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In a time when cutting-edge scientific research is ex-
pensive and complex, it seems absurd that a break-
through in physics could be achieved with simple
adhesive tape. But in 2004, Andre Geim, Kostya Novo-
selov and co-workers at the University of Manchester
in the UK did just that. By delicately cleaving a sample
of graphite with sticky tape, they produced something
that was long considered impossible: a sheet of crys-
talline carbon just one atom thick, known as graphene.
Many physicists believed that a 2D crystal like gra-
phene would always roll up rather than stand free in a
planar form; but Geim’s group brought to an end years
of unsuccessful attempts to isolate graphene, and was
able to visualize the new crystal using a simple optical
microscope (figure 1).

The single-layered honeycomb structure of gra-
phene makes it the “mother” of all carbon-based sys-
tems: the graphite we find in our pencils is simply a
stack of graphene layers; carbon nanotubes are made
of rolled-up sheets of graphene; and buckminster-
fullerene molecules, or “buckyballs”, are nanometre-
size spheres of wrapped-up graphene (figure 2). These

forms of carbon were isolated long before graphene
and have been used in many applications, but their
electric, magnetic and elastic properties all originate
in the properties of graphene.

Just months after the initial discovery, Geim’s group
improved its method for producing graphene. Rather
than ripping sheets of carbon from graphite with adhe-
sive tape, the team produced higher-quality graphene
by gently pushing small graphite crystals along a hard
surface – using a technique akin to drawing with a pen-
cil. Soon after, a group headed by Philip Kim at Co-
lumbia University in the US confirmed the existence of
graphene using the same drawing technique, while Walt
de Heer and Claire Berger at Georgia Tech developed
an epitaxial growth process that may be suitable for
mass-producing graphene for industrial applications.

Despite only being isolated two years ago, graphene
has already appeared in hundreds of papers. The rea-
son is that the material has unique properties arising
from its honeycomb-lattice structure that could allow
us to observe strange relativistic effects at speeds much
slower than the speed of light. In addition, our ability
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The unique electronic properties of graphene – a one-atom-thick sheet of carbon that was produced 
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In this talk I will 

• introduce a relativistic field theory for low-
energy electron excitations in graphene 

• argue that at strong coupling there is a phase 
transition to a Mott insulator described by a 

quantum critical point (QCP) 

•  generalise to bilayer graphene  
with an inter-layer bias voltage  

• present simulation results probing  
degenerate matter with strong interactions  



Relativity in Graphene
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∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

⟨ψ̄ψ⟩ = 0

H = −t
∑

r∈B

3
∑

i=1

b†(r)a(r + si) + a†(r + si)b(r)
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“tight -binding” Hamiltonian

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]
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g2
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1 − g2/g2
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H = −t
∑

r∈B

3
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b†(r)a(r + si) + a†(r + si)b(r)

H =
∑

k⃗

(

Φ(k⃗)a†(k⃗)b(k⃗) + Φ∗(k⃗)b†(k⃗)a(k⃗)
)
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In momentum space

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]
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Φ(k⃗)a†(k⃗)b(k⃗) + Φ∗(k⃗)b†(k⃗)a(k⃗)
)

Φ(k⃗) = −t

[

eikxl + 2 cos
(

√
3kyl

2

)

e−ikxl
2

]
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with

describes hopping of electrons in π-orbitals
from A to B sublattices and vice versa

The electronic properties of graphene were first 
studied theoretically almost 70 years ago

P.R. Wallace, Phys. Rev. 71 (1947) 622



Define states

∑

µ
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Πµν(x) − Πµν(x − µ̂)
]

= 0
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lim
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∑

r∈B

3
∑

i=1

b†(r)a(r + si) + a†(r + si)b(r)

H =
∑

k⃗

(

Φ(k⃗)a†(k⃗)b(k⃗) + Φ∗(k⃗)b†(k⃗)a(k⃗)
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|⃗k±⟩ = (
√

2)−1[a†(k⃗) ± b†(k⃗)]|0⟩

9
⇒ ⟨k⃗±|H |⃗k±⟩ = ±(Φ(k⃗) + Φ∗(k⃗)) ≡ ±E(k⃗)
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Half-filling (neutral or “undoped” graphene) has zero 
energy at “Dirac points” at corners of first Brillouin Zone:⟨k⃗±|H |⃗k±⟩ = ±(Φ(k⃗) + Φ∗(k⃗)) ≡ ±E(k⃗)

Φ(k⃗) = 0 ⇒ k⃗ = K⃗± = (0,±
4π

3
√

3l
)
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etc. ⇒ 

with “Fermi velocity” 
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Fig. 2. (Colour online) The energy band structure of graphene. Valence and conduction bands
meet at six K points.

and

ϵ(k) = t

√

1 + 4 cos2
kxa

2
+ 4 cos

kxa

2
cos

√
3kya

2
. (12)

Accordingly, because the graphene structure contains two atoms per unit cell (two
sublattices), the spectrum of quasiparticles excitations has two branches (bands)
with the dispersion43 E± = ±ϵ(k) shown in Fig. 2. In Eq. (10) we introduced the
spinors

Υσ(k) =

(

aσ(k)
bσ(k)

)

(13)

with the operator Υσ(k) being the Fourier transform of the spinor Υσ(n) =

(

an,σ

bn,σ

)

:

Υσ(n) =
√

S

∫

BZ

d2k

(2π)2
eiknΥσ(k). (14)

Here S =
√

3a2/2 is the area of a unit cell and the integration in Eqs. (10) and
(14) goes over the extended rhombic Brillouin zone (BZ). We also add to H0 the
Zeeman term and the chemical potential

HZ = −
∑

σ

µσ

∫

BZ

d2k

(2π)2
Υ†

σ(k)Υσ(k) (15)
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R ¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c* 1/300 the speed of light.
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Energy spectrum is symmetric about E = 0

There are two independent Dirac points in BZ1

Φ(K⃗± + p⃗) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

12

Taylor expand  
@ Dirac point

Φ(K⃗± + p⃗) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

12



ie.  low-energy excitations are relativistic 
massless fermions with velocity 

⟨k⃗±|H |⃗k±⟩ = ±(Φ(k⃗) + Φ∗(k⃗)) ≡ ±E(k⃗)

Φ(k⃗) = 0 ⇒ k⃗ = K⃗± = (0,±
4π

3
√

3l
)

a±(p⃗) = a(K⃗± + p⃗)

H ≃ vF

∑

p⃗

Ψ†(p⃗)α⃗.p⃗Ψ(p⃗)

Ψ =( b+, a+, a−, b−)tr

10

Now combine them into a “4-spinor”

⟨k⃗±|H |⃗k±⟩ = ±(Φ(k⃗) + Φ∗(k⃗)) ≡ ±E(k⃗)

Φ(k⃗) = 0 ⇒ k⃗ = K⃗± = (0,±
4π

3
√

3l
)

a±(p⃗) = a(K⃗± + p⃗)

H ≃ vF

∑

p⃗

Ψ†(p⃗)α⃗.p⃗Ψ(p⃗) + O(p2)

Ψ =( b+, a+, a−, b−)tr

vF =
3

2
tl ≈

1

300
c
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⟨k⃗±|H |⃗k±⟩ = ±(Φ(k⃗) + Φ∗(k⃗)) ≡ ±E(k⃗)

Φ(k⃗) = 0 ⇒ k⃗ = K⃗± = (0,±
4π

3
√

3l
)

a±(p⃗) = a(K⃗± + p⃗)

H ≃ vF

∑

p⃗

Ψ†(p⃗)α⃗.p⃗Ψ(p⃗)

Ψ =( b+, a+, a−, b−)tr

10

Define modified operators
Φ(K⃗± + p⃗) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

H ≃ vF

∑

p⃗

Ψ†(p⃗)

⎛

⎜

⎜

⎝

py + ipx

py − ipx

−py − ipx

−py + ipx

⎞

⎟

⎟

⎠

Ψ(p⃗)

= vF

∑

p⃗

Ψ†(p⃗)α⃗.p⃗ Ψ(p⃗)

12

Dirac Hamiltonian

For monolayer graphene the number of flavors Nf = 2
(2 C atoms/cell x 2 Dirac points/zone x 2 spins)

Φ(K⃗± + p⃗) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

H ≃ vF

∑

p⃗

Ψ†(p⃗)

⎛

⎜

⎜

⎝

py + ipx

py − ipx

−py − ipx

−py + ipx

⎞

⎟

⎟

⎠

Ψ(p⃗)

= vF

∑

p⃗

Ψ†(p⃗)α⃗.p⃗ Ψ(p⃗)

{αi, αj} = 2δij

12

⇒

etc.



Interactions between electrons: an effective field theory 
(Son, Khveshchenko,...)

⟨k⃗±|H |⃗k±⟩ = ±(Φ(k⃗) + Φ∗(k⃗)) ≡ ±E(k⃗)

Φ(k⃗) = 0 ⇒ k⃗ = K⃗± = (0,±
4π

3
√

3l
)

a±(p⃗) = a(K⃗± + p⃗)

H ≃ vF

∑

p⃗

Ψ†(p⃗)α⃗.p⃗Ψ(p⃗) + O(p2)

Ψ =( b+, a+, a−, b−)tr

vF =
3
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1

300
c

S =

Nf
∑

a=1

∫

dx0d
2x(ψ̄aγ0∂0ψa + vF ψ̄aγ⃗.∇⃗ψa + iV ψ̄aγ0ψa)

+
1

2e2

∫

dx0d
3x(∂iV )2,

10

V-propagator (large-Nf): D(p) =

(

2|p⃗|
e2

+
Nf

8

|p⃗|2

(p2
0 + v2

F |p⃗|2)
1
2

)−1

11

classical 3d Coulomb ∝r -1

quantum screening due
to virtual electron-hole pairs

D(p) =

(

2|p⃗|
e2

+
Nf

8

|p⃗|2

(p2
0 + v2

F |p⃗|2)
1
2

)−1

λ =
e2Nf

16εε0!vF
≃

1.4Nf

ε

11

(i) parametrises quantum vs. classical
(ii) depends on dielectric properties of substrate

fermions live on two-dimensional “braneworld” interact with photons living in the 3d bulk

νµ

ie. this is not QED3

Number of “flavors” Nf  = 2 for monolayer graphene

“instantaneous” Coulomb potential
since vF≪c - unscreened since ρ(E=0)=0

∝r -1



Hypothesis: the χSB transition at e2(Nf) defines a 
Quantum Critical Point (QCP) whose universal 
properties characterise the low-energy excitations 
of graphene

Physically corresponds to a metal-insulator transition
of technological importance?

19/11/2009 17:50Physics - Figure for Pauling’s dreams for graphene
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For sufficiently large e2, or sufficiently small Nf, the Fock vacuum may 
be disrupted by a particle-hole  “excitonic” condensate 

M

Λ
∝ exp

[

−
2π

√

Nfc
Nf

− 1

]

Nfc =
128

3π2
≃ 4.32 (d = 3)

⟨ψ̄ψ⟩ ̸= 0

6

In particle physics this is “chiral symmetry 
breaking” (χSB) leading to 

 dynamical mass (gap) generation

In condensed matter physics  
this phase is a Mott insulator

spontaneously breaks U(2Nf) ➞ U(Nf)⊗U(Nf)

D.T. Son, Phys. Rev. B75 (2007) 235423

QCP characterised by anomalous scaling e.g. 

λ =
g2

Rπ

4

detM = det[(D + m)†(D + m) + j2] > 0

+
1

2g2
A2

≡ Z−1

∫

DAµ O detM [Aµ] e
i
!

∫

x
1
4FµνFµν

⟨ψ̄ψ⟩|e2=e2
c
∝ m

1
δ

18



D(p) =

(
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e2
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Nf
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1

2g2
V 2
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local, non-covariant field theory in d=2+1

V-propagator:

D(p) =

(

2|p⃗|
e2

+
Nf

8

|p⃗|2

(p2
0 + v2

F |p⃗|2)
1
2

)−1

λ =
e2Nf
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≃

1.4Nf
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∑
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∫

dx0d
2x

[

ψ̄aγµ∂µψa + iV ψ̄aγ0ψa +
1

2g2
V 2

]

D(p) =

(

1

g2
+

Nf

8

|p⃗|2

(p2
0 + v2

F |p⃗|2)
1
2

)−1

11

coincides with Coulombic model as Nf →∞, or e2,g2→∞
but long-range interaction is screened for g2<∞
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The proposed phase diagram 
resembles that of another 2+1d QFT, 

the Thirring Model 

M

Λ
∝ exp

[

−
2π

√

Nfc
Nf

− 1

]

Nfc =
128

3π2
≃ 4.32 (d = 3)

⟨ψ̄ψ⟩ ̸= 0

ψ '→ Uψ; ψ̄ '→ ψ̄U−1γ5γ3; U ∈ U(2Nf)

Slatt =
1

2

∑

xµi

χ̄i
xηµx(1 + iAµx)χ

i
x+µ̂ − χ̄i

xηµx(1 − iAµx−µ̂)χ
i
x−µ̂

+ m
∑

xi

χ̄i
xχ

i
x +

N

4g2

∑

xµ

A2
µx

i = 1, . . . , N

χi
x, χ̄i

x

6

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

⟨ψ̄ψ⟩ = 0

9

“conductor”

“insulator”

Consider “Thirring-like” model for graphene (units vF =1)
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Numerical Lattice Approach
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Kawamoto-Smit phases
ensure covariant continuum limit for g2=0

Chiral symmetry:   U(N)⊗U(N) → U(N)  (if m ≠ 0)

Φ(K⃗± + p⃗) = ±vF [py ∓ ipx] + O(p2)
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13

explicit mass gap

Relation between coupling g2 and
e2, λ not known a priori
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EoS results

comes from the chirally symmetric phase there may be a small systematic error in the
identification of g2

peak.
Fits to (15) favour Nfc ≃ 3.8−4, and p ≃ 0.9. These values are also favoured by the

most comprehensive FVS fit to the 96 datapoints with Nf < 5. There is no evidence
that discarding m = 0.01 data, which may be most prone to finite volume artifacts,
improves any of the fits. On the other hand, discarding Lt = 16 and perhaps Lt = 24
does have a significant effect on the fitted values of Nfc, p and νt in the FVS fits. In
these cases the fitted δ ≈ 4. Once data with extremal values of Nf is excluded, on the

assumption that they lie outside the scaling window, the fitted values of δ rise to >∼ 5.
In almost all cases the fitted value of νt exceeds 1, though often not by a statistically
significant margin.
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Figure 4: Finite volume scaling fit to (17) to data with m = 0.01 (circles), 0.02 (squares), 0.03 (dia-
monds) and 0.04 (triangles), in terms of N ′

f . Different colous and and shadings represent data from
differing Ls, Lt

Our favourite fit, yielding the smallest χ2/dof, emerges from the 60 datapoints with
Nf ∈ [3, 5) and Lt ≥ 32. Another reason for preferring this is that the fitted Nfc is
consistent with the value (14) coming from the behaviour of g2

peak(Nf), which could thus
be regarded as an additional constraint on the global fit. The fit is plotted in Fig. 4 in

terms of the control parameter in the thermodynamic limit N ′
f = Nf + CL

− 1
νt

t , so that
data with differing Lt should collapse onto a single curve for each value of m.

10

Strong coupling limit
Nfc = 4.8(2) > 2
δ(Nfc) = 5.5(3)

⇒ graphene is an insulator for 
sufficiently strong coupling 
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Figure 2: (Color online) Fit to (9) to order parameter data taken on 242 × 48. The function in the
m → 0 limit is also shown.
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c )⟨χ̄χ⟩−1/β using the critical parameters (10).
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SJH & C.G. Strouthos, Phys. Rev. B78(2008) 165423
W.  Armour, SJH & C.G. Strouthos, Phys. Rev. B81(2010) 125105

⇒ QCP potentially relevant for Nf = 2

so δ depends on Nf 
Cf braneworld simulation

Drut & Lähde Phys. Rev. B79(2009) 241405(R)
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searchers in the early days of QED !Itzykson and Zuber,
2006".

Consider the tight-binding description !Peres, Castro
Neto, and Guinea, 2006b; Chen, Apalkov, and
Chakraborty, 2007" of Sec. II.A when a potential Vi on
site Ri is added to the problem,

He = #
i

Vini, !34"

where ni is the local electronic density. For simplicity, we
assume that the confining potential is 1D, that is, that Vi
vanishes in the bulk but becomes large at the edge of the
sample. We assume a potential that decays exponentially
away from the edges into the bulk with a penetration
depth !. In Fig. 8, we show the electronic spectrum for a
graphene ribbon of width L=600a, in the presence of a
confining potential,

V!x" = V0$e−!x−L/2"/! + e−!L/2−x"/!% , !35"

where x is the direction of confinement and V0 is the
strength of the potential. One can see that in the pres-
ence of the confining potential the electron-hole symme-
try is broken and, for V0"0, the hole part of the spec-
trum is distorted. In particular, for k close to the Dirac
point, we see that the hole dispersion is given by
En,#=−1!k"&−$nk2−%nk4, where n is a positive integer,
and $n&0 !$n"0" for n&N* !n"N*". Hence, at n=N*

the hole effective mass diverges !$N* =0" and, by tuning
the chemical potential ' via a back gate to the hole
region of the spectrum !'&0" one should be able to
observe an anomaly in the Shubnikov–de Haas !SdH"
oscillations. This is how Zitterbewegung could manifest
itself in magnetotransport.

C. Bilayer graphene: Tight-binding approach

The tight-binding model developed for graphite can
be easily extended to stacks with a finite number of
graphene layers. The simplest generalization is a bilayer
!McCann and Fal’ko, 2006". A bilayer is interesting be-
cause the IQHE shows anomalies, although different
from those observed in a single layer !Novoselov et al.,
2006", and also a gap can open between the conduction
and valence band !McCann and Fal’ko, 2006". The bi-
layer structure, with the AB stacking of 3D graphite, is
shown in Fig. 9.

The tight-binding Hamiltonian for this problem can
be written as

Ht.b. = − $0 #
'i,j(
m,#

!am,i,#
† bm,j,# + H.c."

− $1#
j,#

!a1,j,#
† a2,j,# + H.c.",

− $4#
j,#

!a1,j,#
† b2,j,# + a2,j,#

† b1,j,# + H.c."

− $3#
j,#

!b1,j,#
† b2,j,# + H.c." , !36"

where am,i,# !bm,i#" annihilates an electron with spin #,
on sublattice A !B", in plane m=1,2, at site Ri. Here we
use the graphite nomenclature for the hopping param-
eters: $0= t is the in-plane hopping energy and $1 $$1
= t!&0.4 eV in graphite !Brandt et al., 1988; Dresselhaus
and Dresselhaus, 2002"% is the hopping energy between
atom A1 and atom A2 !see Fig. 9", $4 $$4&0.04 eV in
graphite !Brandt et al., 1988; Dresselhaus and Dressel-
haus, 2002"% is the hopping energy between atom A1
!A2" and atom B2 !B1", and $3 $$3&0.3 eV in graphite
!Brandt et al., 1988; Dresselhaus and Dresselhaus, 2002"%
connects B1 and B2.

In the continuum limit, by expanding the momentum
close to the K point in the BZ, the Hamiltonian reads

H = #
k

(k
† · HK · (k, !37"

where !ignoring $4 for the time being"

HK )*
− V vFk 0 3$3ak*

vFk* − V $1 0

0 $1 V vFk

3$3ak 0 vFk* V
+ , !38"

and k=kx+ iky is a complex number; we have added V,
which is here half the shift in electrochemical potential
between the two layers !this term will appear if a poten-
tial bias is applied between the layers", and

(k
† = „b1

†!k",a1
†!k",a2

†!k",b2
†!k"… !39"

is a four-component spinor.

Π
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FIG. 8. !Color online" Energy spectrum !in units of t" for a
graphene ribbon 600a wide, as a function of the momentum k
along the ribbon !in units of 1 /,3a", in the presence of confin-
ing potential with V0=1 eV, !=180a.

FIG. 9. !Color online" Lattice structure of bilayer graphene, its
respective electronic hopping energies, and Brillouin zone. !a"
Lattice structure of the bilayer with the various hopping pa-
rameters according to the SWM model. The A sublattices are
indicated by darker spheres. !b" Brillouin zone. Adapted from
Malard et al., 2007.
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Bilayer graphene
Coupling γ3≠0 results in trigonal  

distortion of band  
and doubles number of Dirac points

(Mucha-Kruczynski et al, PRB84(2011)041404

 Nf = 4 EFT description plausible for ka ≲ γ1γ3/γ02

Introduction of a bias 
voltage µ between the layers 

induces electrons on one,  
holes on the other. 

 Inter-layer exciton condensation driven by  
enhanced density of (e,h) states  

at Fermi surface leads to gap formation? 
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FIG. 2: Calculated low-energy electronic dispersions in the conduction band of strained BLG and fan plots of Landau levels.
Dispersion is plotted for the states near the Brillouin zone corners shown in Fig. 1 at energies |✏| < 10meV and for momentum
in the units of p⇤ = mv3, for several representative points in the (<w,=w) space, as marked in Fig. 3(a). Spikes at the bottom
of dispersion surfaces are the Dirac points characterised by Berry phases ±⇡. For the Landau levels, boxed numbers mark their
degeneracy.

in the valley K (to be inverted in the momentum space
to describe valley K’ and flipped over for the valence
band states, ✏ ! �✏). For w = 0, electron dispersion
undergoes Lifshitz transition [17] at the energy of the
saddle point in the dispersion, ✏⇤ = mv23/2: it splits from
a single-connected, almost circular line into few discon-
nected parts, each corresponding to a separate Dirac cone
[1]. Small strain, |w| . ✏⇤, shifts these Dirac cones across
the momentum plane, as shown in Fig. 2 for w = ✏⇤ and
w = �i✏⇤. A stronger strain results in a collision annihi-
lating two Dirac points, one with the Berry phase �⇡ and
another with +⇡, which results in a local minimum in the
dispersion, as illustrated for w = �5✏⇤ and w = �3i✏⇤.
The other two Dirac points, each with the Berry phase
+⇡, persist to exist. In Fig. 3(a), the parametric regime
where, in addition to a pair of well-separated Dirac cones,
the dispersion has a local minimum, is marked by dark
shading. Finally, much larger strain (light shading in Fig.
3(a)) removes local minimum in the dispersion, resulting
in even larger separation between the remaining Dirac
cones and in a saddle point at |✏| ⇡ |w|, which determines
the deformation-dependent Lifshitz transition energy in
strained BLG. Note that all these spectral changes take
place at a relatively low strain, ⇠ 1%, to compare with

the strain of over 20% [18] required to merge Dirac points
in monolayer graphene [19].

The transformation of electron dispersion by homoge-
neous strain leads to the modification of the BLG Landau
level (LL) spectrum. The examples of numerically cal-
culated LLs are shown in Fig. 2 for low magnetic fields,
B < 0.4T. Both for small and large strain, the high-
magnetic-field end of the LL fan plot, ~!

c

⌘ ~eB/m �
max(✏⇤, |w|), is approximately described by the sequence
✏ ⇡ ±

p
n(n� 1)~!

c

of four-fold degenerate LLs at non-
zero energy (n > 2) and an eight-fold degenerate LL at
✏ = 0 (n = 0, 1) [1]. In non-strained BLG at low fields,
such that ~!

c

(B) < mv23 , this transforms into a 16-fold
degenerate LL at ✏ = 0, so that the largest gap in the
LL spectrum is between the ✏ = 0 and next excited LL,
suggesting the persistence of filling factor ⌫ = ±8 in the
quantum Hall e↵ect (QHE) at low magnetic fields. Af-
ter strain causes the annihilation of two out of four Dirac
points, the ✏ = 0 level becomes 8-fold degenerate, and, for
strain |w| � ✏⇤, only filling factors ⌫ = +4 and ⌫ = �4
persist in the low-field QHE in BLG: the largest energy
gap in the LL spectra is between the 8-fold degenerate
level at ✏ = 0 and next excited level, whereas the rest of
the spectrum is quite dense. This 8-fold degeneracy is



only becoming approximately relativistic (i.e., linear) for
ka * t0=t [17]. For ! ! t the dispersion then takes the
expected form "2 ¼ ð!$ vFkÞ2 [18]. However, recent
theoretical studies of strained bilayers suggest that under
mechanical deformation the parabolic bands split to form
separate Dirac cones, so that in this case a description in
terms of Nf ¼ 4 relativistic species is not a bad approxi-
mation [19]. Our formulation makes the additional,
perhaps unwarranted, approximation that interactions be-
tween charge carriers on different layers are of identical
strength and character to interactions within a layer—the
necessity for this will become clear below.

The second ingredient of the model is that the layers are
given equal and opposite constant bias voltages $!, in-
ducing on one layer a negatively charged concentration of
particles and on the other a positively charged concentra-
tion of holes. As the notation implies, the bias voltage is
equivalent to a chemical potential, and in fact the theory is
formally very similar to the case of QCD with isospin
chemical potential !I ¼ !1 ¼ &!2, where the subscripts
which here label the layers usually stand for the light quark
flavors u and d. Euclidean formulations of systems with
! ! 0 are generally afflicted with a ‘‘Sign Problem,’’ i.e.,
the Lagrangian density L is no longer positive definite, or
even real, since the inequivalence under time reversal
translates into inequivalence under complex conjugation
in Euclidean metric. This makes Monte Carlo importance
sampling as a means to handle strongly fluctuating observ-
ables inoperable. However, the case of isospin chemical
potential is known not to have a Sign Problem and is hence
simulable using orthodox methods, as we shall now
demonstrate.

If we denote the fermion degrees of freedom on one
layer by c and on the other by ", define units so that
vF¼1, and write

P
!¼0;1;2@!#!þðiA0þ!Þ#0¼D½A;!),

then the fermion part of the Lagrangian can be written

L ¼ ð !c ; !"Þ
D½A;!) þm ij

&ij D½A;&!) &m

 !
c

"

 !

* !"M": (2)

Here we have introduced two new real parameters: m is an
artificial bare mass which induces a gap in the fermion
dispersion relations and whose sign has no physical con-
sequence for a single flavor in the absence of interactions; j
a source strength coupling c to ", thus linking the layers
and eventually enabling calculation of the exciton conden-
sate. In principle both m ! 0 and j ! 0 limits need to be
taken in order to make contact with physical bilayer
graphene. Integration over the Grassmann bispinors ",
!" then results in the functional measure detM½A).
An important identity which the model inherits from the

gauge theory is

Dy½A;!) ¼ &D½A;&!): (3)

It is then straightforward to check (assuming the dimension
of D is even) that

detM ¼ det ½ðDþmÞðDþmÞy þ j2)> 0; (4)

and

MyM

¼ ðDþmÞyðDþmÞ þ j2

ðDþmÞðDþmÞy þ j2

 !
;

(5)

implying both that

detMyM * det 2M; (6)

and also that the desired functional measure detM results
from integrating over bosonic fields # starting from a
nonlocal ‘‘pseudofermion’’ Lagrangian

L pf ¼ #y½ðDþmÞyðDþmÞ þ j2)&1#: (7)

This has the practical advantage that # has half as many
degrees of freedom as", and makes Eq. (7) the appropriate
starting point for the design of a hybrid Monte Carlo
simulation algorithm.
The specific version of Dþm in our lattice model

employs single-component staggered fermion fields c x,
"x defined on the sites of a 2þ 1d square lattice, with a
noncompact formulation of the electrostatic potential Ax

formally defined on the link joining sites x and xþ 0̂,

ðDþmÞxy ¼
X

i¼1;2

$ix

2
½%y;xþ{̂ & %y;x&{̂)

þ $0x

2
½ð1þ iAxÞe!%y;xþ0̂

& ð1& iAx&0̂Þe&!%y;x&0̂) þm%xy; (8)

where the signs $!x ¼ ð&1Þx0þ+++þx!&1 ensure Lorentz co-
variance in the long wavelength limit. It can be shown that
the relation between the number of staggered fields N
(counting c , " yields N ¼ 2) and the number Nf of
continuum Dirac 4-spinors is [20]

Nf ¼ 2N: (9)

It is worth noting the global symmetries present in the
model. For ! ¼ m ¼ j ¼ 0 the continuum action (2) is
invariant under a U(8) rotation " ! U", ~" ! ~"Uy

where ~" * i !"#3#5. This symmetry is broken to ðUð4ÞÞ2
by ! ! 0, and then to ðUð2ÞÞ4 by m ! 0. Setting the
interlayer coupling j ! 0 with m ¼ 0 locks the c and "
components together, so that in this case the residual
symmetry is U(4). For the staggered lattice fermions of
(8) the original symmetry is Uð2Þ , Uð2Þ", where the sec-
ond rotation can be written as Uð&; xÞ ¼ exp ði"x&a$aÞ,
where $a is one of the four Hermitian generators of U(2)
and "x * ð&1Þx0þx1þx2 . Setting ! ! 0 breaks this to
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λ =
g2

Rπ

4

detM = det[(D + m)†(D + m) + j2] > 0

18

Bilayer effective theory (N=2 staggered flavors)

Bias voltage µ couples to layer fields ψ, φ with opposite sign 
(Cf.  isospin chemical potential in QCD) 

inherited from gauge theory

“Gap parameters” m, j are IR regulators 

No sign problem!
In practice no problem with setting m=0

λ =
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Rπ
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detM = det[(D + m)†(D + m) + j2] > 0

+
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2g2
A2
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Rπ

4

detM = det[(D + m)†(D + m) + j2] > 0

+
1

2g2
A2

18

Intra-layer (ψψ) and inter-layer (ψφ) interactions have same strength

☞



Simulation observables:

• carrier density  

• exciton condensate (interlayer) 

• chiral condensate (intralayer)

ðUð1Þ # Uð1Þ"Þ2, followed bym ! 0, j ¼ 0 to ðUð1ÞÞ2, and
m ¼ 0, j ! 0 to Uð1Þ # Uð1Þ".

The fermion action is supplemented by a Gaussian
weight for the A fields

Saux ¼
N

4g2
X

x

A2
x; (10)

where g2 is a parameter governing the strength of
the coupling between the potential and the fermions. The
resulting dynamics describes A fluctuations having the
same form as the continuum action (1) in the strong-
coupling or large-Nf limits, but for which explicit screen-
ing removes the long-ranged r%1 tail away from these
limits; further justification for this approximation is given
in Refs. [9,14]. For Nf ¼ 2 this formulation yields an
identical path integral to the lattice action couched in terms
of compact link variables given in Eq. (7) of Ref. [14]. For
Nf > 2, however, the two approaches are not equivalent
since the compact formulation leads to extra terms of the
form ð !c c !!!Þ2 in the effective action—although these
operators may well be irrelevant at the critical point. The
exact lattice version of the noncompact action for " ¼ 0
and arbitrary Nf once A is integrated out is given in
Eq. (2.2) of Ref. [21]. Another consequence of the non-
compact formulation is the violation of reflection positiv-
ity; indeed, the absence of unitarity in similar models in the
strong-coupling limit g2 ! 1 has been discussed exten-
sively in Refs. [15,22]. We note that graphene models with
compact link variables have formulated directly on honey-
comb lattices in Refs. [23,24].

Next we discuss the implications of relaxing the require-
ment that inter- and intra-layer interactions between fer-
mions are identical. The nontrival terms in the action are of
the form !cUe"c , !cU&e%"c , where U is a complex
number not constrained to have unit modulus. Integration
over U leads to repulsive particle-particle and hole-hole
interactions, and attractive particle-hole interactions.
Suppose we wanted to make the model more realistic by
introducing a distinction between intra-layer and interlayer
interactions. One way to do this would be to introduce a
second boson field coupling to c and ! with opposite
signs, in effect introducing repulsion between c -particles
and !-holes so that the !c -! and !!-c couplings are
weaker than those of !c -c or !!-!. The interaction terms
could then be written !c xUVe"c xþ0̂,

!!xUV&e%"!xþ0̂,
% !c xU

&V&e%"c x%0̂, % !!xU
&Ve"!x%0̂, etc. In the limit

V ! 1 integration over c , !c leads to a factor detD½"),
while integration over !, !! gives detD½%"). With the
help of (3) we confirm the resulting functional measure
detD½")Dy½") is positive definite. In the limit U ! 1,
however, the same process leads to detD½")D&½%") ¼
det 2D½"), which is no longer positive definite. In other
words, attempting to make the model more realistic rein-
troduces a Sign Problem, although a more detailed study
would be needed to determine its severity.

Now let us discuss observables. The usual chiral con-
densate (which has been called the exciton condensate in
our earlier work [9,14]) is given by

h !""i * @ lnZ
@m

¼ h !c c i% h !!!i: (11)

Note the sign of the condensate is not physical, and that the
two terms on the rhs of (11) give equal contributions. From
the discussion above it should be clear that for " ! 0
formation of this condensate spontaneously breaks ðUð1Þ #
Uð1Þ"Þ2 to ðUð1ÞÞ2, resulting in two Goldstone modes in
the limit m ! 0, j ! 0. The exciton condensate discussed
in Ref. [13] and which is the main focus of this paper is
given by

h""i * @ lnZ
@j

¼ ih !c!% !!c i: (12)

In this case the symmetry breaks to Uð1Þ # Uð1Þ" implying
the same number of Goldstones. In fact for " ¼ 0 and
m ¼ j, h !""i and h""i are physically indistinguishable,
both being equivalent to the chiral condensate of theNf¼2
theory. Figure 1 below confirms that with " ¼ 0 our code
generates results consistent with h !""i=h""i * m

j .

With " ! 0 we next define the charge carrier density

nc *
@ lnZ
@"

¼ h !cD0c i% h !!D0!i: (13)

Once again, both terms on the rhs give equal contribu-
tions—the first term represents the density of electrons in
layer 1, and the second the density of holes in layer 2.
Figure 1 shows the results of a pilot run on 83 at g%2 ¼

0:4 andma ¼ 0:05. For ja ¼ 0:05 the two condensates are
degenerate at " ¼ 0 as argued above. As " increases, our
naive expectation is that a Fermi surface of radius " forms
on each layer, one containing particles, the other holes,
implying nc / "2. As " grows, c !c and ! !! pairing are
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FIG. 1 (color online). Fermion condensates as a function of "
at g%2 ¼ 0:4 on 83 with bare mass ma ¼ 0:05, ja ¼ 0:05, 0.1.
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Carrier Density

of j ! 0 is to round off this behavior by reducing the
carrier susceptibility j@nc=@!j slightly. Once again, the
contrast with the free field behavior, which only reaches
saturation at !a ! 1:3 and is shown by the dashed line, is
marked.

How should we interpret the finding that nintc " nfreec ?
For degenerate fermions the carrier density, remembering
to count both particle and hole states, is given by nc ¼
k2F=2". For free massless fermions the Fermi energy ! is
equal to Fermi momentum kF; if we wish to retain the
notion of a Fermi surface (albeit one distorted by exciton
condensation) for the interacting system, we are forced to
conclude ! ! EF < kF implying strong self-binding, i.e.,
the degenerate fermions have a large negative contribution
to their bulk energy. This is a feature of working near a
QCP, and was not observed, e.g., in studies of relatively

weakly interacting systems at nonzero density such as the
Gross-Neveu model in 2þ 1d [25] where interactions are
suppressed by 1=Nf, or two color QCD [4] where the quark
density nq * nfreeq all the way to saturation.
As before, the region of physical interest is for ! well

below saturation: Fig. 9 plots the variation of nc with
source strength j, togther with a quadratic extrapolation
to j ¼ 0, showing that the effect of j ! 0 for this observ-
able is regular but certainly not negligible. Finally Fig. 10
plots ncð!; j ¼ 0Þ together with a power law fit nc ¼
b1!

b2 . The fitted parameters are

b1 ¼ 18:6ð4Þ; b2 ¼ 3:32ð1Þ: (16)

As expected, the fitted value of b2 considerably exceeds the
naive expectation nc / !d based on a weakly interacting
system.
In Fig. 11 we show the chiral condensate order parame-

ter h !""i as a function of ! for various values of the
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FIG. 8 (color online). Carrier density nc vs ! on 323, m ¼ 0
and j ¼ 0:01, 0.02, 0.03. The dashed line shows the same
quantity evaluated with j ¼ 0:01 for free fields.
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FIG. 9 (color online). Carrier density nc vs j on 48
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FIG. 10 (color online). Carrier density ncðj ¼ 0Þ vs ! on 483

fitted to a power law for ! ¼ 0:05–0:20. The dashed line
corresponds to exponent b2 ¼ 3:32ð1Þ.
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FIG. 11 (color online). Chiral condensate h !""i vs ! on 323

for j ¼ 0:02 and m ¼ 0:01, 0.02, 0.03. Dashed lines show the
same quantity evaluated for free fields.
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contrast with the free field behavior, which only reaches
saturation at !a ! 1:3 and is shown by the dashed line, is
marked.

How should we interpret the finding that nintc " nfreec ?
For degenerate fermions the carrier density, remembering
to count both particle and hole states, is given by nc ¼
k2F=2". For free massless fermions the Fermi energy ! is
equal to Fermi momentum kF; if we wish to retain the
notion of a Fermi surface (albeit one distorted by exciton
condensation) for the interacting system, we are forced to
conclude ! ! EF < kF implying strong self-binding, i.e.,
the degenerate fermions have a large negative contribution
to their bulk energy. This is a feature of working near a
QCP, and was not observed, e.g., in studies of relatively

weakly interacting systems at nonzero density such as the
Gross-Neveu model in 2þ 1d [25] where interactions are
suppressed by 1=Nf, or two color QCD [4] where the quark
density nq * nfreeq all the way to saturation.
As before, the region of physical interest is for ! well

below saturation: Fig. 9 plots the variation of nc with
source strength j, togther with a quadratic extrapolation
to j ¼ 0, showing that the effect of j ! 0 for this observ-
able is regular but certainly not negligible. Finally Fig. 10
plots ncð!; j ¼ 0Þ together with a power law fit nc ¼
b1!

b2 . The fitted parameters are

b1 ¼ 18:6ð4Þ; b2 ¼ 3:32ð1Þ: (16)

As expected, the fitted value of b2 considerably exceeds the
naive expectation nc / !d based on a weakly interacting
system.
In Fig. 11 we show the chiral condensate order parame-

ter h !""i as a function of ! for various values of the
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FIG. 8 (color online). Carrier density nc vs ! on 323, m ¼ 0
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FIG. 10 (color online). Carrier density ncðj ¼ 0Þ vs ! on 483

fitted to a power law for ! ¼ 0:05–0:20. The dashed line
corresponds to exponent b2 ¼ 3:32ð1Þ.
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FIG. 11 (color online). Chiral condensate h !""i vs ! on 323

for j ¼ 0:02 and m ¼ 0:01, 0.02, 0.03. Dashed lines show the
same quantity evaluated for free fields.
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Observe premature  
saturation at µa≈0.5 
(other lattice models typically 
saturate at µa≳1)

⇒ 

no discernable onset μo > 0
Fit small-µ data: 

nc(j=0)∝µ3.32(1)  
Cf. free-field 

ncfree∝µd∝µ2 

NB nc∝kF2  Luttinger’s theorem

j→0

µat ≈ EFat < kFas

ncfree(µ) << ncfree(kF) ≈ nc(µ)

saturation here

free fermion
result



Exciton Condensate

suppressed because a free particle-hole pair costs energy
2! to create at either Fermi surface, whereas c !" pairing is
promoted, because it costs zero energy to create a particle
on one Fermi surface and a hole at the other, with the
density of states at either increasing / !. Thus h !""i
decreases as ! rises from 0, while h""i increases. The
rise in h""i seems to be relatively more pronounced for
smaller j. This trend persists until !at ’ 0:3. What hap-
pens after that should be understood in terms of saturation,
an artifact which sets in when the fermion density is a
significant fraction of its maximal value of one per lattice
site. With our normalization of nc this sets in for !at ’
0:5, a surprisingly small value based on experience with
other models. In a saturated world fermion excitations of
all kinds are kinematically suppressed, and the condensates
tend to zero in this limit.

III. NUMERICAL RESULTS

Our strategy in this paper is to investigate the effect of
varying ! in our bilayer model (8) and (10) starting close
to the quantum critical point. The first task is to find the
coupling g2c where the QCP is located for Nf ¼ 4; we use

the approach [9,15] of searching for a maximum of h !""i
as g"2 is varied and identifying that with the strong cou-
pling limit of the continuum model. We then assume
g"2
c * g"2

peak, since if the value Nfc ¼ 4:8ð2Þ obtained in

Ref. [9] is universal there should only be a narrow range of
g"2 corresponding to the chirally broken phase. The results
for h !""ðmÞi in Fig. 2 show that g"2

peak % 0:30, much larger

than the value % 0:05 obtained with the compact formula-
tion [9]. Another contrast with previous work is that it is
also apparent that g"2

peak increases with m, from roughly

0.275 atma ¼ 0:07 to 0.35 forma ¼ 0:01, although at this

stage we cannot exclude the possibility that finite volume
effects influence the result. For small m a linear extrapo-
lation to the chiral limit seems reasonable; we conclude,
conservatively, that in this limit g"2

peak 2 ð0:275; 0:35Þ.
Figure 3 shows h !""i data as a function of m for g"2 %

g"2
peak. While the quadratic extrapolation to the chiral limit

is not conclusive, the marked nonlinearity of the fits sug-
gests the QCP value g"2

c lies close to this region; however,
a much more extensive simulation campaign would be
needed to pin it down. For our purposes it suffices to
work close to a strongly interacting QCP, while leaving
the issue of whether chiral symmetry spontaneously breaks
unresolved. Henceforth, all numerical results are obtained
with the coupling value g"2 ¼ 0:4—this implies that the
lattice cutoff is constant as ! is varied. Unless otherwise
stated, the chiral limit m ¼ 0 will be assumed.
Figure 4 shows the exciton condensate h""i as a func-

tion of ! for three different j. The figure shows the same

FIG. 2 (color online). h !""i vs g"2 for Nf ¼ 4 and various m
near g"2

peak % 0:30. The simulations were performed on both 323

and 483 lattices.

FIG. 3 (color online). h !""i vs m for g"2 ¼ 0:35, 0.375, 0.40
fitted to a quadratic polynomial.
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FIG. 4 (color online). h""i vs ! on 323 for m ¼ 0 and ja ¼
0:01, 0.02, 0.03. Dashed lines show the same quantity evaluated
for free fields.
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broad features as Fig. 1, namely a rapid rise to a fairly
sharp maximum at !a ! 0:3, followed by a still more
rapid fall; the signal is very small indeed by !a ¼ 0:6.
As we shall see, at this value of ! the system has reached
saturation with a maximum possible density of particle-
hole pairs consistent with the Pauli exclusion principle on a
fixed lattice; our model can only be interpreted as a de-
scription of bilayer graphene for values of ! much smaller
than this.

The dashed lines in Fig. 4 show h!!i evaluated using
the same measurement code but with g2 set to zero, yield-
ing the value for free fields. Since the ðUð1Þ % Uð1Þ"Þ2
symmetry is manifest for j ¼ 0 the free field condensate
must vanish in this limit, and the curves are consistent with
this expectation. The large disparity between h!!iint
and h!!ifree notable in the range 0:2 & !a & 0:4 signals
that ðUð1Þ % Uð1Þ"Þ2 is surely spontaneously broken here.
Close inspection of the figure reveals that h!!ifree rises
monotonically, but not quite smoothly, with ! until reach-
ing a maximum at !a & 0:9. The disparity with the
apparent saturation observed in the interacting model will
be further discussed below. The barely visible wiggles are
probably a finite volume artifact similar to that noted in
studies of another system with a Fermi surface [3]. Figure 5
plots the same scan but this time showing that the effect of
varying m is negligible except for the very smallest values
of!. Since the operator!! is constructed to be conjugate
to j, not m, this is as expected.

In order to interpret the condensate data it is necessary to
extrapolate j ! 0. Figure 6 shows h!!i for several j on
two different volumes, together with extrapolations of the
form

h!!i ¼ h!!ðj ¼ 0Þiþ Ajþ Bj2 þ Cj3: (14)

Taking finite volume effects into account, it seems that at
least for !a ' 0:10 the fitted intercept is nonvanishing,
confirming the spontaneous breaking of particle-hole

symmetry due to excitonic condensation h!!i ! 0.
The extrapolated condensate is shown fitted to a power
law of the form h!!ðj ¼ 0Þi ¼ a1!

a2 in Fig. 7: the fitted
parameters are

a1 ¼ 7:0ð2Þ; a2 ¼ 2:39ð2Þ: (15)

The power-law rise is more rapid than would be expected
from a BCS-style mechanism driven by condensation of
particle-hole pairs in the immediate vicinity of a Fermi
surface. This is because in a BCS condensation the density
of available pairing states scales with the area of the Fermi
surface, / !d(1 in d space dimensions. Despite this some-
what empirical approach, the nonlinear increase of h!!i
with ! is a robust conclusion at variance with a conven-
tional weakly interacting BCS scenario.
Next we consider the carrier density nc defined in (13),

and shown in Fig. 8. This rises monotonically from zero
with ! until !a) 0:5, when saturation sets in; the effect
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FIG. 5 (color online). h!!i vs ! on 323 for ja ¼ 0:02 and
ma ¼ 0, 0.01, 0.02, 0.03. The dashed line shows the same
quantity evaluated for m ¼ 0 for free fields.
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FIG. 6 (color online). h!!i vs j for m ¼ 0 and various ! on
323 (open) and 483 (closed symbols). Dotted lines show fits to
Eq. (14). Dashed lines show the same quantities evaluated for
! ¼ 0, 0.2 on 483 for free fields.
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FIG. 7 (color online). h!!ðj ¼ 0Þi vs ! on 483 fitted to a
power law for ! ¼ 0:05–0:20. The dashed line corresponds to
exponent a2 ¼ 2:39ð2Þ.
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rapid rise with µ to exceed 
free-field value,  
peak at µa≈0.3, 

then fall to zero in 
saturation region 

Exciton condensation, with 
no discernable onset µo>0  

Fit small-µ data: 
⟨ΨΨ(j=0)⟩∝µ2.39(2) 

Cf. weak BCS pairing 
⟨ΨΨ⟩∝Δµd-1∝µ ? 

j→0



Chiral Condensate
exceeds free-field value 
for small µ, indicative of 
nearby QCP, then rapidly 

falls to zero as µ increases. 

Interlayer pairing 
suppressed as EF grows 

of j ! 0 is to round off this behavior by reducing the
carrier susceptibility j@nc=@!j slightly. Once again, the
contrast with the free field behavior, which only reaches
saturation at !a ! 1:3 and is shown by the dashed line, is
marked.

How should we interpret the finding that nintc " nfreec ?
For degenerate fermions the carrier density, remembering
to count both particle and hole states, is given by nc ¼
k2F=2". For free massless fermions the Fermi energy ! is
equal to Fermi momentum kF; if we wish to retain the
notion of a Fermi surface (albeit one distorted by exciton
condensation) for the interacting system, we are forced to
conclude ! ! EF < kF implying strong self-binding, i.e.,
the degenerate fermions have a large negative contribution
to their bulk energy. This is a feature of working near a
QCP, and was not observed, e.g., in studies of relatively

weakly interacting systems at nonzero density such as the
Gross-Neveu model in 2þ 1d [25] where interactions are
suppressed by 1=Nf, or two color QCD [4] where the quark
density nq * nfreeq all the way to saturation.
As before, the region of physical interest is for ! well

below saturation: Fig. 9 plots the variation of nc with
source strength j, togther with a quadratic extrapolation
to j ¼ 0, showing that the effect of j ! 0 for this observ-
able is regular but certainly not negligible. Finally Fig. 10
plots ncð!; j ¼ 0Þ together with a power law fit nc ¼
b1!

b2 . The fitted parameters are

b1 ¼ 18:6ð4Þ; b2 ¼ 3:32ð1Þ: (16)

As expected, the fitted value of b2 considerably exceeds the
naive expectation nc / !d based on a weakly interacting
system.
In Fig. 11 we show the chiral condensate order parame-

ter h !""i as a function of ! for various values of the
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FIG. 8 (color online). Carrier density nc vs ! on 323, m ¼ 0
and j ¼ 0:01, 0.02, 0.03. The dashed line shows the same
quantity evaluated with j ¼ 0:01 for free fields.
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FIG. 9 (color online). Carrier density nc vs j on 48
3 for various

!. Dotted lines show a quadratic extrapolation j ! 0. Dashed
lines show the same quantity evaluated for free fields with
! ¼ 0:1, 0.2.
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FIG. 10 (color online). Carrier density ncðj ¼ 0Þ vs ! on 483

fitted to a power law for ! ¼ 0:05–0:20. The dashed line
corresponds to exponent b2 ¼ 3:32ð1Þ.
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FIG. 11 (color online). Chiral condensate h !""i vs ! on 323

for j ¼ 0:02 and m ¼ 0:01, 0.02, 0.03. Dashed lines show the
same quantity evaluated for free fields.
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|⟨ΨΨ⟩| ≈ ⅓ |⟨ΨΨ⟩|peak

ie. particle-hole pairing is promoted by  
the large Fermi surface induced by μ≠0 

the two condensates compete: 
⟨ΨΨ⟩ < ⟨ΨΨ⟩free when ⟨ΨΨ⟩ peaks 



For a BCS-style condensation - ie. pairing at 
Fermi surface leading to gap generation Δ>0  

h!!i / !2:4. This is notable because a weak-coupling
BCS description of superfluidity predicts the condensate
should scale with the area of the Fermi surface, namely
h!!i / !. Similarly, the carrier density nc / !3:3

(Fig. 9), to be contrasted with the weak-coupling behavior
nc / !2. With the resolution we are working with there is
no sign of an onset value of the chemical potential !o >
0, such that nc ¼ 0, h!!i ¼ 0 for !<!o. This is
another important contrast with the systems studied in
Refs. [1–6]. The likely reason is that at the couplings
studied there is no mechanism for spontaneous mass
generation, so that the lightest degrees of freedom carry-
ing a conserved charge remains massless. The final inter-
esting observation, shown in Fig. 11, is that the chiral

condensate h "!!i is strongly suppressed as ! rises, pre-
sumably because of the rapidly increasing energy cost of
a particle-hole pair within a layer, and is consistent with
zero post-saturation.

Another observation to note is that below saturation both
nc " nfreec and h!!i " h!!ifree. Once again, this is
indicative of strong correlations among the fields, such
that EF < kF, as is the precocious value of !a at which
saturation sets in. It suggests that the self-consistent
diagrammatic approach of Kharitonov and Efetov [13]
(which employs large-Nf methods so may not be valid
near the QCP) may yield an unduly small estimate of the

condensate. It must be stressed, however, that in the
absence of a physical scale setting any phenomenogical
applications of the model to real graphene are premature.
In conclusion we claim to have initiated a lattice

Monte Carlo study of strongly interacting degenerate fer-
mions, which displays significant qualitative differences to
other degenerate systems studied previously. A final ques-
tion worth discussing is to what extent the concept of a
Fermi surface, either sharp or distorted by particle-hole
excitonic condensation, remains intact in a strongly inter-
acting environment? Departures from the canonical weak-
coupling are manifested as anomalous scaling with Fermi
energy ! [see Eqs. (15) and (16)]; however, recall that in
an interacting Fermi liquid the relation between particle
density and Fermi momentum kF, namely nc / kdF, should
remain inviolate (this is guaranteed by Luttinger’s theo-
rem—see Ref. [26] for a nonperturbative discussion). In
the BCS picture, the density of condensed particle-hole
pairs h!!i arising from plane wave states within a shell of
thickness #ð!Þ around the Fermi surface implies

h!!i / #kd%1
F / #n

d%1
d
c : (19)

To test whether the scaling (19) could be retained even at

strong coupling, Fig. 13 plots the ratio h!!i=n
1
2
c vs ! for

various j on two volumes, together with the j ! 0 extrapo-
lation on 483. It is plausible for !a & 0:2, on the assump-
tion that the gap #ð!Þ has a near-linear !-dependence,
which should be the case for near-conformal dynamics. It
may well prove possible, therefore, to define a Fermi
surface in the vicinity of a quantum critical point.
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where last step follows from Luttinger’s theorem 

ΔkFexpect
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BCS description of superfluidity predicts the condensate
should scale with the area of the Fermi surface, namely
h!!i / !. Similarly, the carrier density nc / !3:3

(Fig. 9), to be contrasted with the weak-coupling behavior
nc / !2. With the resolution we are working with there is
no sign of an onset value of the chemical potential !o >
0, such that nc ¼ 0, h!!i ¼ 0 for !<!o. This is
another important contrast with the systems studied in
Refs. [1–6]. The likely reason is that at the couplings
studied there is no mechanism for spontaneous mass
generation, so that the lightest degrees of freedom carry-
ing a conserved charge remains massless. The final inter-
esting observation, shown in Fig. 11, is that the chiral

condensate h "!!i is strongly suppressed as ! rises, pre-
sumably because of the rapidly increasing energy cost of
a particle-hole pair within a layer, and is consistent with
zero post-saturation.

Another observation to note is that below saturation both
nc " nfreec and h!!i " h!!ifree. Once again, this is
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that EF < kF, as is the precocious value of !a at which
saturation sets in. It suggests that the self-consistent
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Thus Δ(μ)∝ ⟨ΨΨ⟩/√nc∝μ1.44 ?
Find near-linear dependence  
Δ∝μ at small µ: expected for 
conformal behaviour near QCP

Cf. NJL model:  Δ=O(ΛUV)
(SJH & D.N. Walters PRD69 (2004) 076011)

QC2D:   Δ=O(ΛQCD)
(S. Cotter et al PRD87 (2013) 034507)

in both cases (roughly) µ-independent
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Again, consistent with a gapped Fermi surface with Δ/µ=O(1)

And the gap Δ ?….

Cf. Δ/µ~10-7 found in diagrammatic approach
Kharitonov & Efetov Semicond. Sci. Technol. 25 034004 (2010)
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Summary 

• A new, interesting member of the small class of  
models permitting MC study with µ≠0  

•  Behaviour very different from previous (QC2D, NJL)  
⇔ residual interactions at Fermi surface are strong  

Densities and condensates scale anomalously with µ 
Quasiparticle dispersion E(k) exposes Fermi surface 

disrupted by pair condensation 
• Strongly-interacting QCP ⇔ Δ=Δ(µ), Δ/µ=O(1) 

• Δ ∝ µσ with σ > 1? 

• Next move: domain wall lattice fermions  
to better reproduce global symmetries of 2+1d   

U(8)   →   U(4)⊗U(4)   →   U(4)  μ≠0 j≠0 SJH JHEP 1509 (2015) 047


