Semileptonic **B** Decays at BABAR

Vladimir Golubev

Budker Institute of Nuclear Physics, Novosibirsk, Russia

(for the BaBar Collaboration)

Beauty 2005 Assisi (Perugia), June 20–24, 2005

Semileptonic *B* Decays – Why are they Interesting

$$\Gamma(b \to c \ell \nu) = \frac{G_F^2}{192\pi^2} |V_{cb}|^2 m_b^2 (m_b - m_c)^3 \qquad \Gamma(b \to u \ell \nu) = \frac{G_F^2}{192\pi^2} |V_{ub}|^2 m_b^5$$

- Semileptonic decays
 - theoretically simple at parton level
 - rate depends on CKM elements |V_{cb}| and |V_{ub}|, the quark masses m_b and m_c
 - the leptonic current factors out cleanly, thus one can probe strong interactions in B mesons
 - sensitive to QCD corrections, OPE
- A precise determination of |V_{cb}| and |V_{ub}| with reliable errors

important for

- understanding B decay rates
- testing of the unitarity of the CKM matrix and predictions of CP violation in B mesons

Semileptonic *B* decay studies at BABAR

	Inclusive decays	Exclusive decay modes
$b \rightarrow C \ell \nu$	$B \rightarrow X_c \ell v$ $ V_{cb} $, total decay rate, HQE parameters	$B \rightarrow D^* \ell v, B \rightarrow D \ell v,$ Branching fractions, decay form factors, $ V_{cb} $
$b ightarrow U\ell v$	$B \rightarrow X_u \ell v$ $ V_{ub} $, total decay rate, lepton momentum and hadron mass spectra	$B \rightarrow \pi \ell \nu, B \rightarrow \rho \ell \nu,$ Branching fractions, decay form factors, $ V_{ub} $

2-nd B tagging: untagged, lepton tag, hadronic tag

Inclusive $B \rightarrow X_c \ell v$ decays: HQE Expansions

- Heavy Quark Expansions, tool to correct for QCD effects
 - Expansion in terms of $1/m_{b}$ and $\alpha_{s}(m_{b})$
 - Separate short- and long-distance effects at $\mu \sim 1$ GeV
 - Perturbative corrections calculable from $m_b m_c \alpha_s(m_b)$
 - Non-perturbative parameters cannot be calculated
- We choose calculation by Gambino & Uraltsev

hep-ph/0401063 & 0403166

- Kinetic mass scheme to $O(1/m_h^3)$ $O(\alpha_s^2)$ E_{ℓ} moments m_{χ} moments $O(\alpha_{s})$ kinetic $O(1/m_h^2)$ 8 parameters to be fitted chromomagnetic $\begin{vmatrix} V_{cb} \\ m_b \\ m_c \\ B(B \to X_c \ell \nu) \\ \mu_{\pi}^2 \end{vmatrix}$ μ_G^2 ρ_D^{2} spin-orbit Darwin
- Measure 8 moments, each as a function of minimum lepton energy E_{ℓ}

V.Golubev - BABAR

Measurement of Electron Energy Moments

- Inclusive e[±] spectrum in 3x10⁶ electrontagged (1.4< p^* <2.3GeV/c) BB events
 - Corrected for detector effects
 - *Corrected for non-prompt electrons* - lepton charge correlation and MC
 - Corrected for $B^0 \overline{B}^0$ mixing
- Moments for $E_{cut} = 0.6 \dots 1.5 \text{ GeV}$
 - Corrected for the final state radiation
 - Translated to B rest frame
 - Subtracted $B \rightarrow X_{\mu} \ell \nu$ decays

 $E_{\ell}d\Gamma$

 E_{cut}

V.Golubev - BABAR

Beauty2005, Assisi

 $d\Gamma$

Measurement of Hadron Mass Moments

- e^{\pm} or μ^{\pm} with $E_{\ell} > E_{cut}$ (0.9...1.6 GeV/c)
- Lepton charge B flavor correlation
- Improve m_x measurement by kinematic fit to whole event, resolution ~350 MeV
- To eliminate dependence of moments on uncertain BF and unknown masses of high mass charm mesons we calibrate m_x measurement
- Calibrate m_x based on MC simulation
 - Linear relation between m^{meas} and m^{true}
 - Validate calibration with excl. $B \rightarrow D^{(*)} \ell v$
- Moments corrected for detector effects and bkg

HQE Fits to Hadron Mass and Lepton Energy Moments

HQE Fit Results (kinetic mass scheme, scale μ =1GeV)

$$\begin{aligned} |V_{cb}| &= (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{th}) \times 10^{-3} \\ B_{c\ell\nu} &= (10.61 \pm 0.16_{exp} \pm 0.06_{HQE})\% \\ m_b &= (4.61 \pm 0.05_{exp} \pm 0.04_{HQE} \pm 0.02_{\alpha_s}) \text{GeV} \\ m_c &= (1.18 \pm 0.07_{exp} \pm 0.06_{HQE} \pm 0.02_{\alpha_s}) \text{GeV} \\ \mu_{\pi}^2 &= (0.45 \pm 0.04_{exp} \pm 0.04_{HQE} \pm 0.01_{\alpha_s}) \text{GeV}^2 \\ \mu_{G}^2 &= (0.27 \pm 0.06_{exp} \pm 0.03_{HQE} \pm 0.02_{\alpha_s}) \text{GeV}^2 \\ \rho_{D}^3 &= (0.20 \pm 0.02_{exp} \pm 0.02_{HQE} \pm 0.00_{\alpha_s}) \text{GeV}^3 \\ \rho_{LS}^3 &= (-0.09 \pm 0.04_{exp} \pm 0.07_{HQE} \pm 0.01_{\alpha_s}) \text{GeV}^3 \\ \hline \end{aligned}$$

- Separate fits to hadron and lepton moments give consistent results
- μ_{G}^2 and ρ_{LS}^3 are consistent with B-B* mass splitting and HQ sum rules
- Considerable improvement in precision for |V_{cb}| (±2%) and B_{cℓv} (1.6%) and quark masses, as well as HQE parameters

V.Golubev - BABAR

|Vub| from total $B \rightarrow X_u \ell v$ decay rate

• Total b \rightarrow u $\ell \nu$ decay rate from OPE:

$$\Gamma(B \to X_u \ell \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{ub}|^2 \left\{ A_0 \left(1 - \frac{\mu_\pi^2 - \mu_G^2}{2m_b^2} \right) - 2\frac{\mu_G^2}{m_b^2} + O\left(\frac{1}{m_b^3}\right) \right\}$$

• $|V_{ub}|$ from inclusive BF(B \rightarrow X_u | v) (theory error ~5%):

$$|V_{ub}| = 0.00424 \left(\frac{\mathcal{B}(\overline{B} \to X_u \ell \bar{\nu})}{0.002} \frac{1.604 ps}{\tau_B} \right)^{1/2} \times (1.0 \pm 0.048 (\text{OPE} + \text{m}_{\text{b}})).$$

 Experimentally challenging due to charmed semileptonic background:

$$\frac{\Gamma(b \to u \ell \,\overline{v})}{\Gamma(b \to c \ell \,\overline{v})} \approx \frac{\left|V_{ub}\right|^2}{\left|V_{cb}\right|^2} \approx \frac{1}{50}$$

$|V_{ub}|$ from partial $B \rightarrow X_u \ell v$ decay rates

- Charmed semileptonic background can be controlled in limited regions of phase space
- Non-perturbative Shape Functions are used to extract |V_{ub}| from partial branching fractions. The SF parameters are extracted from b → sg photon spectrum
- New approach to $|V_{ub}|$ extraction:
 - Differential decay rate parametrization from BLNP Bosch, Lange, Neubert, and Paz, Nucl. Phys. B 699, 335 (2004); Lange, Neubert, and Paz, hep-ph/0504071
 - New source of information on SF parameters moments of the b → c ℓ v lepton spectrum Neubert, Phys.Lett. B 612, 13 (2005)

$|V_{ub}|$ from partial $B \rightarrow X_u \ell \nu$ decay rates

V.Golubev - BABAR

$|V_{ub}|$ from $B \rightarrow X_u \ell v$ endpoint spectrum

 $0.1 = B \ A B \ A R \ preliminary = 0.005 \ 0.005 \ 0.005 = 0.005 \ 0.005 \ 0.005 \ 0.005 = 0.005 \$

Differential $B \rightarrow X_u e v$ branching fraction as a function of electron momentum, corrected for detector effects and final-state radiation

• (On-peak)–(Off-peak) data Histogram – $B \rightarrow X_{i} \ell v$ **MC**

Endpoint spectrum analysis: |Vub| extraction

- Determination of ΔBr for $p_e > p_{min}$
- Extrapolation to total charmless semileptonic decay Br using shape function parameters from $B \rightarrow X_{s\gamma}$ spectrum and calculations of DeFazio-Neubert^(*) and Kagan-Neubert^(**)
- Extraction of $|V_{ub}|$ using the OPE relation.
- BABAR preliminary results, based on BELLE shape function parameters and DFN approach (hep-ex/0408075): $\Delta Br(p_e > 2.0 GeV/c) = (0.531 \pm 0.032_{stat} \pm 0.049_{syst}) \times 10^{-3}$ $Br = (2.16 \pm 0.24_{exp} \pm 0.27_{SF}) \times 10^{-3}$ $|V_{ub}| = (4.40 \pm 0.24_{exp} \pm 0.28_{SF} \pm 0.21_{OPE+mb}) \times 10^{-3}$
- Analysis based on BLNP calculation is being completed

^(*) F.De Fazio and M.Neubert, JHEP 9906, **017** (1999) ^(**) A.L.Kagan and M.Neubert, Eur.Phys.J. C **7**, 5 (1999)

$q^2 - E_e$ analysis with neutrino reconstruction

Event selection:

- High energy electron Ee>2GeV
- Missing momentum used for neutrino parameters estimation
- Cuts on missing momentum magnitude and direction, and event shape
- Suppression of $b \rightarrow cev by s^{h}_{max} = m^{2}_{D}$:

$$s_h^{\text{max}} = m_B^2 + q^2 - 2m_B(E_e + \frac{q^2}{4E_e}),$$

(slightly modified for B-meson motion in the Y(4S) rest frame)

Acceptance ~ 14%, signal/bkg.~0.6

$q^2 - E_e$ analysis results

Test of neutrino energy resolution using pure control sample of $B \rightarrow D^{(*)}ev$ events

Signal extraction for E_e >2.0 GeV and s_h <3.5 GeV², BB background normalization for s_h >4.25 GeV²,

 $\Delta Br(E_e > 2.0 \text{GeV}, s_h < 3.5 \text{GeV}^2) = (3.54 \pm 0.33 \pm 0.34) \times 10^{-4}$

 $|V_{ub}| = \sqrt{\Delta B / (\Delta \zeta \times \tau_B)}, \Delta \zeta$ - normalized partial rate ^(*), $\tau_B = 1.604 \pm 0.023$ ps

 $|V_{ub}| = (3.95 \pm 0.18 \pm 0.19^{+0.58}_{-0.42} \pm 0.25) \times 10^{-3}$

^(*) B.O.Lange, M.Neubert and G.Paz, hep-ph/0504071

V.Golubev - BABAR

Beauty2005, Assisi

BABAR

$M_{x}-q^{2}$ analysis

- Select events with a fully reconstructed $B \rightarrow D^{(*)}X$ decay (B_{reco})
- Study charmless semileptonic decay of B recoiling against B_{reco}
 - require lepton with $p^*_{lep} > 1 \text{ GeV}$
- 2D fit to measure partial BF in [M_x<1.7 GeV, q²>8 GeV²]

Mx < 1.7 GeV

1.7 < Mx < 2.2 GeV

2.2 < Mx < 2.8 GeV

V.Golubev - BABAR

$M_{\chi}-q^2$ analysis: the results

• M_x spectrum unfolding and fitting:

$$|V_{ub}| = (5.22 \pm 0.30_{\text{stat}} \pm 0.31_{\text{exp.syst}} \pm 0.21_{\text{fu}} \pm 0.25_{\text{OPE}}) \times 10^{-3} (\text{DFN}^*)$$

M_x-q² 2-dimentional fit:

$$\Delta Br(M_X < 1.7 \text{GeV}, q^2 > 8 \text{GeV}^2) = (8.96 \pm 1.43_{\text{stat}} \pm 1.44_{\text{syst}}) \times 10^{-4}$$
$$|V_{ub}| = (5.18 \pm 0.41_{\text{stat}} \pm 0.40_{\text{exp.syst}} \pm 0.22_{\text{fu}} \pm 0.25_{\text{OPE}}) \times 10^{-3} \quad \text{(DFN}^*)$$
$$|V_{ub}| = (4.98 \pm 0.40_{\text{stat}} \pm 0.39_{\text{exp.syst}} \pm 0.47_{\text{fu+OPE}}) \times 10^{-3} \quad \text{(BLL}^{**})$$

^(*) F.De Fazio and M.Neubert, JHEP 9906, **017** (1999) ^(**) Bauer, Ligeti and Luke, hep-ph/0111387

Technique	V _{ub} ×10 ³
E _ℓ >2GeV (ICHEP2004)	$4.40 \pm 0.13_{\text{stat}} \pm 0.25_{\text{exp.syst}} \pm 0.28_{\text{fu}} \pm 0.21_{\text{OPE}}$
E _ℓ <i>vs</i> . q ² (NEW)	$3.95 \pm 0.18_{\text{stat}} \pm 0.19_{\text{exp.syst}} + (^{+0.58}_{-0.42})_{\text{SF}} \pm 0.25_{\text{theo}}$
Мх <i>vs</i> . q ² (СКМ 2005)	$5.18 \pm 0.41_{\text{stat}} \pm 0.40_{\text{exp.syst}} \pm 0.22_{\text{fu}} \pm 0.25_{\text{OPE}}$
Average (using the procedure of HFAG)	4.22 ± 0.57 CL = 0.45

|Vub| from exclusive $B \rightarrow X_u \ell v$ decays

Strong nonperturbative effects included in form factors

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |\mathbf{k}_{\pi}|^3 |V_{ub}|^2 |f_+(q^2)|^2$$

$$|V_{ub}| = \sqrt{\frac{B(B \to \pi \ell \nu)}{x \tau_B}}$$

$$x = \frac{G_F^2}{48\pi^3} \int k_{\pi} |^3| f_+(q^2)|^2 dq^2$$

Calculations

- Light-Cone Sum Rules: Ball, Zwicky (hep-ph/0406232)
- Unquenched Lattice QCD: HPQCD (hep-lat/0408019) and FNAL (hep-lat/0409116)
- **ISGW2**: quark model

V.Golubev - BABAR

$$q^2 = (p_{lep} + p_v)^2$$

Exclusive decays, experimental techniques

Different experimental approaches to measure BF:

Exclusive $B \rightarrow \pi \ell \nu$ decays, tagged analysis

- Use $B \rightarrow D^{(*)} \ell v$ decays of opposite *B* to "tag" event
- Use events with B→D^(*)ℓv decays on both sides to check tagging efficiency
- Measure $\Delta B(B^0 \rightarrow \pi^- \ell^+ \nu)$ in bins of q^2
- BF for $B^+ \rightarrow \pi^0 \ell^+ \nu$

Discriminating Variables

- $B^0 \rightarrow \pi^- \ell^+ \nu$: angle between the B momentum and the plane defined by the $D^{(*)}\ell$ and $\pi\ell$ momenta: $\cos^2\phi_B$
- $B^+ \to \pi^0 \ell^+ \nu$ angle between B and $\pi^0 \ell$ system: $\cos \theta_{B-\pi l}$

BABAR $B \rightarrow \pi \ell \nu$ tagged analysis: the results preliminary (CKM 2005) $B^0 \rightarrow \pi^- \ell^+ \nu$ • on-peak data $8 < q^2 < 16 \text{ GeV}^2$ **B4B4R** Preliminary events/bin events/bin events/bin **B**4**B**4**R** Preliminary $q^2 < 8 \text{ GeV}^2$ BABAR $q^2 > 16 \text{ GeV}^2$ 25 signal MC 25 Preliminary 20 $\blacksquare B \rightarrow \rho l v MC$ 232 million 20 $b \rightarrow ulv MC$ **BB** pairs 15 15 15 B^0B^0 MC 10 10 10 $\blacksquare B^+B^-MC$ □ off-peak data $B^+ \rightarrow \pi^0 \ell^+ \nu$ $\cos^2\phi_{\rm B}$ $\cos^2 \phi_{\rm B}$ $\cos^2\phi_B$ # events **Branching Fraction Results** 35 data MC signal MC B+B 30 MC B⁰B⁰ $B(B^0 \to \pi^- \ell^+ \nu) = (1.03 \pm 0.25_{stat} \pm 0.13_{syst}) \times 10^{-4}$ 25 BABAR preliminary 20 in 3 bins of q² 15 88 million **BB** pairs 10 $B(B^+ \to \pi^0 \ell^+ \nu) = (1.80 \pm 0.37_{stat} \pm 0.23_{syst}) \times 10^{-4}$ 5

Beauty2005, Assisi

-10

-5

0

5 10 Cosθ_{B,π⁰1}

-15

Exclusive $B \rightarrow \pi(\rho) \ell \nu$ decays, untagged analysis

 Reconstruct neutrino from full event + ensure good reconstruction quality

$$(ec{p}_{ ext{miss}}, E_{ ext{miss}}) = (ec{p}_{ ext{beams}}, E_{ ext{beams}}) - (\sum_i ec{p}_i\,, \sum_i E_i)$$

• Signal yield extracted from common fit to ΔE and m_{ES} in 5 q^2 bins for $\pi^+ \ell v$, and 3 bins for $\rho^- \ell v$ and $\rho^0 \ell v$ each

V.Golubev - BABAR

Untagged $B \rightarrow \pi(\rho) \ell v$, signal extraction

 $(1.38 \pm 0.10_{stat} \pm 0.18_{svst} \pm 0.08_{FF}) \times 10^{-4}$

 $B(B^0 \rightarrow \rho^- \ell^+ \nu) =$ $(2.14 \pm 0.21_{stat} \pm 0.53_{syst} \pm 0.28_{FF}) \times 10^{-4}$

83 million **BB** pairs

5.2

5.2

m_{es} (GeV)

5.1

V.Golubev - BABAR

5.1

Beauty2005, Assisi

5.2

5.1

BABAR

preliminary

Form factor fits and $|V_{ub}|$ extraction

V.Golubev - BABAR

Beauty2005, Assisi

BABAR

 HQE fits to moments hadronic mass and lepton energy moments: Based on 80 fb⁻¹, ~30% of the current BABAR data, we have made significant advances in the analysis of semileptonic B decays.

 $|V_{cb}| = (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{theory}) \times 10^{-3}$ Br(B \rightarrow X_c ℓ v)= (10.61 ±0.16_{exp} ±0.06_{HQE})% High precision measurement of m_b and m_c, and exp. determination of HQE parameters.

 Inclusive B→ X_uℓ v decays, three different approaches: The most precise determination of |V_{ub}| Measurement of partial semileptonic branching fractions for different kinematic regions

 ♦ Exclusive B→ π(ρ)ℓ v decay modes in tagged and untagged samples: Determination of |V_{ub}| Begin to test decay form factor calculations

The analyses will be repeated for larger data samples and more precise shape function parameters derived from from $B \rightarrow X_{s\gamma}$ photon spectrum