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Relation to condensed matter

@ Holographic set-up of relevance for CMT (probe-brane/dCFT)

@ Integrable spin chain at the heart of the problem

@ Use of Matrix Product States gives convenient formulation of
the problem

& Néel state plays a prominent role



Plan of the talk

@ The holographic set-up

€ One-point functions (mainly field theory side)

€ Fundamentals of the integrable Heisenberg spin chain

@ Calculating one-point functions of the dCFT using integrability

€ Open problems/Conclusion



AdS/dCFT --- The field theory side
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Our interest: Tree-level one-point functions of single trace
operators built from bulk scalar fields



AdS/dCFT --- The string theory side

N D3’s

Geometry of D5 brane: AdS, x S?

Background gauge field: k units of magnetic flux on 5% Karch & Randall ‘01



Vev's and tree level one-point functions
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Constable, Myers

Classical e.o.m.: d2 d¢l
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(z is distance to defect) dz?

Solution: ®¢! = ! ( (i) Ok (N—#) ) , 1 =1,2,3
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where t. constitute a k-dimensional irreducible repr.
of SU(2) and where z<0. (Nahm eqns. also fulfilled.)

Op’s with tree-level 1-point functions built from ®;. 7 = 1,2, 3



Tree level one-point functions
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Consider SU(2) subsector: Z = &1 + 1Dy, W = Oy + 1D5

(O) = (Tr(ZZZWW ZZ..W)

1
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Wish: Systematic approach to the computation of 1-pt functions of
conformal operators.



“Pure” AAS/CFT

Local gauge invariant conformal operators <— string states

Conformal dimensions A <— energies of string states

(Oa@)0x(0) =bax Tz (Oa@) =0

Determine A’s and Oa’s in the CFT =
Solve the spectral problem = )
Diagonalize dilatation operator D

In the planar limit, N — oc:
D = H of an integrable spin chain



The SU(2) sub-sector

Further simplifications:

e One-loop level

e Restriction to SU(Z)—sector C PSU(2,2[4)
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DOA = AOA

In the presence of the defect

(Oa(2)) = ’C‘;, 2<0, (Oa(z))=0, 2>0

St4m =



The integrable Heisenberg spin chain
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Eigenstates of the Heisenberg spin chain
Ground State (A > 0): H| ... 1) = H|0) =0

Excited states (with M flipped spins):

{ui}) = Blun) ... B(w1)|0)

where

(uk—k%)L 11\_4[ (uk—u]——l—i> - M
Uk — = Pl Up —u; —1i) T
with

1 Di
Ui =g cot (§> where p; are momenta

Interested in zero-momentum sector (= cyclically inv. states)

M
sz‘ =0
i=1



Paired and un-paired solutions

Bethe eqns invariant under {ux} — {—ux}

Solutions can be split into paired and unpaired:

Paired solutions:

{ukt), \—uky), where qupj 7 {—uk}

Qons1|{ur}t) #0, n=1,2,...
Unpaired solutions:

{ur}), where {up}={—ui}
Qoni1l{ur}) =0, n=1,2,...



Tree-level one-point functions

(Oa) ~ “({uig)”

Wish: Systematic approach to the computation of 1-pt functions of
Bethe eigenstates

Matrix Product State associated with the defect:
L

(MPS| = trg [T (il @t + (L] @ t2)

<MP5|{uj}l>
({ujH{u )2
where |{U’J}> — B(Ul) fe B(UM) ‘O>L

is a Bethe eigenstate of length L having M excitations.

Object to calculate: C' ({u,}) =



Tree-level one-point functions of Bethe eigenstates

Dream scenario:

C' ({u;}) given by closed expression of determinant type.

Motivation: Several examples of this exist

e Gaudin formula for norm of Bethe eigenstate (i.e. on-shell state).

e Slavnov formula for inner product between an on-shell and
an off-shell Bethe state

 Determinant formula for inner product of Bethe on-shell state
with the Néel state. [Pozsgay ‘13, Brockmann et al *14]

Néel) = [T .. 2L) + [LAdt ... 1)

OBS: The defect state is not a Bethe state! (And not the Néel state)



Strategy of calculation

Matrix Product State indicates the usefulness of the algebraic BA.
L

(MPS| = tr [ [ (] @t + (L] ®t2)
=1

=(T...7 K, where
L
K=tr[[{[s- 1+ (1 =s)o}] @t1 + 0] @t2+ 0, @},
[=1

L
:traH(af’@tl—i—a}@tg), for s=0,t=ty
=1

Reminiscent of the ABA construction

But so far calculations are done by the coordinate space BA

=Y Y eTetemt e TENs0 s ),

o€Sn 1<, <...<ny <L \
with u; = 1/2 cot(p;/2)

Encodes the S-matrix



General results

* The overlap vanishes unless M and L are both even
(Easy to see for k = 2 where {t;,t;} = 0, but true for any k.)

 The overlap vanishes unless the Bethe eigenstate has P;,; = 0
Follows from the fact that | M PS) has Piot =0

(MPS|U) | {u;}) = (MPS | {u;}) = (MPS | (U| {u;})),

where U = eftot

* The overlap vanishes except for unpaired states: {u;} = {—u;}

Follows from the fact that @s;[MPS) =0, paired states
have g3 # 0 and

0= (MPS|Q3|¥) = q3(MPS|V)



More Sp€CiﬁC results (can be obtained by hand”)

1. Overlap with the vacuum (M=0, any k and L):

(0) = trtf = ¢p, (15%) — ¢ (H5) = sE o + Okh)

2. Two excitations (M=2, any k and L)

(U p, —p) = Lu(u — %) Z ’-2 - ;2 (j — %)L—l
For k=2:

(Up, —p) = 2" * Lu=(u— %)

For large k:

(U p, —p) =

L—3 20 " (L—1)(L—3) 2F



Result for k=2, any M, L (obtained using Mathematica)

{us}) = Blur) B(—uy) ... Blus ) B(—uy ) [0)

2

(MPS|{u)) _gp Y5+ detGF %
C2 (1 =2 2 -
)= ({u3}|{u]}> (H uj detG )

7 J

All matrices of size M/2 x M/2



Proof of the formula for k=2 (m=1/2)

* Proposal based on explicit (Mathematica) calculations
up to and including M=8, L=20

* Formula can be proved for M=L/2

L (el [{u,))
aM (Ly=z ({uyH{us})?

Néel) = [T .. 1) + L1 ... 1)

Observation: C ({u;}) =

Y

o) = 4M(1.)M Néel) + S|}, ST Huy}) =0

N



Result for any k, M, L

u2

_ 1 ,2j—1 u? (3 + 1)
Y _ .L—2M+1 L i\k 4 _
j=1-%& 1=1 ( k2 k2 )

The limit K — 00 is of interest to string theory



Connection to string theory

The AdS/dCFT set-up: Extra parameter k

Field theory side: dimension of rep. of vev of scalars

String theory side: Number of D3 branes dissolved into D5 brane

First take the planar limit: N — oo, g, — 0

Next consider A\ — o0, k — o0, ]%2 finite  (BMN like limit)

: A
Comparisons can be made order by orderin 72

A
Match found to leading order in 3z in for chiral primaries
Nagasaki & Yamaguchi ‘12, C.K, Semenoff & Young ‘12



Comparison with string theory

: LA
Agreement found to leading order in 72

for operators which are chiral primaries (protected in theory without defects).

2 a2k2\ 8/2
©x@) = o= (55-) 10 s

Field theory side: Calculated by insertion of vev in spherical harmonics
with the appropriate symmetry.

String theory side: Calculated using the supergravity approximation

(Fluctuation of D5 brane action when an appropriate
source is inserted on the boundary of AdS)

Nagasaki & Yamaguchi ‘12, C.K, Semenoff & Young ‘12



Open questions

* Proof of the k=2 determinant formula for M # L /2
(work in progress)

* Proof of the determinant formula for general k, L, M
(work in progress)

* Consider the thermodynamical limit M, L — oo, M /L finite
(work in progress)

* Higher loops, other sectors in the dCFT

Other dCFT’s/ other probe brane set-ups such as D3-D7

* More detailed comparisons with string theory:
f.inst. involving spinning strings
(work in progress)



Conclusion

e The dream scenario was realized

* The tools of integrability came in handy

* Many interesting open questions remain



