

### Low energy dynamics and the $\pi\pi$ scattering lengths from the NA48/2 experiment at CERN

#### Giuseppina Anzivino University of Perugia and INFN

On behalf of the NA48/2 Collaboration: Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

> BEACH 2006 Lancaster, 2-8 July 2006

1

Giuseppina Anzivino

• • • Outline

- The NA48/2 experiment
- $\succ$  The decay  $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$
- > Observation of a "cusp"
- > Theoretical interpretation
- > Extraction of scattering lengths  $(a_0-a_2)$
- The k term in the matrix element
- $\succ$  The "cusp" in  $K_L \rightarrow 3\pi^0$
- $\succ$  Measurements and predictions for  $a_0$  and  $a_2$
- Conclusions and outlook

# • • The NA48/2 experiment

<u>Beam</u> K<sup>+</sup> and K<sup>-</sup> narrow band (60 ± 3) GeV simultaneous, coaxial, focused <u>Detector main components</u>

magnetic spectrometer  $\Delta p/p = 1.0\% + 0.044\% p$  [GeV/c] liquid krypton e.m. calorimeter  $\Delta E/E = 3.2\%/JE + 9\%/E + 0.42\%$  [GeV] Hodoscope, hadron calorimeter, muon veto counters, photon vetoes <u>Trigger</u>

 $\geq$  1 charged particle,  $\geq$  4 photons, geometrical cuts, distance  $\gamma$ - $\gamma$  and  $\gamma$ -track

Two years of data taking: 2003 and 2004

$$\begin{array}{c} \mathsf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} \thicksim 0.1 \cdot 10^{9} \\ \mathsf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} \thicksim 4 \cdot 10^{9} \end{array}$$

Result based on a partial sample of 2003 ~ 2.3 \cdot 10^7 K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0} decays

### • • • The $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ decay



4

Lorentz-invariants  $s_i = (P_K - P_{\pi i})^2$ , i=1,2,3 (3=odd  $\pi$ )  $s_0 = (s_1 + s_2 + s_3)/3$   $u = (s_3 - s_0)/m_{\pi}^2 = 2m_K \cdot (m_K/3 - E_{odd})/m_{\pi}^2$  $v = (s_2 - s_1)/m_{\pi}^2 = 2m_K \cdot (E_1 - E_2)/m_{\pi}^2$ 

Matrix element |M(u,v)|<sup>2</sup> ~ 1 + gu + hu<sup>2</sup> + kv<sup>2</sup> just a polinomial expansion Linear slope g dominates over quadratic terms h, k (g = 0.652 ± 0.031)

**<u>NOTE</u>**: symmetry  $\pi^{o}_{1} \leftrightarrow \pi^{o}_{2} \Rightarrow$  only even powers of v are allowed (0, 2, ....)

Giuseppina Anzivino

# • • • Structure in $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ decay

Search for pionium atoms in the  $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$  channel as a resonance in the  $\pi^0 \pi^0$  invariant mass  $M_{00}^2 = 4m_{\pi^{\pm}}^2$  (threshold for  $\pi^+\pi^-$  production) exploiting

✓ Very high statistics, ✓ very good calorimeter resolution  $\checkmark$  proper M<sub>00</sub> reconstruction strategy

Data reveal a structure in the  $M_{00}^2 = 4m_{\pi^{\pm}}^2$  region

N. Cabibbo: "It is a clean and beautiful example of a general cusp-like behaviour of cross sections next to threshold for new channels"



A method based on first principles (unitarity, analiticity) for extracting information on strong interaction at low energy

\* First observation of  $\pi\pi$  scattering effects in the Dalitz plot • Precise and model independent measurement of  $a_0-a_2$  (the difference between  $\pi\pi$  scattering lengths in the isospin I=0 and I=2 states) Giuseppina Anzivino **BEACH 2006** 5

### • • • Observation of a "cusp" in $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$



### Check against instrumental effects/1 Resolution and acceptance



## Check against instrumental effects/2 Photon energy above/below threshold



Study data in two small intervals just above and below  $2m_+$ 

Ratio of normalized photon energy distributions between events with  $M_{00}^2 > (2m_+)^2$  and  $M_{00}^2 < (2m_+)^2$  (data-points, MC-solid line)

Variation of shape of photon energy distribution across the cusp agrees with MC prediction without cusp

## Check against instrumental effects/3 Photon distances above/below threshold



Distributions of various photon distances (cm) measured at LKr

- Min  $\gamma$  distance from LKr axis
- Max  $\gamma$  distance from LKr axis
- Min  $\gamma \gamma$  distance
- Min  $\gamma$ -track distance

Good agreement between

- > Data Monte Carlo
- > Data above/below

Monte Carlo describes correctly the  $M_{00}$  dependence of the detection\_efficiency

CUSP is a physical effect

Giuseppina Anzivino

### • • • The origin of the "cusp" FSI effects in $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$

#### Two effects contribute to $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0$

Direct emission







Interference (destructive) is the main cause of the singularity in the  $\pi^0\pi^0$  invariant mass distribution. The effect of the interference is present (first order) below the threshold and not above.

Giuseppina Anzivino

### • • • Cabibbo rescattering model/1 Cabibbo PRL 93 (2004) 121801

 $M (K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}) = M = M_{0} + M_{1}$ 

"Unperturbed" amplitude

$$M_0 = A^0 \left( 1 + g^0 \left( s_3 - s_0 \right) / 2m_{\pi^+}^2 \right)$$

Above threshold (known) Imaginary for  $M_{00}^2 > 4m_{\pi^+}^2$ No interference

 $|M|^2 = (M_0)^2 + (iM_1)^2$ 

Below threshold (analycity) Real < 0 for  $M_{00}^2 < 4m_{\pi^+}^2$ Destructive interference

$$|M|^{2} = (M_{0})^{2} + (M_{1})^{2} + 2M_{0}M_{1}$$

11

 $M_{+} = A^{+} \left(1 + g^{+} (s_{3} - s_{0}) / 2m_{\pi^{+}}^{2}\right)$ contributes to M<sub>1</sub> at threshold

$$M_1 = i2 \frac{(a_0 - a_2)m_{\pi^+}}{3} M_+^{thr} \sqrt{\frac{s_3 - 4m_{\pi^+}^2}{s_3}}$$

$$M_1 = -2 \frac{(a_0 - a_2)m_{\pi^+}}{3} M_+^{thr} \sqrt{\frac{4m_{\pi^+}^2 - s_3}{s_3}}$$

Giuseppina Anzivino

### • • Cabibbo rescattering model/2

The differential decay rate with/without the rescattering corrections (using  $A_{AV}^{+} = 2A_{AV}^{0}$ ,  $g^{\pm}$  (PDG),  $(a_0 - a_2)m_{\pi^+} = 0.265 \pm 0.004$  (CGL+dispersive)



The cusp is proportional to the S-wave  $\pi^{+}\pi^{-}$  charge exchange scattering length  $(a_0 - a_2)$  (in the limit of exact isospin). Extract  $(a_0 - a_2)$  from the  $\pi^0\pi^0$  spectrum

In order to deal with experimental measurement of  $(a_0-a_2)$  at few % by NA48, the theory has to be good to few  $10^{-3}$  (cusp is a 10% effect)

Higher order rescattering effects + radiative corrections have to be included

Giuseppina Anzivino







## • • • Electromagnetic effects

#### Radiative corrections

Corrections due to virtual and real photons are expected to be small (% level) except possibly next to the cusp (presence of bound state). Few bins around the cusp are excluded when fitting to extract  $(a_0-a_2)$ 

#### Bound state: pionium

A contribution from  $\pi^+\pi^-$  bound state is expected (Silagadze, JETP Lett. 60 (1994) 689) with dominant decay mode  $\pi^0\pi^0$  proportional to

$$\frac{\Gamma(K^+ \to \pi^+ + pionium)}{\Gamma(K^+ \to \pi^+ \pi^0 \pi^0)} \approx 2.6 \cdot 10^{-5}$$



recalculated according to the latest PDG BR's

Expected contribution to the  $(M_{00})^2$  bin centered at  $(2m_{+})^2$  is ~2.6%

Giuseppina Anzivino

### • • • Effective field theory approach Colangelo, Gasser, Kubis and Rusetsky hep-ph/0604084





## • • Best fit parameters

Three independent analysis: two based on "professional toy" MC and one on full GEANT-based MC





#### Main systematics

|                    | (a <sub>0</sub> -a <sub>2</sub> )m <sub>+</sub> | a₂m₊    |
|--------------------|-------------------------------------------------|---------|
| Acceptance         | ± 0.001                                         | ± 0.012 |
| Trigger efficiency | ± 0.001                                         | ± 0.005 |
| Fit interval       | ± 0.0025                                        | ± 0.006 |
| Others             | ± 0.002                                         | -       |
| Total              | ± 0.004                                         | ± 0.014 |
| External(*)        | ± 0.013                                         |         |

#### Systematic checks

Photon isolation Default cut d = 5 cm, try d = 10,15 Systematic on  $(a_0-a_2)m_+ \longrightarrow \pm 0.002$ 

#### Z vertex

Measurement from two decay regions No systematic on  $(a_0-a_2)m_+$ 



(\*)main component estimated by Cabibbo-Isidori as the result of neglecting higher order terms and radiative corrections in the rescattering model

Giuseppina Anzivino

### • • • Results on the scattering lengths NA48/2 Batley et al., Phys. Lett. B 633 (2006) 173

#### Final results of the unconstrained fit to the re-scattering model

|                  |        | Stat.   | Syst.   | Ext.    |
|------------------|--------|---------|---------|---------|
| $(a_0 - a_2)m_+$ | 0.268  | ± 0.010 | ± 0.004 | ± 0.013 |
| a₂m₊             | -0.041 | ± 0.022 | ± 0.014 |         |

N.B. The two statistical errors from the fit are strongly correlated (-0.86)

Performing the fit with constraints imposed on  $a_0$  and  $a_2$  by analycity and chiral symmetry (after Colangelo et al. PRL 86 (2001) 5008) leads to the following

|                  |        | Stat.   | Syst.   | Ext.    |
|------------------|--------|---------|---------|---------|
| $(a_0 - a_2)m_+$ | 0.264  | ± 0.006 | ± 0.004 | ± 0.013 |
| a₀m₊             | -0.220 | ± 0.006 | ± 0.004 | ± 0.011 |

Giuseppina Anzivino

 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$  decay matrix depends on two independent variables  $s_{3}$  and  $s_{1} - s_{2}$ 

$$M_{+00} = 1 + \frac{1}{2}g_0 \frac{(s_3 - s_0)}{m_+^2} + \frac{1}{2}h' \frac{(s_3 - s_0)^2}{m_+^4} + \frac{1}{2}k \frac{(s_1 - s_2)^2}{m_+^4} + \dots$$

Published cusp analysis $k = 0, g_0$  and h free parametersIn PDG 2004 $k = 0.004 \pm 0.007$ The most precise result $k = 0.001 \pm 0.001 \pm 0.002$  (252K events, ISTRA)

By performing a 2D fit of the Dalitz plot NA48 finds evidence for a non-zero value of the k term (order of magnitude ~ 1%)

Giuseppina Anzivino

# • • • Fit of the Dalitz plot with k as additional parameter

STRATEGY

► Instead of  $(s_3, s_1 - s_2)$  two alternative variables  $(s_3, \cos\theta)$ are used, where  $\cos\theta$  is the angle between the odd  $\pi$  and the direction of the even pions in their CM reference system  $\pi^{\circ}_{2}$ 

The resulting rectangular shaped Dalitz plot (-1<  $\cos\theta$  <1, for any value of  $s_3$ ) allows for binning without crossing the physical boundaries

>At the moment we fit only in a region beyond the cusp

1D fit procedure adopted in order not to spoil the excellent resolution in  $s_3$  by a mix with  $s_1$ ,  $s_2$  or  $cos\theta$ 

Negligible effect of k O(0.01) on the values of  $a_0-a_2$  and  $a_2$ 

(g and h' move)

...Work in progress...

22

Giuseppina Anzivino

### • • Different values of the k term



23

Giuseppina Anzivino

### • • • The "cusp" effect in $K_L \rightarrow \pi^0 \pi^0 \pi^0$





 $M_0 \propto (1 + g_{+0} \mu)$ 

K

 $M_0 \propto 1$ 



 $M_1 \propto (1 + g_{++}u)(a_0 - a_2)$ 

$$\frac{\left(M_{1}/M_{0}\right)_{K^{+}}}{\left(M_{1}/M_{0}\right)_{K_{L}}} = 2\sqrt{2}\frac{1+g_{++-}u}{1+g_{+00}u} \times \frac{1}{1+g_{+-0}u} \approx 7$$

The cusp effect for  $K_L$  is a factor 7 smaller (at  $2m_{\pi}$  threshold)

Giuseppina Anzivino



## • • • Fitting the "cusp"

Looking for a cusp: fit the position on data/MC ratio (pure phase space in MC and no rescattering effects)

Cusp position fit 0.0786 GeV<sup>2</sup> close to the expected value  $(2m_{\pi})^2 = 0.07728 \text{ GeV}^2$ 

Analysis going on



Giuseppina Anzivino

# • • • Experimental status on pion scattering lengths

- ★ K<sup>±</sup> →  $\pi^+\pi^-e^\pm v$  (Ke4): FSI of  $\pi\pi$  → asymmetry of electron direction wrt plane of  $\pi\pi$ 
  - Extraction of form factors and phase shift difference
  - > Scattering lengths extracted in a model dependent way (input  $a_2=f(a_0)$ )
  - > Available c.m. energy range  $2m_{\pi^+} < M_{\pi\pi} < m_K m_{\pi^+}$  reduced by acceptance
- \* Pionium lifetime:  $\tau$  proportional to  $(a_0-a_2)^2$ 
  - > Very short time  $(3.10^{-15}) \rightarrow$  very sophisticated technique:  $\pi\pi$  pairs from pionium atoms ionized in the production target
  - > Need accurate description of cross section and atom interaction dynamics
  - > Insensitive to the sign of  $(a_0-a_2)$
- **\*** Scattering  $\pi N \rightarrow \pi \pi N$  near threshold: fit of double differential cross section
  - Model dependent
  - > Additional hadrons in the final state
- - > Very accurate, sensitive to the sign of  $(a_0-a_2)$
  - > Model independent, only general assumption of unitarity and analycity
  - > Radiative + Coulomb corrections needed to enhance the sensitivity to  $(a_0-a_2)$

# • • Experimental results $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}v$ (Ke4)

| $a_0 m_{+} = 0.280 \pm 0.050$                           | Rosselet et al., PRD 15(1977             | ) 574 (Geneva-Saclay)                           |  |  |
|---------------------------------------------------------|------------------------------------------|-------------------------------------------------|--|--|
| $a_0 m_{+} = 0.216 \pm 0.013 \pm 0.003$                 | Pislak et al., PRD 67(2003) (            | 072004 (E865)                                   |  |  |
| $a_2m_{+}=-0.0454\pm0.0031\pm0.0013$                    | using narrow band constrain              | t a <sub>2</sub> =f(a <sub>0</sub> )            |  |  |
| NA48/2 result on Ke4 presented                          | d at QCD06 (Universal ban                | nd constraint)                                  |  |  |
| Pionium lifetime                                        | $a_0 m_{+} = 0.256 \pm 0.008_{stat} \pm$ | 0.007 <sub>syst</sub> ± 0.018 <sub>theory</sub> |  |  |
| $ a_0 - a_2  m_{+} = 0.264 + 0.033_{-0.020}$            | Adeva et al., PLB 619 (200               | 5) 50 DIRAC                                     |  |  |
| 0 2 0.020                                               | improvement in analysis, ex              | pected error ~ 3%                               |  |  |
| Scattering $\pi N \rightarrow \pi \pi N$ near threshold |                                          |                                                 |  |  |
| $a_0 m_{+} = 0.260 \pm 0.050$                           | Froggart et al., NPB 129 (1              | 977) 89                                         |  |  |
| $a_0 m_{+} = 0.204 \pm 0.014 \pm 0.008$                 | Kermani et al., PRC 58 (199              | 98) 3431                                        |  |  |
| Cusp in $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ |                                          |                                                 |  |  |
| $(a_0 - a_2)m_{+} = 0.268 \pm 0.010 \pm 0.013$          | Batley et al., PLB 633 (200              | )6) 173 NA48/2                                  |  |  |
| $a_2m_{+}=-0.041\pm0.022\pm0.014$                       | (improvement in analysis ex              | xpected: statistics x 5)                        |  |  |
| $(a_0 - a_2)m_{+} = 0.264 \pm 0.006 \pm 0.013$          | fit including narrow band a              | constraint a <sub>2</sub> =f(a <sub>0</sub> )   |  |  |
| $a_0 m_{+} = 0.220 \pm 0.006 \pm 0.012$                 | J                                        |                                                 |  |  |
| 28                                                      | Giuseppina Anzivino                      | BEACH 2006                                      |  |  |

### • • • Measurements and predictions for $a_0$ and $a_2$



**a**<sub>0</sub>

## • • • Conclusions

> A new cusp structure in  $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$  and  $K_{L} \rightarrow 3\pi^{0}$  was observed >Interpreted by Cabibbo as due to  $\pi\pi$  final state charge exchange process > This provides a new method for a precise determination of  $(a_0-a_2) = 0.268 \pm 0.010$  (stat.)  $\pm 0.013$  (syst.) (systematic error is mainly due to the theoretical uncertainties) > Measured value in agreement with theory and other measurements >Parameter  $a_2$  directly measured for the first time, even though with low accuracy

>Pionium bound state also found but further investigation is needed

## • • • Outlook

- By analyzing the full data sample NA48/2 expect an increase in statistics by a factor 5
- >An experimental error of 1.5% seems not to be out of reach
- Present external uncertainty related to the theoretical method is ~ 5%; the quality of the data calls for additional theoretical effort (higher orders and electromagnetic corrections)
- The fit according to different amplitude representation (CGKR) is in progress
- > A study of the cusp effects in  $K_L \rightarrow 3\pi^0$  using data collected in year 2000 is on the way
- $\succ$  The preliminary NA48 result on  $a_0$  and  $a_2$  from Ke4 will be presented at QCD06

Giuseppina Anzivino



### • • • Invariant mass of the $\pi^0\pi^0$ pair

Event selection quite simple -> no relevant background

1) For each photon pair obtain a vertex position

- 2) Choose the two pairs with the minimum distance
- 3) Decay vertex = arithmetic mean of the two z

4) The invariant mass of the 4 photons is the invariant mass of the  $\pi^0\pi^0$  pair



$$\frac{M_{00}^2}{4m_{\pi^0}^2} = \frac{\sum_{i < j=1,4; i < j} E_i E_j d_{ij}^2}{(\sqrt{E_1 E_2} d_{12} + \sqrt{E_3 E_4} d_{34})^2}$$

 $M_{\pi^0\pi^0} = m_{\gamma_{1a}\gamma_{2a}} + m_{\gamma_{1b}\gamma_{2b}} + Q$ 

Q = 9.19 MeV at 
$$\pi^+\pi^-$$
 threshold

Giuseppina Anzivino

## • • • Fits to the experimental $M_{oo}^2$ distribution METHOD

- Generate theoretical  $M_{oo}^2$  distribution  $G_i$  (420 bins of 0.00015 GeV<sup>2</sup>)
- From MonteCarlo simulation derive 420 x 420 matrix  $T_{ik}$  where:
  - i : bin number of generated  $M_{oo}^2$  value ;
  - k: bin number of reconstructed  $M_{oo}^2$  value
- Produce "reconstructed"  $M_{oo}^2$  distribution  $R_k$ :

$$\mathbf{R}_{k} = \sum_{i} \mathbf{T}_{ik} \mathbf{G}_{i}$$

• Fit distribution  $R_k$  to experimental  $M_{oo}^2$  distribution



### • • • Pionium contribution



Weinberg (1966) Effective field theory for strong interaction at low E

$$a_0 m_{\pi^+} = \frac{7m_{\pi^+}^2}{16\pi f_{\pi}^2} = 0.159$$
$$a_2 m_{\pi^+} = \frac{-m_{\pi^+}^2}{8\pi f_{\pi}^2} = -0.045$$

Colangelo et al. (2001) ChPT + dispersion relations  $a_0 m_{\pi^+} = 0.220 \pm 0.005$  $a_2 m_{\pi^+} = -0.0444 \pm 0.0010$  $(a_0 - a_2) m_{\pi^+} = 0.265 \pm 0.004$ 

Pelaez and Yndurain (2005) phase shift analysis of data (no ChPT)

 $(a_0 - a_2) m_{\pi} = 0.278 \pm 0.016$ 

High precision (1.5%) is quite unusual for hadronic physics predictions Experiments have not yet reached the same level of accuracy..... .....but they are on the way 37 Giuseppina Anzivino BEACH 2006