gamma$ 3.8 × 10⁻⁸ 114
 $K_{\rm S} \to \pi^0 \pi^0 \gamma \gamma$ 5.6 × 10⁻⁹ 7

$$K_S \rightarrow \pi^0 \pi^0 \gamma \gamma$$
 5.6 × 10

$$\gamma$$
 5.6 $imes$ 10^{-9} Decadimenti Dalitz $(\gamma\gamma^*)$

$$K_S \to \gamma e^+ e^- \qquad 3.4 \times 10^{-8}$$
 $K_S \to \gamma \mu^+ \mu^- \qquad 8 \times 10^{-10}$

304

 K_{S}

$$K \to \pi l^+ l^-$$
$$5 \times 10^{-9}$$

 K_{S}

 $\rightarrow \pi^0 e^+ e^-$

$$1 \times 10^{-9}$$

 $\rightarrow \pi^0 \mu^+ \mu^-$

$$K_{\rm S} \to \pi^{+}\pi^{-}\gamma(\gamma^{*})$$
 $K_{\rm S} \to \pi^{+}\pi^{-}\gamma$
 1.8×10^{-3}
 $K_{\rm S} \to \pi^{+}\pi^{-}e^{+}e^{-}$
 3.6×10^{-5}

 $K
ightarrow 3\pi$

 $\rightarrow \pi^+\pi^-\gamma$

$$K \to \pi^+ \pi^- \pi^0$$
$$K \to \pi^0 \pi^0 \pi^0$$

$$5.3 \times 10^6$$

 5.4×10^4

$$2.6 \times 10^6 / \tau_{\rm S}$$

 $1.5 \times 10^6 / \tau_{\rm S}$