ELECTROMAGNETIC PRODUCTIONS OF $K\Sigma$ on the NUCLEONS

Terry Mart

Departemen Fisika FMIPA Universitas Indonesia Depok 16424, Indonesia

Sixth International Conference on Perspectives in Hadronic Physics, May 2008, Miramare, Trieste, Italy

Contents

- $\gamma + p \rightarrow K^+ \Lambda$ process
- relation with the Gerasimov-Drell-Hearn sum rule
- $\gamma + N \rightarrow K\Sigma$ processes

Motivation (traditional)

Elementary Operator is required for:

• On the nucleon:

- study coupling constants $g_{K \wedge N}$ and $g_{K \Sigma N}$
- study N^* , Y^* , and K^* resonances \rightarrow "missing resonances"
- investigation of hadronic form factors
- investigation of e.m. form factors
- Gerasimov-Drell-Hearn sum-rule
- On the deutron:
 - study $\wedge N$ and ΣN potentials
- On heavier nuclei:
 - quasi-free: study $\Lambda(\Sigma)$ -nucleus potentials
 - bound states: study hypernuclear production (e.g., hypertriton)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation (new)

- data discrepancy
- missing resonances

PART 1

The $\gamma + p \rightarrow K^+ \Lambda$ process

Terry Mart (Universitas Indonesia)

Kaon Photoproduction

ICTP 2008, Trieste 5 / 36

э

イロン イ団 とく ヨン イヨン

Formalism

- Background Amplitudes
 - constructed from appropriate Feynman diagrams:

• gauge method : Haberzettl

• gauge form factor (Davidson & Workman):

$$\widehat{F}(s,t,u) = F_1(s) + F_1(u) + F_3(t) - F_1(s)F_1(u) - F_1(s)F_3(t) - F_1(u)F_3(t) + F_1(s)F_1(u)F_3(t) ,$$

with:

$$F_i(x) = \frac{\Lambda^4}{\Lambda^4 + (x - m_i^2)^2} ,$$

Image: A matrix and a matrix

< ∃⇒

Formalism

Resonance Amplitudes[†]
 Breit-Wigner form:

$$\mathcal{A}^R_{\ell\pm}(W) = ar{\mathcal{A}}^R_{\ell\pm} \, c_{KY} \, rac{f_{\gamma R}(W) \, \Gamma_{ ext{tot}}(W) \mathcal{M}_R \, f_{KR}(W)}{\mathcal{M}^2_R - W^2 - i \mathcal{M}_R \Gamma_{ ext{tot}}(W)} \, e^{i\phi} \; ,$$

with the electromagnetic vertex:

$$f_{\gamma R} = \left(\frac{k_W}{k_R}\right)^{2\ell'+1} \left(\frac{X^2+k_R^2}{X^2+k_W^2}\right)^{\ell'} ,$$

the and hadronic vertex:

$$f_{KR}(W) = \left[\frac{1}{(2j+1)\pi} \frac{k_W}{|q|} \frac{m_N}{W} \frac{\Gamma_{KY}}{\Gamma_{tot}^2}\right]^{1/2} , \quad k_W = \frac{W^2 - m_N^2}{2W} ,$$

† Drechsel et al., Nucl. Phys. A 645, 145 (1999)

Formalism

Formalism

with the partial width:

$$\Gamma_{KY} = \beta_K \Gamma_R \left(\frac{|q|}{q_R}\right)^{2\ell+1} \left(\frac{X^2 + q_R^2}{X^2 + q^2}\right)^\ell \frac{W_R}{W} ,$$

and the total width is the sum of Γ_{KY} and the "inelastic" width

$$\Gamma_{\text{tot}} = \Gamma_{KY} + \Gamma_{\text{in}} , \quad \Gamma_{\text{in}} = (1 - \beta_K) \Gamma_R \left(\frac{q_\pi}{q_0}\right)^{2\ell + 4} \left(\frac{X^2 + q_0^2}{X^2 + q_\pi^2}\right)^{\ell + 2}$$

イロト イヨト イヨト イヨト

.

Part 1 Data Input

Try to use all nucleon resonances \rightarrow 15

]	FROM	THE REVIE	ew of Parti	CLE PHYSICS	•	
Resonance	M_R (MeV)	$\frac{\Gamma_R}{(\text{MeV})}$	β_K	$\begin{array}{c} A_{1/2}(p) \\ (10^{-3} \; {\rm GeV^{-1/2}}) \end{array}$	$\begin{array}{c} A_{3/2}(p) \\ (10^{-3}~{\rm GeV^{-1/2}}) \end{array}$	Overall status	$\begin{array}{c} {\rm Status} \\ {\rm seen \ in} \ K\Lambda \end{array}$
S_{11}	1650	150	0.027 ± 0.004	$+53\pm16$	-	****	***
	2090	400	-	-	-	*	-
P_{11}	1710	100	0.050 ± 0.020	$+9 \pm 22$	-	***	**
	2100	200	-	-	-	*	-
P_{13}	1720	150	-	$+18\pm30$	-19 ± 20	****	**
	1900	498	0.001 ± 0.001	-	-	**	-
D_{13}	1700	100	-	-18 ± 13	-2 ± 24	***	**
	2080	450	0.002 ± 0.002	-20 ± 8	17 ± 11	**	*
D_{15}	1675	150	-	$+19\pm8$	15 ± 9	****	*
	2200	130	-	-	-	**	*
F_{15}	1680	130	-	-15 ± 6	133 ± 12	****	-
	2000	490	-	-	-	**	*
F_{17}	1990	535	-	$+30 \pm 29$	86 ± 60	**	*
G_{17}	2190	450	-	-55	+81	****	*
G_{19}	2250	400	-	-	-	****	-

Terry Mart (Universitas Indonesia)

÷

Part 1 Data Input

Experimental Data \rightarrow 3 data sets

Experimental data sets used in the analysis (indicated by $\surd).$

Name	Observable	Symbol	N	Fit 1	Fit 2	Fit 3
SAPHIR 2004	Differential cross section	$d\sigma/d\Omega$	720		-	
	Recoil polarization	P	30	v	-	v
	Total cross section	$\sigma_{ m tot}$	36	-	-	-
CLAS 2006	Differential cross section	$d\sigma/d\Omega$	1377	-	\checkmark	\checkmark
	Recoil polarization	P	233	-	\checkmark	\checkmark
	Total cross section	$\sigma_{ m tot}$	78	-	-	-
LEPS 2006	Differential cross section	$d\sigma/d\Omega$	54	\checkmark	\checkmark	\checkmark
	Photon asymmetry	Σ	30	\checkmark	\checkmark	\checkmark
OLD	Target asymmetry	T	3	-	-	-
	Total cross section	$\sigma_{ m tot}$	24	-	-	-
Total data				834	1694	2444

OTHER DATA ARE ONLY USED FOR COMPARISON.

Numerical Results

Contribution to χ^2 shows:

- CLAS data are internally more consistent
- LEPS data is more consistent to the CLAS ones

Contribution to χ^2 (in %) from individual data sets.

Name	Observable	N	Fit 1	Fit 2	Fit 3
SAPHIR 2004	Differential cross section	720	84	-	39
	Recoil polarization	30	3	-	1
CLAS 2006	Differential cross section	1377	-	74	45
	Recoil polarization	233	-	17	9
LEPS 2006	Differential cross section	54	10	7	5
	Photon asymmetry	30	3	2	1

Results

Which resonances are important?

• Define:
$$\Delta \chi^2 = \frac{|\chi^2_{AII} - \chi^2_{AII-N^*}|}{\chi^2_{AII}} \times 100\% \rightarrow \text{Larger is More Important}$$

- Different data sets need different resonances
- All data sets require the $D_{13}(2080)$, whereas the $P_{11}(1710)$ is less significant

12/36

Results

Differential Cross Sections

Fit 1, Fit 2, Fit 3

Terry Mart (Universitas Indonesia)

ICTP 2008, Trieste 13 / 36

Results

A Recoil Polarization

→ not a decisive observable

Terry Mart (Universitas Indonesia)

Beam and Target Polarizations

- \bullet Beam asymmetry $\rightarrow~$ large variation at backward angles
- \bullet Target asymmetry $\rightarrow~$ large variation & models cannot explain the (old) data

Total Cross Section

- All data shown here were not included in the fits
- Total CS data are consistent with their differential CS
- Including all data sets does not explain all data sets

3 > < 3 >

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

Results

Where the 2nd peak originates from?

Terry Mart (Universitas Indonesia)

PART 2

Gerasimov-Drell-Hearn Sum Rule

Terry Mart (Universitas Indonesia)

Kaon Photoproduction

ICTP 2008, Trieste 18 / 36

The statistical differences have been also studied [P. Bydzovsky and T.M., *Phys. Rev. C* **76** (2007) 065202]

Question: Is there any observable that can be predicted by the data and can be compared with other measurement/prediction?

Answer: The Gerasimov-Drell-Hearn (GDH) Sum Rule

(B) + (B)

GDH in one minute

Particle Data Book dictates that $\kappa_{\rho} = 1.79284739$ The GDH sum rule says:

$$\kappa_p^2 = \frac{m_p^2}{2\pi^2 \alpha} \int_{\nu_0}^{\infty} \frac{d\nu}{\nu} \left[\sigma_{1/2}(\nu) - \sigma_{3/2}(\nu) \right],$$

 $\sigma_{3/2}$ and $\sigma_{1/2}$ indicate the cross sections of $\gamma + p \rightarrow$ everything for the possible combinations of spins of proton (1/2) and photon (1). Let's define

$$\begin{split} I_{\rm GDH} &\equiv -\frac{\kappa_p^2}{4} = \frac{m_p^2}{8\pi^2 \alpha} \int_{\nu_0}^{\infty} \frac{d\nu}{\nu} \left[\sigma_{1/2}(\nu) - \sigma_{3/2}(\nu) \right] \\ &= -\frac{m_p^2}{4\pi^2 \alpha} \int_{\nu_0}^{\infty} \frac{d\nu}{\nu} \sigma_{\rm TT'}(\nu) \; . \end{split}$$

Total Cross Sections and IGDH

Model	$I_{ m GDH}~(\mu m b)$
MAID	1.247
Fit 1	1.309
Fit 1a	1.274
Fit 2	-0.845
Fit 2a	-0.333

More structures in $\sigma_{TT'}$ indicating that the resonances contribute with the same order of magnitude.

Total Cross Sections after including C_x and C_z

Model	$I_{ m GDH}~(\mu m b)$
MAID	1.247
Fit 1x	1.140
Fit 1ax	1.380
Fit 2x	-0.642
Fit 2ax	-1.181

Less structures in $\sigma_{TT'}$ indicating that only certain resonances contribute to this process $\rightarrow C_x \& C_z$ reveals important resonances.

22/36

Example of the C_z data

Terry Mart (Universitas Indonesia)

ICTP 2008, Trieste 2

イロン イロン イヨン イヨン

23/36

Resonance Contribution to the Total Cross Sections

T.M., arXiv:0803.0601 [nucl-th]; Few-Body System 2008 (in press)

 $S_{11}(1650), P_{11}(1710),$ $P_{13}(1720), P_{13}(1900)$ resonances are important

with agreement in other studies

A11 ----

• SAPHIR and CLAS data yield very different I_{GDH}

Part 2

• Measurement of $\sigma_{TT'}$ is recommended

< ロ > < 同 > < 回 > < 回 >

PART 3

The $\gamma + N \rightarrow K\Sigma$ processes

Terry Mart (Universitas Indonesia)

ICTP 2008, Trieste 26 / 36

э

Isospin Channels

There are four isospin channels:

- $\gamma + p \rightarrow K^+ \Sigma^0$
- $\gamma + n \rightarrow K^0 \Sigma^0$
- $\gamma + p \rightarrow K^0 \Sigma^+$
- $\gamma + n \rightarrow K^+ \Sigma^-$

with the amplitudes

$$\begin{array}{lll} A(\gamma p \to K^+ \Sigma^0) &=& {}_{p} A^{(1/2)} + \frac{2}{3} A^{(3/2)} \\ A(\gamma n \to K^0 \Sigma^0) &=& -{}_{n} A^{(1/2)} + \frac{2}{3} A^{(3/2)} \\ A(\gamma p \to K^0 \Sigma^+) &=& \sqrt{2} \left[{}_{p} A^{(1/2)} - \frac{1}{3} A^{(3/2)} \right] \\ A(\gamma n \to K^+ \Sigma^-) &=& \sqrt{2} \left[{}_{n} A^{(1/2)} + \frac{1}{3} A^{(3/2)} \right] \end{array}$$

where ${}_{p}A^{(1/2)}$ and ${}_{n}A^{(1/2)}$ the proton and neutron helicity photon couplings

- Use the same formalism for the multipoles
- LEPS coll. provided for the first time the K⁺Σ⁻ channel [H. Kohri, PRL 97, 082003 (2006)]

• It is now possible to use the above relations (min. 3 channels)

∃ ► < ∃ ►</p>

Nucleon Resonances Used = 6

Resonance Status	M_R^a (MeV)	Γ_R^a (MeV)	$\beta_i(\%)^b$	$A_{1/2}(N)^c$ (10 ⁻³ GeV ^{-1/2})	$A_{3/2}(N)^c$ (10 ⁻³ GeV ^{-1/2})
$D_{13}(1700)$	1650 - 1750	50 - 150	5 - 15 $^{\pi}$	-18 ± 13	-2 ± 24
***	1700	100	85 - 95 $^{\pi\pi}$	0 ± 50	-3 ± 44
			$\begin{array}{l} 0.0\pm1.0^{\eta} \\ < 3^{K\Lambda} \end{array}$		
$P_{11}(1710)$	1680 - 1740	50 - 250	$10 - 20^{\pi}$	$+9 \pm 22$	-
***	1710	100	40 - 90 $^{\pi\pi}$	-2 ± 14	-
			$6.2 \pm 1.0^{\eta}$ 5 - $25^{K\Lambda}$		
$P_{13}(1720)$	1700 - 1750	150 - 300	10 - 20^π	$+18 \pm 30$	-19 ± 20
****	1720	200	$> 70^{\pi\pi}$	$+1 \pm 15$	-29 ± 61
			$4 \pm 1^{\eta}$ $1 \pm 15^{K\Lambda}$		
$G_{17}(2190)$	2100 - 2200	300 - 700	10 - 20^π	-	-
****	2190	500	$0 \pm 1^{\eta}$		
$H_{19}(2220)$	2200 - 2300	350 - 500	$10 - 20^{\pi}$	-	-
****	2220	400			
$G_{19}(2250)$	2200 - 2350	230 - 800	5 - 15^π	-	-
****	2275	500			

TABLE II: Nucleon resonances up to l = 4 considered in this analysis with the corresponding

Delta Resonances Used = 7

TABLE III: Delta resonances up to $\ell = 4$ considered in this analysis with the corresponding properties from the Review of Particle Physics [9]. Note: [†]Range (first row), average (second row), *decay mode is given.

Resonance	$M_R{}^a$	$\Gamma_R{}^a$	$\beta_i(\%)^b$	$A_{1/2}(\Delta)^c$	$A_{3/2}(\Delta)^c$
Status	(MeV)	(MeV)		$(10^{-3} \text{ GeV}^{-1/2})$	$(10^{-3} \text{ GeV}^{-1/2})$
$D_{33}(1700)$	1670 - 1750	200 - 400	10 - 20^π	$+104 \pm 15$	$+85 \pm 22$
****	1700	300	80 - 90 $^{\pi\pi}$		
$F_{35}(1905)$	1865 - 1915	270 - 400	9 - 15^π	$+26\pm11$	-45 ± 20
****	1890	330	85 - 95 $^{\pi\pi}$		
$P_{31}(1910)$	1870 - 1920	190 - 270	15 - 30^π	$+3 \pm 14$	-
****	1910	250			
$P_{33}(1920)$	1900 - 1970	150 - 300	5 - 20^{π}	$+40 \pm 14$	$+23 \pm 17$
***	1920	200	$2.1\pm0.3^{K\Sigma}$		
$D_{35}(1930)$	1900 - 2020	220 - 500	5 - 15^π	-9 ± 28	-18 ± 28
***	1960	360			
$F_{37}(1950)$	1915 - 1950	235 - 335	35 - 45^π	-76 ± 12	-97 ± 10
****	1930	285			
$H_{3,11}(2420)$	2300 - 2500	300 - 500	5 - 15^π	-	-
****	2420	400			

30/36

Experimental data \rightarrow 2816 data points

	TABI	E IV: Experimental data sets	s used in the press	ent analysis.		
Name	Year	Observable	Channel	Symbol	N	Ref.
SAPHIR	2004	Differential cross section	$\gamma p \rightarrow K^+ \Sigma^0$	$d\sigma/d\Omega$	660	[15]
		Recoil polarization	$\gamma p \rightarrow K^+ \Sigma^0$	Р	16	[15]
CLAS	2004	Recoil polarization	$\gamma p \rightarrow K^+ \Sigma^0$	P	168	[16]
SAPHIR	2005	Differential cross section	$\gamma p \to K^0 \Sigma^+$	$d\sigma/d\Omega$	120	[17]
		Recoil polarization	$\gamma p \rightarrow K^0 \Sigma^+$	Р	10	[17]
CLAS	2006	Differential cross section	$\gamma p \rightarrow K^+ \Sigma^0$	$d\sigma/d\Omega$	1280	[18]
LEPS1	2006	Differential cross section	$\gamma p \rightarrow K^+ \Sigma^0$	$d\sigma/d\Omega$	78	[19]
		Photon asymmetry	$\gamma p \rightarrow K^+ \Sigma^0$	Σ	30	[19]
LEPS2	2006	Differential cross section	$\gamma p \rightarrow K^+ \Sigma^0$	$d\sigma/d\Omega$	72	[20]
		Photon asymmetry	$\gamma p \rightarrow K^+ \Sigma^0$	Σ	36	[20]
		Differential cross section	$\gamma n \to K^+ \Sigma^-$	$d\sigma/d\Omega$	72	[20]
		Photon asymmetry	$\gamma n \to K^+ \Sigma^-$	Σ	36	[20]
GRAAL	2007	Photon asymmetry	$\gamma p \rightarrow K^+ \Sigma^0$	Σ	42	[21]
		Recoil polarization	$\gamma p \rightarrow K^+ \Sigma^0$	Р	8	[21]
CLAS	2007	Beam-Recoil Asymmetry	$\gamma p \rightarrow K^+ \Sigma^0$	C_x	94	[22]
		Beam-Recoil Asymmetry	$\gamma p \rightarrow K^+ \Sigma^0$	C_z	94	[22]
Total data				2816		

2

Result

Present work

MAID

Result

Present work

MAID

イロン イロン イヨン イヨン

Result

Present work

MAID

indicating that "weihting" is necessary in the fits.

Result

2

イロン イロン イヨン イヨン

Summary

- Different data sets require different resonances.
- The *** $P_{11}(1710)$ is found insignificant for the $\gamma p \rightarrow K^+ \Lambda$.
- All data sets need the D₁₃(2080) with a mass ~ 1915 1936 MeV to explain the second peak in cross sections at W ~ 1900 MeV.
- SAPHIR and CLAS data yield different KA contribution to the GDH sum rule.
- Measurement of $\sigma_{TT'}$ is recommended
- A new model for 4 $K\Sigma$ channels has been created.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >