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Born approximation

Triple-Regge phenomenology
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Born approximation
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Absorptive corrections: State of Art
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Absorptive corrections
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The survival probability amplitude S(b) for a color
octet-octet dipole is rather low.

® What has been missed in previous calculations !
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Absorptive corrections

Structure of the missed graph
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® TInteraction of the target with the proton remnants

leads to eikonal-type graphs (a: included);

@® Interaction with radiated gluons (Pomeron ladder
rungs) results in a small triple-Pomeron coupling (b:
neglected);

® Interaction with the pion remnants is as important,
as the first contribution (c: should be added).



Survival probability amplitude S(b)

® Dipole representation
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The partial dipole amplitude f §l3(g, 7, 8, @) is calculated
in the saturated model fitted to photoproduction and

b DIS data.
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Survival probability amplitude S(b)
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The partial amplitude reproduces the total
dipole-proton cross section,
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and the pion-proton elastic slope,
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Survival probability amplitude S(b)

® Hadronic representation i

10 F _
. \Vs=546 GeV

The 5-quark Fock state can be ex-
panded over the hadronic basis,

10 F Vs=23.5 GeV .

{3q}8i{qq}s) = dolp) + di|N7m) + ...

Assuming that the |wIN) compo-
nent dominates,

S(hadr) (h) = S™(b) SPP(b)
= [1 — ImI'*?(b)] [1 — ImI["™(b)]
The partial amplitudes ImI'*?(b)

can be extracted directly from
data.

FRsmR s




Survival probability amplitude S(b)

Dipole representation Hadronic representation
1 1
0.75 0.75
0.5 0.5
0.25 0.25
00 05 1' i5 2 %0 o5 1' 15 2
b (fm) b (fm)

UNIVERSIDAD TECNICA
FEDERICO SANTA MARIA



Impact parameter representation

Absorption effects factorize in impact parameters
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Absorption corrections

Partial spin amplitudes corrected for absorption

Real parts of partial spin ampli- 2000 Ja=60 GeV
tudes for neutron production, z=0.8
non-flip, Ay (b, z), and spin-flip, 1500 L ;

bOs(b, z). Solid curves show the 9(b)

result of Born approximation.

Dashed and dot-dashed curves 1000 1 b62(b)
include absorptive corrections B

calculated in the dipole approach 500 - / - /\/./\ ’\'\\-\\
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Cross section
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® The two models for absorptive corrections lead to similar
results.

® The absorption corrected cross section considerably

il

- underestimates the ISR data.
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Cross section
Challenging the ISR data

@ The normalization of the data has systematic uncertainty 20%

@ There is a strong evidence from the < ¢ ()
o
O
recent measurements by ZEUS of lead- "y . —
© ¢ 0o o000F°
ing neutron production in DIS that the 3'F Y (? %
. . s . b |
normalization of the ISR data is twice 2 2
. . ~ pr= 0
overestimated. According to Regge T .
10 - e ZEUS (yp—>Xn) 95-96
factorization the ratio - o ISR (pp—Xn)
I — one—pion—exchange normalised
dN 1 do hp—Xn j
dodd2 D dada? 10700 02 03 04 05 06 07 08 09 1
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should be universal, i.e. independent of the particle h.
@ The ratio of the pion-to-proton structure functions measured at small
x by ZEUS is about 1/3, twice as small as was expected.
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Cross section

gr-dependence
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Spin-flip contribution rises towards z = 1
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Single-spin asymmetry Ay

PHENIX measurements

Neutron asymmetry X; distribution with single neutron trigger
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Single-spin asymmetry Ay
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The phase shift between
spin-flip and non-flip ampli-
tudes emerges due to absorp-
tive corrections, which affect

—

the real and imaginary parts
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Single-spin asymmetry Ay

Fixed angle 8 =1, 2, 3, 4, 5 mrad, gr = 0z./s/2
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Interference with a4

D . A(np=2a,p)
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Advantages:

® a; and pion have similar Regge trajectories, but
different signatures, so the amplitudes have the
optimal for spin asymmetry phase shift, w/2;

® The process mp — a;p is diffractive, so the m — a4
interference does not fall with energy
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Interference with a4

Problems :

® The cross section of wp — a;p is more than order
of magnitude suppressed compared to mp — 7p;

® The a; /NN non-flip coupling is several times
smaller than wIN IN;

® At z < 0.7 the spin-flip cross section is order of
magnitude less that the non-flip one;

® Additional suppression by an order of magnitude
is due to smallness of gr = 0.1GeV'.

The asymmetry is measured at such a small
g3 =~ 0.01GeV?, that available mechanisms fail to
explain the observed strong eflfect.



Summary

® Pion exchange is usually associated with the
spin-flip amplitude. However, the amplitude of
inclusive process mediated by pion exchange
acquires a substantial non-flip part.
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Summary

® Pion exchange is usually associated with the
spin-flip amplitude. However, the amplitude of
inclusive process mediated by pion exchange
acquires a substantial non-flip part.

® Oune should not convolute the survival
probability with the cross section, but work with the

amplitudes.




Summary

® Pion exchange is usually associated with the
spin-flip amplitude. However, the amplitude of
inclusive process mediated by pion exchange
acquires a substantial non-flip part.

® One should not convolute the survival
probability with the cross section, but work with the
amplitudes.

® We identified the projectile system which
undergoes initial and final state interactions as a
color octet-octet 5-quark state. Absorptive
corrections are calculated within two very different
models, color-dipole light-cone approach, and in
hadronic representation. Nevertheless the results are
very similar.
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Summary

® The cross section corrected for absorption is
about twice lower than the ISR data. However,

comparison with DIS data shows that there is a
problem with the normalization of the ISR data.
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Summary

® The cross section corrected for absorption is
about twice lower than the ISR data. However,
comparison with DIS data shows that there is a
problem with the normalization of the ISR data.

@® Absorption corrections generate a relative phase
between the spin-flip and non-flip amplitudes. The
resulting asymmetry is rather large, but not at such
small transverse momenta, g3 ~ 0.01 GeV?2.




Summary

® The cross section corrected for absorption is
about twice lower than the ISR data. However,
comparison with DIS data shows that there is a
problem with the normalization of the ISR data.

@® Absorption corrections generate a relative phase
between the spin-flip and non-flip amplitudes. The
resulting asymmetry is rather large, but not at such
small transverse momenta, g3 ~ 0.01 GeV?2.

® These transverse momenta are proper for CNI,
while there is no room for Coulomb effects here. No
hadronic mechanism has been known so far, which
could provide such a large asymmetry at so small gr.
The observed large A for neutrons is becoming a
serious challenge for theory.
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