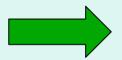

Measurement of Direct CP Violation by the NA48 experiment

Giuseppina Anzivino University of Perugia

Seminar at LIP - Lisbon


Giuseppina Anzivino

Outline

- Discrete symmetries
- The neutral kaon system
- What we measure
- ❖NA48 the experiment
- Analysis and results
- KTeV
- Conclusions and perspectives

Symmetry - Conservation Laws

Invariance of equations describing a physical system under an operation

Conservation Law

Examples:

Rotation in space

Conservation of angular momentum

Gauge invariance of electromagnetic field

Conservation of electric charge

Discrete Symmetries

- Parity P:
 exchanges space coordinates (x,y,z) to (-x,-y,-z)
- Charge Conjugation C: exchanges a particle to its antiparticle (electron to positron, quark to its antiquark, etc.)
- Time Reversal T: exchanges t to -t

CPT Theorem

Under very general assumptions

a CxPxT operation lets physics invariant

CPT conservation is verified experimentally

Particle-antiparticle properties:

Same mass and lifetime

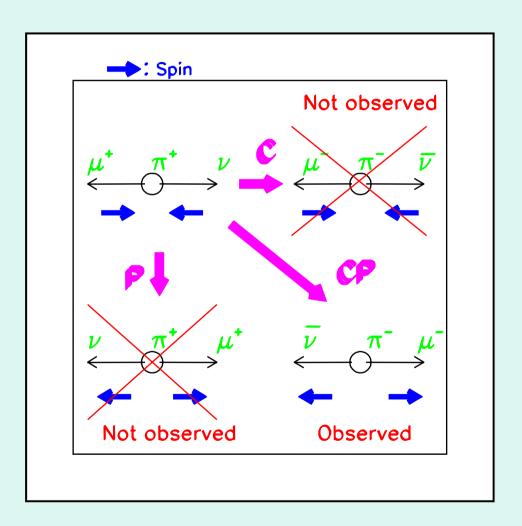
Equal and opposite electric charge

What about C, P and T separately?

A brief history

Beginning of sixties:

- > C and P conserved in strong and electromagnetic interactions
- > Weak interaction maximaly violate C and P
- > Their product CP was thought to be valid


This was in agreement with experiments

- In 1964 J. Christenson et al. discovered CP Violation effects in the decay of long lived kaons to pion pairs
- * CP Violation implies T Violation (CPT Theorem)

Pion decay

PION DECAY

Example of C and P
Non conservation
but CP conservation

The Neutral Kaon System

Neutral K are pseudoscalar mesons of $S = \pm 1$

Strangeness eigenstates

$$K^{0} (\bar{s}d) (S = +1)$$
 $K^{0} (s\bar{d}) (S = -1)$

CP eigenstates

$$K_1 = (K^0 + \overline{K}^0) / \sqrt{2}$$
 (CP = +1)
 $K_2 = (K^0 - \overline{K}^0) / \sqrt{2}$ (CP = -1)

Mass eigenstates

$$K_S \cong K_1 + \epsilon K_2$$
 (c $\tau = 2.67$ cm)
 $K_L \cong K_2 + \epsilon K_1$ (c $\tau = 15.51$ m)

Kaon decays

K₅ Decays

K_L Decays

69 %	$\pi^+\pi^-$
31%	$\pi^0\pi^0$

21 %	3 π ⁰
13 %	$\pi^+\pi^-\pi^0$
39 %	πεν
27 %	πμν
0.2 %	$\pi^+\pi^-$
0.1 %	$\pi^0\pi^0$

CPV in the Kaon system

The mass eigenstates $(K_S \text{ and } K_L)$ are <u>NOT</u> pure CP eigenstates

The two decay modes in $\pi^+\pi^-$ and $\pi^0\pi^0$ have CP=+1

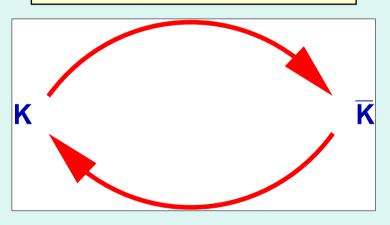
 K_S (almost CP=+1) CAN decay to two pions K_L (almost CP=-1) CANNOT decay to two pions

CP violation manifests in the observation of the

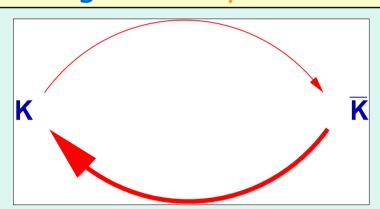
CP-forbidden $K_L \rightarrow \pi\pi$ decay

CP Violation

CP Violation has two components



Indirect CP Violation due to CP eigenstates mixing inside K_s and K_L parameter ϵ


Direct CP Violation in the decay process parameter ϵ'

Indirect CP Violation

Mixing of K^0 and \overline{K}^0 is independent of CP

Indirect CPV causes mixing to be asymmetric

$$A(K^0 \rightarrow \pi\pi) \neq A(\overline{K}^0 \rightarrow \pi\pi)$$

$$|\varepsilon| = (2.28 \pm 0.02) \times 10^{-3}$$

Direct CP Violation

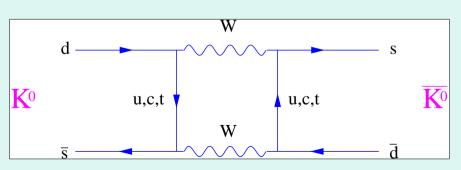
In the decay $K^0 \rightarrow \pi\pi$ the two pions can have isospin I=0,2

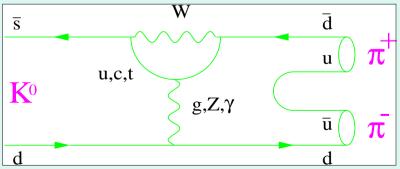
Two amplitudes A_0 and A_2

The phase difference of these two channels determines DIRECT CP VIOLATION

$$A(K_L \to \pi^+\pi^-) / A(K_S \to \pi^+\pi^-) = \eta_+ = \varepsilon + \varepsilon'$$

 $A(K_L \to \pi^0\pi^0) / A(K_S \to \pi^0\pi^0) = \eta_{oo} = \varepsilon - 2\varepsilon'$


$$\varepsilon' = i e^{i(\delta_2 - \delta_0)} \operatorname{Im}(A_2/A_0) / \sqrt{2}$$


Standard Model Predictions

CP Violation: naturally included in the Standard Model due to an irriducible complex phase in the quark mixing matrix in the case of three families

Indirect CPV Box diagram $\Delta S=2$

Direct CPV Penguin diagram $\Delta S=1$

What we measure

Direct CPV (ε') is small wrt Indirect CPV (ε)

Convenient to measure $Re(\varepsilon'/\varepsilon)$

It can be shown that the measurable quantity $Re(\varepsilon'/\varepsilon)$ is connected to the ratio R of four observable decay rates:

$$\Gamma(\mathsf{K}_{\mathsf{L}} \to \pi^{0}\pi^{0}) \times \Gamma(\mathsf{K}_{\mathsf{S}} \to \pi^{+}\pi^{-})$$

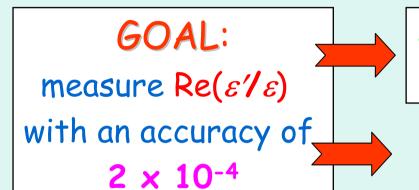
$$\mathsf{R} = \frac{}{\Gamma(\mathsf{K}_{\mathsf{S}} \to \pi^{0}\pi^{0}) \times \Gamma(\mathsf{K}_{\mathsf{L}} \to \pi^{+}\pi^{-})}$$

$$= 1 - 6 \operatorname{Re}(\varepsilon / \varepsilon)$$

Typical theretical predictions: $Re(\varepsilon/\varepsilon)$ in the range 5-30 x 10⁻⁴

Experimental status of ε'/ε

- Previous generation experiments (results in early 90's):
 - NA31 (CERN) $(23.0 \pm 6.5) \times 10^{-4}$
 - E731 (Fermilab) $(7.4 \pm 5.9) \times 10^{-4}$


 $(\varepsilon'/\varepsilon) \neq 0$? \Rightarrow New generation of experiments

- First published results three years ago:
 - KTEV (Fermilab) $(28.0 \pm 4.1) \times 10^{-4}$ (part of 96-97 data)
 - NA48 (CERN) $(18.5 \pm 7.3) \times 10^{-4}$ (97 data)
 - Preliminary NA48 result on 98 data last year: $(14.0 \pm 4.3) \times 10^{-4}$ (combined with 97 data)
- Before May 2001

world average $(19.2 \pm 2.5) \times 10^{-4}$ but $\chi^2/\text{ndf} = 10.4/3$

Need final results from NA48 and KTEV to clarify the situation.

Data samples

Several millions of $K_L \rightarrow \pi^0 \pi^0$ (the limiting decay mode)

A huge amount of data to control systematics

Raw Data taken:

DO, RUN I ~ 40 TB ZEUS, RUN I ~ 30 TB BaBar ~ 50 TB NA48 ~ 170 TB ~16K triggers/burst recorded Only ~100 are good $\pi\pi$ modes, the rest is for systematics

Accumulated statistics before $2000 \rightarrow 3.8$ millions year $2001 \rightarrow 1.4$ millions

The NA48 method

The double ratio R is related to the decay widths

In the experiment we measure

$$R^{meas} = \frac{N_{S}^{00} \times N_{S}^{+-}}{N_{S}^{00} \times N_{S}^{+-}}$$

Basic principle is SYMMETRY between

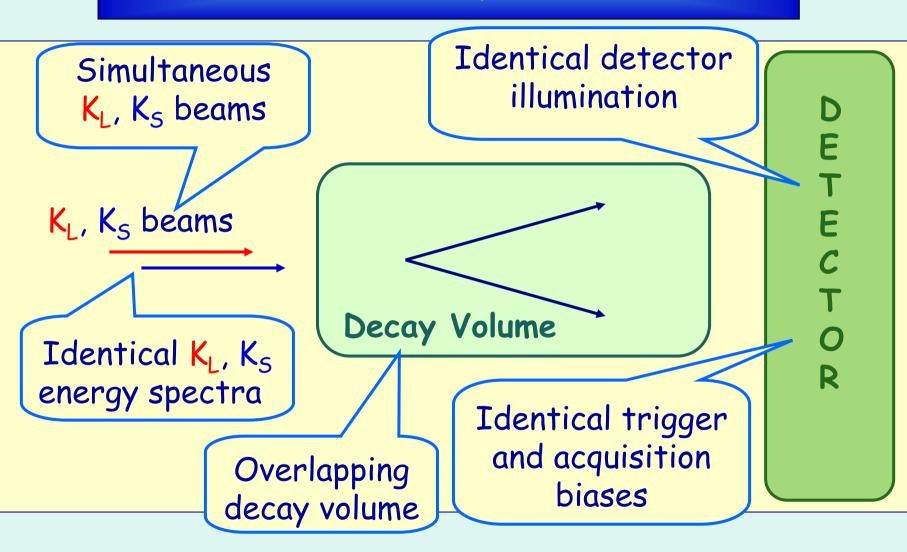
K_L and K_S

 $\pi^+\pi^-$ and $\pi^0\pi^0$

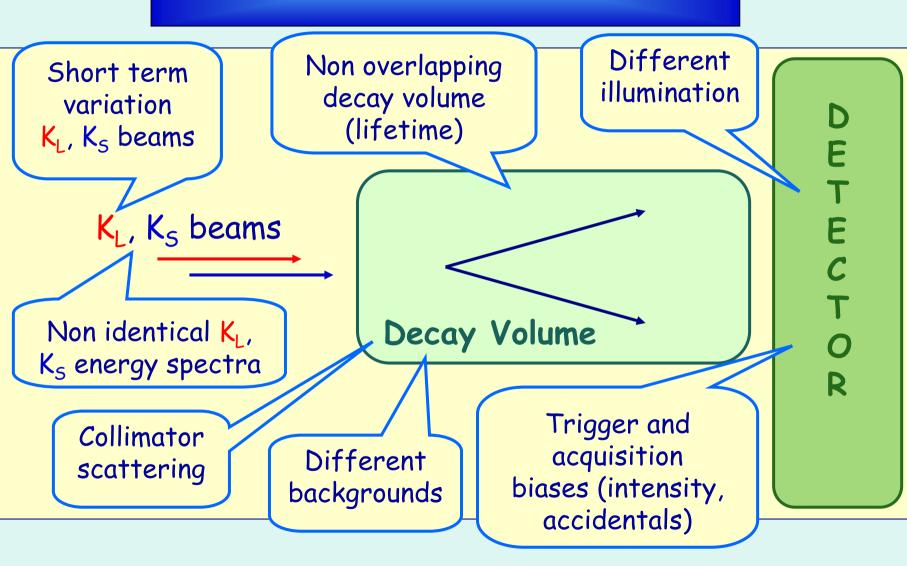
Take the four decay modes

- > Simultaneously
- > In the same decay region

Count the number of events


The double ratio

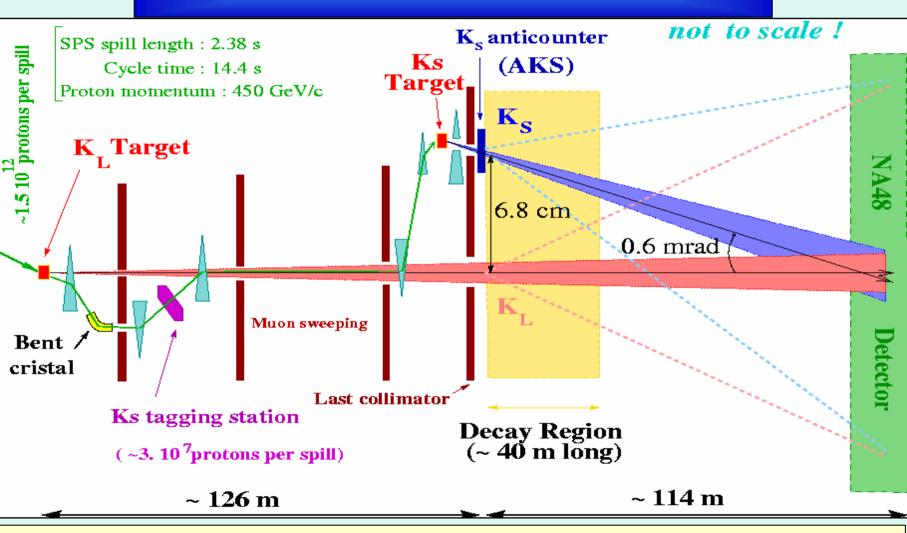
At first order:


- *****Corrections on \mathbb{R}^{meas} (common to either K_L and K_S or $\pi^+\pi^-$ and $\pi^0\pi^0$) cancel out in the double ratio.
- ★ Variation of fluxes, inefficiencies, dead time, accidental losses vanish (simultaneous data taking).
- ★ The amount of residual correction is minimized by weighting the K_L decay distribution to get similar acceptances for K_S and K_L

Only second order effects must be taken into account need special care

The ideal experiment...

...and the real case

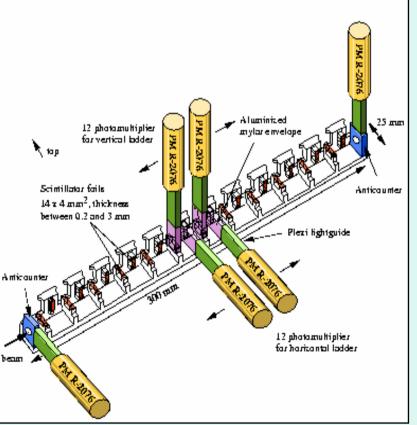


Lisbon, 22-2-2002

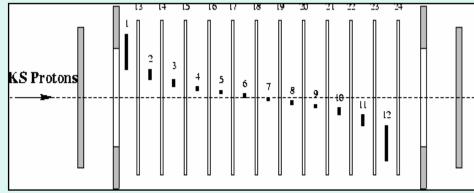
Giuseppina Anzivino

NA48/21

NA48 K_L and K_S beams

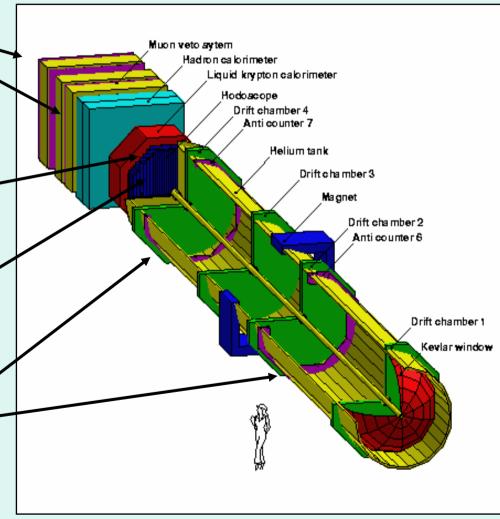


 K_s and K_L beams are distinguished by proton tagging upstream of the K_s target

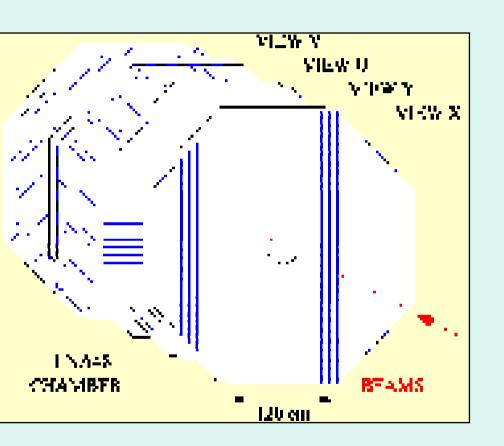

Lisbon, 22-2-2002 Giuseppina Anzivino NA48/22

The Tagger

2x12 thin scintillator foils



- ⇒ Proton rate ≈ 30MHz → split the intensity between foils, readout by 8 bits Flash ADC at 960 MHz
- \Rightarrow time resolution: 140 ps
- ⇒ double pulse separation : 4 ns



The NA48 Detector

- Muon veto and hadron calorimeter(background, trigger)
- Page Quasi homogeneous liquid krypton calorimeter to detect $\pi^0\pi^0$ events
- > Scintillation hodoscope (trigger and timing $\pi^+\pi^-$)
- > Magnetic spectrometer to detect $\pi^{+}\pi^{-}$ events

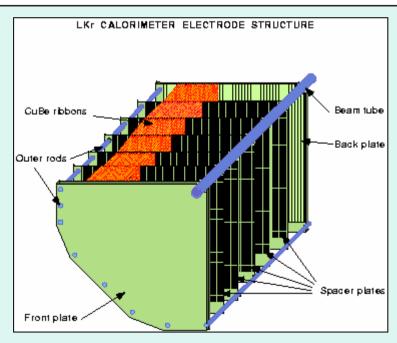
The Magnetic Spectrometer

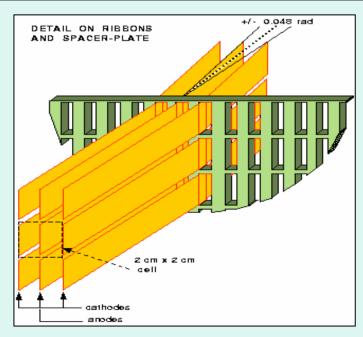

```
2 + 2 drift chambers + magnet

→ 265 MeV/c kick
```

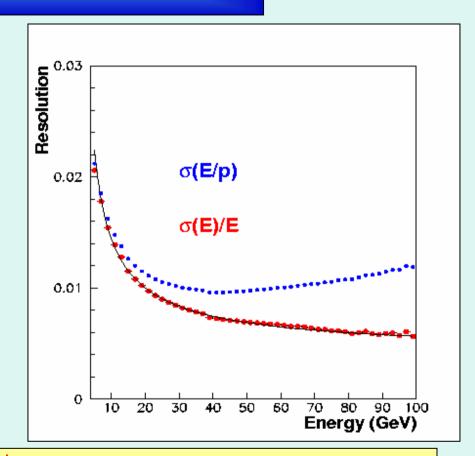
- ★ Good redudancy
- \star 4 x 2 planes x 256 wires
- ★ Drift time < 100 ns
- ★ Space resolution $\approx 100 \mu m$

 $\sigma(p)/p = 0.5\% \oplus 0.009 p[GeV/c]\%$


The LKr e.m. calorimeter


- Quasi-homogeneous detector 10 m³ liquid krypton (120 K) $(X_0 = 4.7 \text{ cm}, R_M = 6.1 \text{ cm})$
- 13212 cells
- Granularity 2x2 cm²
- Depth 1.25 m (27 X₀)

LKr geometry


- Projective geometry pointing to decay region (~ 114 m upstream)
- \triangleright Accordion geometry (\pm 48 mrad), Cu-Be-Co electrodes
- > Initial current read-out

LKr resolution

- Use large sample of $K_L \rightarrow \pi e \nu$ to study LKr energy response.
- Compare p from spectrometer and E from calorimeter.

 $\sigma(E)/E \cong 3.2\%/\sqrt{E} \oplus 9\%/E \oplus 0.42\%$

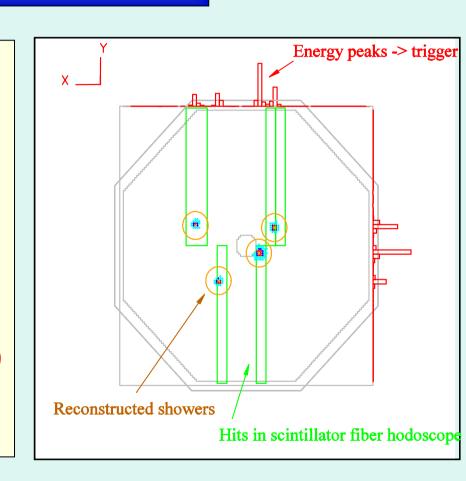
(E in GeV) (better than 1% for 25 GeV photons)

Trigger / 1

$\pi^+\pi^-$ trigger

♦ Level 1:

- Hodoscope + total energy + hits in drift chambers
- Output rate 100 kHz, dead time 0.5 %
- Efficiency (99.535 ± 0.011)% (evaluated from trigger components)


♦ Level 2:

- > Fast track reconstruction (100 ms) from processors farm
- > Cut on vertex position and invariant mass
- > Output rate 2kHz, dead time 1.1%
- \triangleright Efficiency (98.353 ± 0.022)% (from Level 1 triggers)

Trigger / 2

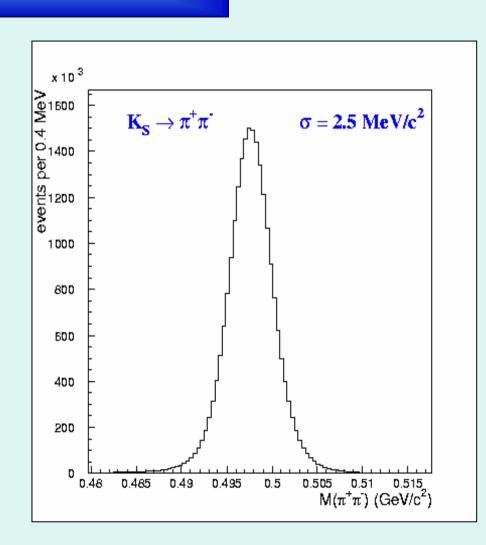
$\pi^0\pi^0$ trigger

- Based on LKr information summed into projections
- Cuts on total energy, decay vertex and number of photons
- Fully pipelined (3µs), no deadtime, 2 kHz
- Efficiency (99.920±0.009) % (from auxiliary trigger, NHOD)
- $igoplus Negligible K_S to K_L (weighted) difference$

Analysis

- \boxtimes Reconstruct and count $\pi^+\pi^-$ and $\pi^0\pi^0$ decays
- Disentangle K₅ from K_L using tagging
- Subtract the remaining background
- Evaluate corrections and systematics
- Exchecks and stability of the result

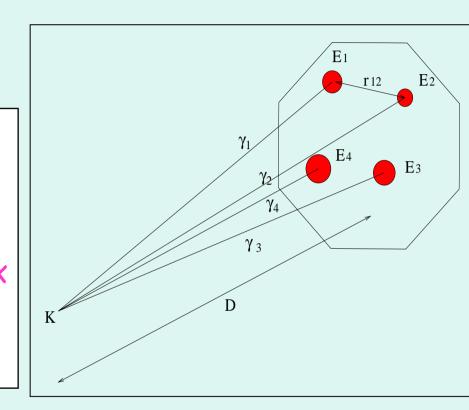
!!!All given effects are on the double ratio!!!


$$Re(\varepsilon'/\varepsilon) = (1-R)/6$$

$$\sigma(\text{Re}(\varepsilon'/\varepsilon)) = \sigma(R)/6$$

$\pi^+\pi^-$ sample

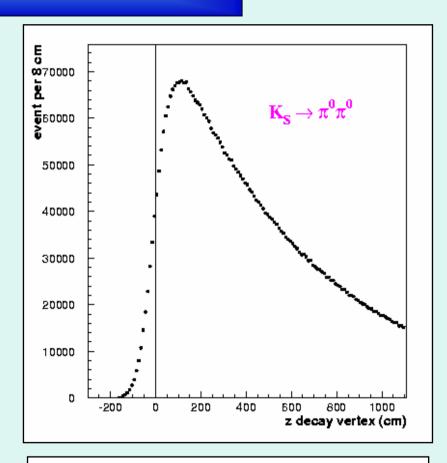
$$K_{S}, K_{L} \rightarrow \pi^{+}\pi^{-}$$


- Decay vertex and $M(\pi\pi)$ reconstructed by the spectrometer
- Decay time from the hodoscope ($\sigma = 140 \text{ ps}$)

$\pi^0\pi^0$ sample

$$K_S$$
, $K_L \rightarrow \pi^0 \pi^0$

- $ightharpoonup E_i \ x_i$ and y_i of the four photons reconstructed in the LKr \Longrightarrow two $M(\gamma\gamma)$ and decay vertex
- Decay time from the LKr calorimeter (σ = 200 ps)



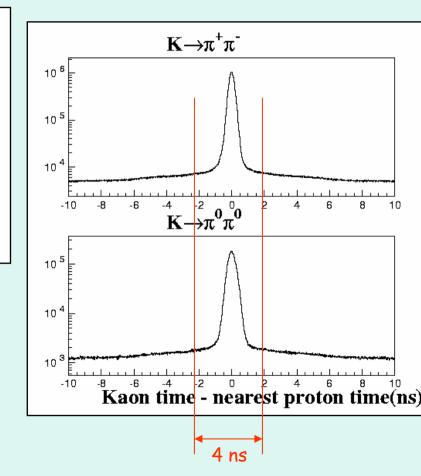
$$D = z_{LKr} - z_{decay} = \sqrt{\sum_{ij} E_i E_j r_{ij}^2} / M_K$$

Reconstruction

- \bullet In $\pi^+\pi^-$ case depends on chamber geometry
 - $extbf{-}$ z position $\cong 1 \text{ mm}$
 - •transverse scale \cong 100 μ m/m
- \bullet In $\pi^0\pi^0$ case depends on calorimeter geometry
 - *transverse scale \cong 100 μ m/m
 - and energy scale

Adjust energy scale to fit the known position of the AKS anticounter

1 cm of reconstruction error \Rightarrow 1×10⁻⁴ on energy scale and R


K1-K5 identification

In both decay modes

K_s are tagged by comparing
the event time to proton times
as they pass through the

tagging station

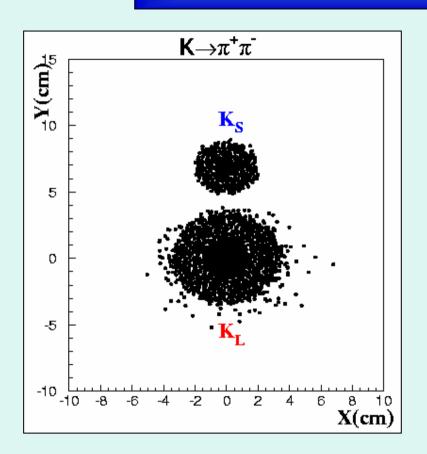
$$\Delta$$
t (Kaon-proton)
 \leq 2 ns \Rightarrow K_S
 $>$ 2 ns \Rightarrow K_L

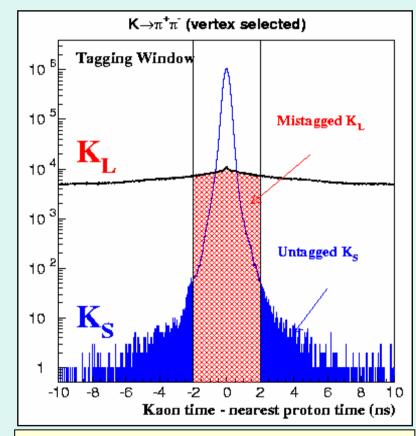
Tagging errors

Two possible kind of mistakes

- K_S mistagged as K_L : probability α_{SL}

Due to inefficiency in time measurement by tagger counter or main detector (trigger hodoscope or calorimeter): α_{SL}^{+-} and α_{SL}^{00}


 $-K_L$ mistagged as K_S : probability α_{LS}


Due to accidental coincidence between K_L decay and a proton in the tagger - approximately symmetric between $\pi^+\pi^-$ and $\pi^0\pi^0$ because of simultaneous data taking: α_{LS}^{+-} and α_{LS}^{00}

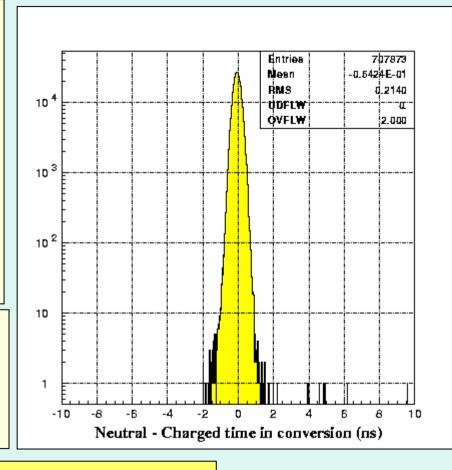
 α_{SL}^{+-} and α_{LS}^{+-} can be measured reconstructing the decay vertex with the tracking chambers

Double ratio \Longrightarrow difference between neutral and charged modes

Tagging $\pi^{\dagger}\pi^{-}$ events

Identify K_s , K_L with decay vertex position in transverse plane

$$\alpha_{SL}$$
 = (1.63 ±0.03) 10⁻⁴ α_{LS} = (10.649 ±0.008)%

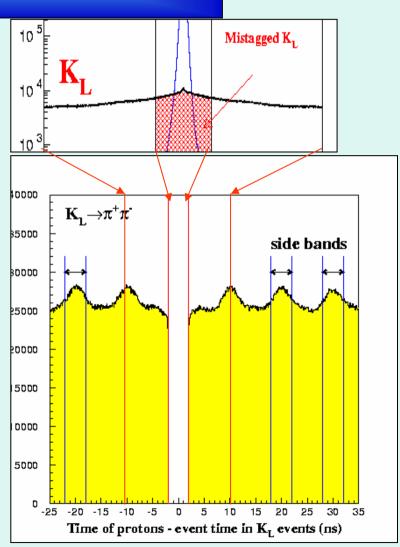

Measuring $\Delta \alpha_{SL}$

- Compare the time measured by calorimeter and hodoscope in events where both are available: $2\pi^0$ and $3\pi^0$ decays
 - Dalitz decays of π^0
 - γ conversions in vacuum window

Tails $< 0.5 \times 10^{-4}$

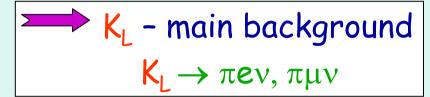
most of the tails in $\pi^+\pi^-$ tagging coincidence are due to the tagger

they are equal in $\pi^+\pi^-$ and $\pi^0\pi^0$

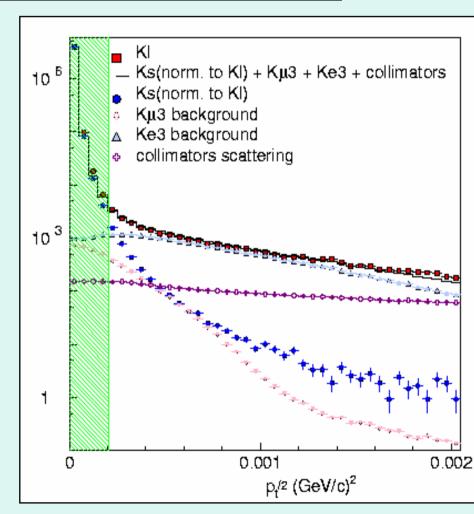

$$\rightarrow$$
 $\Delta \alpha_{SL} = (0. \pm 0.5) \times 10^{-4}$

Measuring $\Delta \alpha_{LS}$

For events tagged as K_L (no proton in the central window)

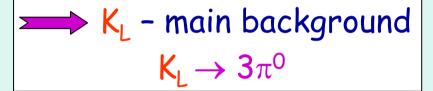

measure $\Delta\alpha_{LS}$ using coincidence rate in tagging windows offset from the event time ("sidebands")

 $\Rightarrow \Delta\alpha_{LS} = (4.3 \pm 1.8) \times 10^{-4}$

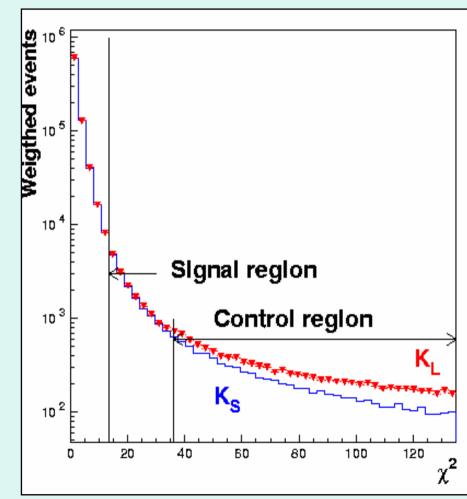


Charged background

\longrightarrow K_{5} - no background



- ★ Rejected by:
 - Requiring E/p < 0.8</p>
 - no hits in muon veto
 - cutting in invariant mass
 and transverse momentum
- ★ Rest subtracted:
 - using control regions in $m_{\pi\pi}$ $p_t'^2$ distribution

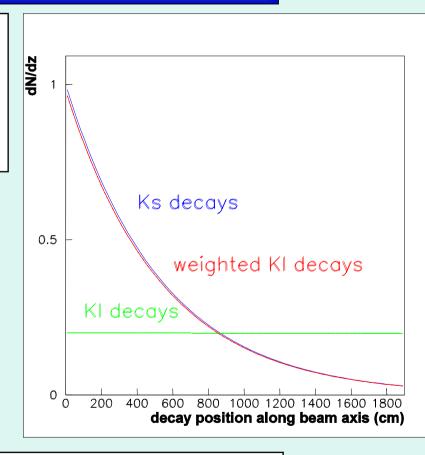


Neutral background

 \longrightarrow K_S - no background

- ★ Rejected by:
 - Requiring no extra showers in time (1.5 ns)
 - χ^2 from the two π^0 masses < 13.5
- ★ Rest subtracted:
 - Extrapolating from χ^2 control region

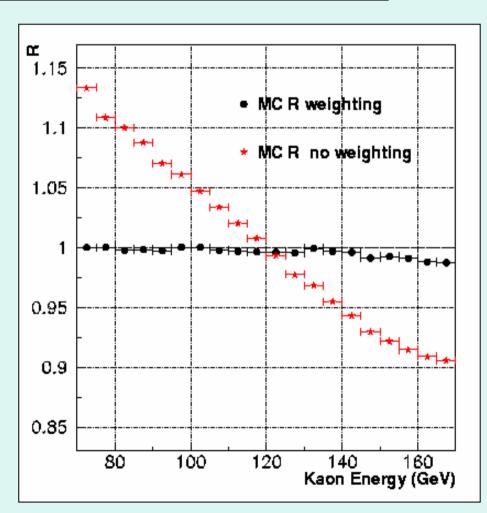
Lifetime weighting

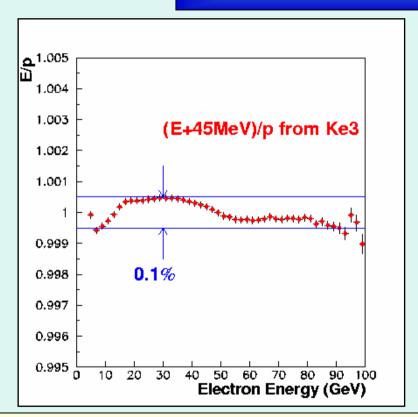

t any given z: cceptance $K_s \cong$ acceptance K_L UT \longrightarrow K_s and K_L have very different ecay lenghts $\tau_{KL} = 600 \times \tau_{KS}$

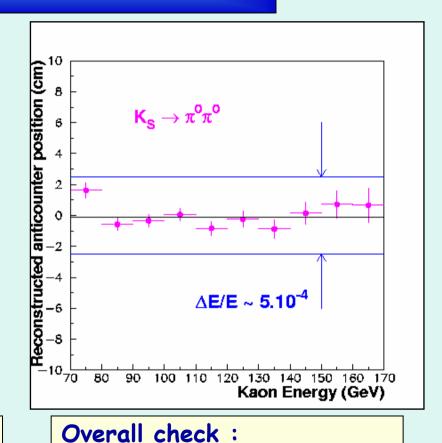
different acceptances for K_S and K_L and large correction on R

SOLUTION: weight K_L events with $W = e^{-z/(\beta \gamma c)(1/\tau_s - 1/\tau_L)}$

same decay vertex distribution


for K_S and weighted K_L


Acceptance correction cancels at the price of an increase of the statistical error (35 %)


Acceptance correction

- **★Small** due to symmetric illumination
 - → consequence of proper time weighting
- \star Small residual effects from 0.6 mrad angle between K_S and K_L beams
- **★**Correction estimated using Monte Carlo

Linearity checks

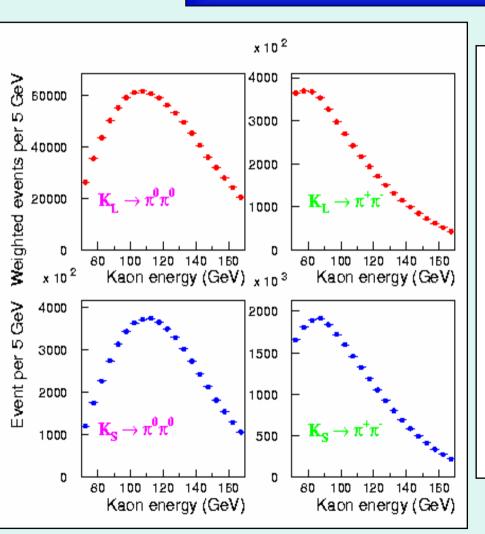
Electrons from Ke3 decays : E/p constant within $\approx 0.1\%$ between a few GeV and 100 GeV

Reconstructed AKS position independent of kaon energy

Systematic uncertainties

Δ (R) (in 10 ⁻⁴ units	;)
---	----

background	1.4 ± 4.1
tagging errors	8.3 ± 4.5
geometrical/energy scale, linearity	2.0 ± 6.4
trigger/AKS efficiency	-2.5 ± 5.2
acceptance correction	26.7 ± 6.2
accidental losses	± 4.4


Total 35.9 ± 12.6

Some uncertainties include a statistical component (trigger efficiency, tagging, acceptance ...), contributing \pm 8 to the total error above

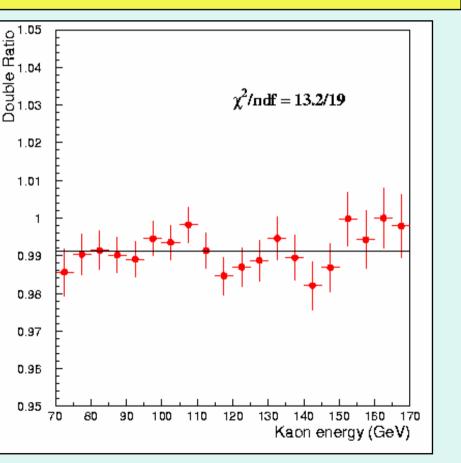
Final Analysis

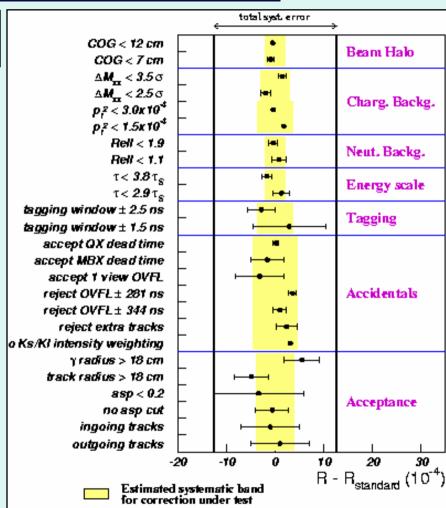
- *Measure R in Kaon energy bins (5 GeV wide)
 - \Rightarrow insensitive to K_S-K_L difference in energy spectrum
- \star Apply lifetime weighting to K_L
- * Record dead time conditions
 - 1.5% from $\pi^{+}\pi^{-}$ trigger
 - 21.5% from drift chamber multiplicity limit
 - apply them offline to $\pi^{\circ}\pi^{\circ}$ too
- \longrightarrow Minimize effect of K_S-K_L beam intensity difference

Energy spectrum

Event statistics:

$$> K_1 \rightarrow \pi^0 \pi^0$$
: 3.29 ×10⁶


$$> K_S \rightarrow \pi^0 \pi^0$$
: 5.21 ×10⁶


$$> K_L \rightarrow \pi^+\pi^- : 14.45 \times 10^6$$

$$> K_5 \rightarrow \pi^+\pi^- : 22.22 \times 10^6$$

Result and checks

= $0.99098 \pm 0.00101_{stat} \pm 0.00126_{syst}$

The Result

From 98 and 99 data

Re
$$(\varepsilon'/\varepsilon)$$
 = $(15.0 \pm 2.7) \times 10^{-4}$


combined with from 97 data

Re
$$(\varepsilon'/\varepsilon)$$
 = $(18.5 \pm 7.3) \times 10^{-4}$

Re
$$(\varepsilon'/\varepsilon)$$
 = $(15.3 \pm 2.6) \times 10^{-4}$

Direct CP Violation established at 5.9σ

KTeV @ Fermilab

- ♦ Detector similar to NA48 but not identical
- ♦ Same method (double ratio) to measure R

CsI Calorimeter:

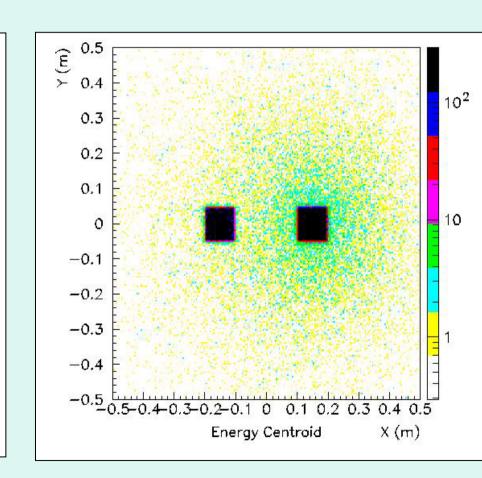
 $\sigma(E)/E \cong 2.0\%/JE \oplus 0.45\%$ Spectrometer (p_T kick ~400 MeV/c): $\sigma(p)/p \cong 0.17\% \oplus 0.007 \ p[GeV/c]\%$ $\sigma_{M}(\pi^{0}\pi^{0}) \sim \sigma_{M}(\pi^{+}\pi^{-}) \sim 1.5 \ MeV$

Vacuum" beam $\rightarrow K_L$ beam Regenerator" beam $\rightarrow K_L + \rho K_S$ beam

KTeV - beams

Two parallel K, beams. One of them goes through a movable (once per minute) "regenerator" creating a K₅ component

What is the regenerator? A series of plastic scintillator blocks $(2\lambda_I)$


Because of their different quark content K^0 and \overline{K}^0 have different nuclear cross-section and their initial mixture is modified when going through the matter

At the end of the block the initial pure K, beam is regenerated to K1+pK5

KTeV - tagging Ks

 K_S are tagged using the position in the detector (vac & reg beams are parallel and 10cm apart)

 $\pi^+\pi^-$ reconstructed x-y vertex position $\pi^0\pi^0$ energy centroid in the CsI

KTeV - acceptance

NA48 uses proper time weighting

- KTeV uses detailed MC predictions of the acceptance of each beam to correct data.
- The correction is large but mainly due to detector geometry

KTeV - results

June 2001

Anounced a revised result based on the 96 data

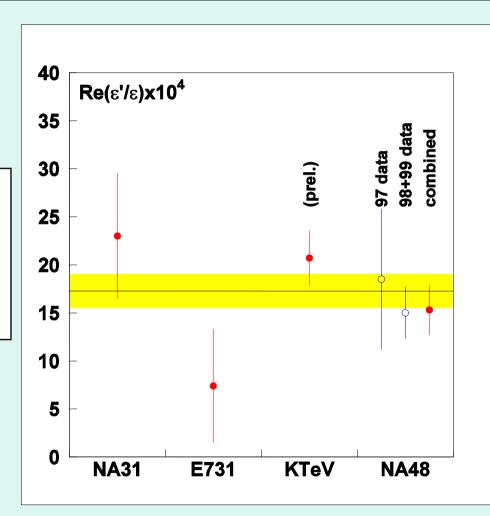
Re
$$(\varepsilon'/\varepsilon)$$
 = $(23.2 \pm 4.4) \times 10^{-4}$

it was: $(28.0 \pm 4.1) \times 10^{-4}$

And a new result on part of 97 data

Re
$$(\varepsilon'/\varepsilon)$$
 = $(19.8 \pm 2.9) \times 10^{-4}$

New average


Re
$$(\varepsilon/\varepsilon)$$
 = $(20.7 \pm 2.8) \times 10^{-4}$

Experimental result comparison

New world average

Re $(\varepsilon'/\varepsilon)$ = $(17.2 \pm 1.8) \times 10^{-4}$

With $\chi^2/ndf = 5.7/3$ (17% prob.)

Lisbon, 22-2-2002 Giuseppina Anzivino NA48/55

Conclusions

- After many years

 Direct CP Violation has been established
 - >good agreement between experiments
 - Hopefully KLOE will join
 CP Violation larger than expected
 BUT cannot explain Matter-Antimatter
 asymmetry observed in the Universe

...after 1999

- Year 2000
 - ★ No ε'/ε data (implosion of beam pipe)
- Year 2001
 - ★ New spectrometer
 - * Different beam conditions
 - * 97-99 2.4 s every 14.4 s $(E_p = 450 \text{ GeV})$
 - * 2001 5.2 s every 16.8 s ($E_p = 400 \, GeV$)
 - ★ Collected 1.4 x 10⁶ K_L $\pi^0\pi^0$
 - * Complete statistics and verify result under different conditions

Rare decays

Summary of recent rare decay results

$K_S \rightarrow \gamma \gamma$	BR $(2.58 \pm 0.36_{stat} \pm 0.22_{sys}) \times 10^{-6}$
$K_S \rightarrow \pi^0 e^+ e^-$	BR < 1.4 × 10 ⁻⁷ at 90% CL
$K_S \rightarrow \pi^+\pi^-e^+e^-$	BR $(4.3 \pm 0.2_{stat} \pm 0.3_{sys}) \times 10^{-5}$
	$A (-0.2 \pm 3.4_{stat} \pm 1.4_{sys}) \%$
$K_L \rightarrow \pi^+\pi^-e^+e^-$	BR $(3.1 \pm 0.1_{stat} \pm 0.2_{sys}) \times 10^{-7}$
	$A (13.9 \pm 2.7_{stat} \pm 2.0_{sys}) \%$
$K_L \rightarrow \pi^0 \gamma \gamma$	BR $(1.36 \pm 0.03_{stat} \pm 0.03_{sys}) \times 10^{-6}$

NA48 future

Two new programs have been approved by the CERN Research Board:

- A high sensitivity investigation of K_s and neutral hyperon decays using a modified beam (NA48/I, 2002)
- ➤ A precision measurement of charged kaon decay parameters with an extended NA48 setup (NA48/II, 2003)

NA48 / I

- ♦ High intensity K_S beam (factor 160)
- ♦ 80 days scheduled (-25% CERN budget)
- Physics interest
 - ★ $K_S \rightarrow \pi^0 e^+ e^-$ (th. $5x10^{-9}$, expected 7 events) Bound the indirect CPV component of $K_I \rightarrow \pi^0 e^+ e^-$
 - *****CPV in $K_S \to \pi^0 \pi^0 \pi^0 (\eta^{000})$
 - *Non leptonics K_S decays (χPT)
 - ★Neutral hyperon decays

NA48 / II

- ◆New K⁺ and K⁻ simoultaneous beams
- New TRD for π /e separation
- Physics interest
 - ★ Direct CP Violation in $K^{\pm} \rightarrow 3\pi$ measured through the difference in K^{+}/K^{-} decay matrix elements (asymmetry)
 - ★Charged Ke4 decays to test the hypotesis of strong qq condensate in QCD vacuum
 - ★ Measurement of rare charged kaon decays

Final conclusions

- * Direct CPV in the neutral kaon system established
- * Rare decay program \rightarrow very interesting physics in the field of χPT and CP (kaons and hyperons)
- ★Two new addenda approved (HI-K_s and K[±])
 Kaon Physics still provides
 remarkable results