

Ulrich Kerzel, University of Karlsruhe for the CDF and D0 collaborations BEAUTY 2005

bmb+f - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Physics at the Tevatron

- observe $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV J/v Mass Silicon Selection • 1 fb⁻¹ luminosity delivered early June ×10³ CDF Preliminary • huge inelastic cross-section: \approx 5000 times bigger than for bb \Rightarrow triggers are essential! • events "polluted" by fragmentation tracks, underlying events \Rightarrow need precise tracking and good 60 resolution 40 • dedicated trigger for $J/\Psi \rightarrow \mu^+ \mu^-$ • trigger events where $m(\mu^+\mu^-)$ around $m(J/\Psi)$ 20
 - \Rightarrow high quality J/ Ψ events with large statistics
- channel $J/\Psi \rightarrow e^{\uparrow}e^{-}$ much more challenging in hadronic environment

<u>D0:</u>

- excellent muon system and coverage
- large forward tracking coverage
- new in RunII: magnetic field
 - \Rightarrow D0 has joined the field of B physics

<u>CDF:</u>

• precise tracking:

(silicon vertex detector and drift chamber)

• important for B physics:

direct trigger for displaced vertices

Observation of X(3872) at CDF and D0

reported widths are compatible with detector resolution

24th June 2005

U.Kerzel, University of Karlsruhe Beauty2005

Observation of X(3872) at CDF and D0

X(3872): central vs. forward

X(3872) properties

compare fraction of yields w.r.t initial selection

<u>Unbinned LogL fit</u> (simultaneously for $c\tau$ and M):

- <u>Mass:</u>
 - signal: Gaussian
 - BG : 2nd order polynomial for BG
- Proper time:
 - signal: exponential
 - BG : 2 pos., 1 neg. exponential
 - all folded with Gaussian due to resolution

X(3872) production fraction from B

CDF II Preliminary $\pm 2.5\sigma$ Projection Around $\psi(2S)$ ~220 pb⁻¹ ψ (2S) \rightarrow J/ $\psi \pi^+ \pi^-$ Data fraction from B decays: Prompt ψ(2S) Candidates per 20 $\,\mu$ m Long-Lived $\psi(2S)$ **Prompt Background** Long-Lived Background Ψ**(2S)**: 28.3 ± 1.0 (stat.) \pm 0.7 (syst.) % X(3872): 16.1 \pm 4.9 (stat.) -0.1 0.1 0.3 n 0 2 **Uncorrected Proper Time (cm)** \pm 1.0 (syst.)% **CDF II Preliminary** ±2.5σ Projection Around X(3872) ~220 pb⁻¹ X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$ Data 10 **Prompt X(3872)** Candidates per 20 $\,\mu\text{m}$ \Rightarrow X(3872) behaves Long-Lived X(3872) **Prompt Background** similarly to the $\Psi(2S)$ Long-Lived Background (with given uncertainties) 1

-0.1

0

0.1

Uncorrected Proper Time (cm)

0.3

0 2

X(3872) production fraction from B

The m($\pi^+ \pi^-$) mass spectrum

Distribution of m($\pi^+ \pi^-$) constrains quantum numbers J^{PC}

shape depends on:

- decay of (π⁺ π⁻) sub-system: (π⁺ π⁻) in s,p,d wave (i.e. intermediate sub-resonances or not)
- relative angular momentum between ($\mu^+ \mu^-$) and ($\pi^+ \pi^-$)
- (and detector acceptance, efficiency, etc.)

e.g. for decay chain: X \rightarrow J/Y $\rho,\,\rho \rightarrow \pi^{\scriptscriptstyle +} \,\pi^{\scriptscriptstyle -}$

$$\frac{d\Gamma_X}{dm_{\pi\pi}} = 2m_{\pi\pi} \frac{\Gamma_{X \to J/\Psi\rho}(m_{\pi\pi}) \cdot 2m_{\rho}\Gamma_{\rho \to \pi\pi}(m_{\pi\pi})}{(m_{\pi\pi}^2 - m_{\rho}^2)^2 + m_{\rho}^2 \Gamma_{\rho}^2(m_{\pi\pi})}$$

for broad resonances (kinematic factors vary across width)

$$\Gamma_{A \to BC} = \Gamma_{0,A \to BC} \left(\frac{k^*}{k_0^*}\right)^{2L+1} \left(\frac{f(k^*)}{f(k_0^*)}\right)^2 \left(\frac{m}{m_0}\right)$$
form-factor

The m($\pi^+ \pi^-$) mass spectrum

U.Kerzel, University of Karlsruhe Beauty2005

The m($\pi^+ \pi^-$) mass spectrum

- m($\pi^+\pi^-$) favours high end of mass spectrum
 - \Rightarrow compatible with intermediate $\rho^{0} \rightarrow \pi^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -}$ resonance
- also ³S₁ multipole-expansion for charmonium possible
 - no charmonium candidate at that mass
 - ${}^{3}S_{1}$ also has J^{PC} = 1⁻ \Rightarrow non-observation by BES

 $(\Gamma(e^+e^-)B(\pi^+\pi^-J/\Psi) < 10 \text{ eV } @90\% \text{ C.L.}) \text{ hep-ph/0310261}$

notation: $n^{2s+1}L_{\downarrow}(J^{PC})$

X(3872) with J/ $\Psi \rightarrow e^+ e^-$

Reconstruction of $J/\Psi \to e^+e^-$ very difficult in complex hadronic environment

- dedicated J/ $\Psi \rightarrow e^+e^-$ trigger
- use neural-network based approach to identify soft e[±] (p_t > 2GeV/c)
- reject e[±] from conversions based on neural network approach
- add γ at J/ Ψ vertex to accommodate Bremsstrahlung
- X(3872) reconstructions follows
 J/Ψ π⁺ π⁻ case
 (replace cut on m(π⁺π⁻) by cut on

 $Q = m_X - m_{J/}\Psi - m_{\pi\pi})$

 \Rightarrow able to reconstruct X(3872) in this channel!

What is the X(3872) ??

• Charmonium ?

- 2 ¹P₁, i.e. h'_c (1⁺⁻)
 - predicted at pprox 3950 MeV/c²
 - why is the ¹P₁ h_c not seen in J/ $\Psi \pi^+\pi^-$?
 - **Belle:** $|\cos\theta_{J/\Psi}|$ distribution does not fit (hep-ex/0408116)
- 1¹D₂ (2⁻⁺)
 - pos. C-parity
- 1 ³D₂ (2⁻⁻), 1 ³D₃(3⁻⁻)
 - then also decay: X $\rightarrow \chi_{c1} \gamma$, X $\rightarrow \chi_{c2} \gamma$
- \Rightarrow if charmonium, *very* unusual properties!
- charmed molecule?
- hybrid state, i.e. $c\bar{c}g$?
- "Deuson" ?

notation: $n^{2s+1}L_{J}$ (J^{PC})

DeRujula, Georgi, Glashow (1977): Charmed molecules?

possible formation of 4q "molecules": $D\bar{D}, D\bar{D}^*$ $D^*\bar{D}^*$ $D\bar{D}^{**}, D^*\bar{D}^{**}$

decay via: $J/\Psi
ho^0, J/\Psi\eta$

"Deuson" model (Törnqvist)

X(3872) similar to deuteron:

- composed of two objects
- bound by π^0 exchange

Prediction:

• J^{PC} = 1⁺⁺ or 0⁻⁺

(otherwise potential too weak or repulsive)

- small binding energy:
 - narrow resonance, big object
- isospin breaking:
 - X \rightarrow J/ Ψ ρ^0 , $\rho^0 \rightarrow \pi^+\pi^-$ allowed
 - X \rightarrow J/ $\!\Psi$ σ forbidden for any isoscalar σ
 - X \rightarrow J/ $\Psi \pi^0 \pi^0$ forbidden

Further properties by B-factories

- **BaBar:** (hep-ex/0408083)
 - search for charged partner X $^\pm \to$ J/Y ρ^\pm
 - expect twice the rate if X is part of iso-triplett
 ⇒ no signal found

C = +1

- **Belle:** (hep-ex/0505037)
 - 4 σ evidence for decay X(3872) \rightarrow J/ $\Psi \gamma$
 - evidence for decay $X \rightarrow J/\Psi \pi^+ \pi^- \pi^0$

 $\Rightarrow \underline{Swanson:} 1^{++} D\bar{D}^{*} \text{ (hep-ph/0311229)}$

has contribution of $X \to J/\Psi \omega$, $\omega \to \pi^+ \pi^- \pi^0$

• search for $X \rightarrow \chi_{c1} \gamma$, $X \rightarrow \chi_{\chi 2} \gamma$ \Rightarrow no signal found

Conclusions & Outlook

- X(3872) observed at CDF and D0 with high statistical significance
- already many properties determined:
 - behaves similar to $\Psi(2S)$: isolation, $\cos(\theta_{\pi,\mu})$, rapidity y
 - fraction from B decays
 - $\pi^+ \pi^-$ mass distribution
- experimental evidence seems to point to:
 - X(3872) has positive C parity
 - X(3872) compatible with 'molecular' interpretation
 - $\pi^+ \pi^-$ spectrum compatible with intermediate ρ^0 hypothesis
- yet to come: determination of J^{PC} (CDF), decay modes with photons (D0), ...

BACKUP

The Tevatron $p\bar{p}$ collisions

<u>Runl</u>: 1992 – 1996 data taking period at $\sqrt{s} = 1.8$ TeV

<u>**Runll:**</u> 2001 – 2009 major upgrades to collider and detectors

 $\sqrt{s} = 1.96 \text{ TeV}$

U.Kerzel, University of Karlsruhe Beauty2005

Tevatron performance

Running well - both peak luminosity and integrated luminosity Currently ~15 pb⁻¹ / week delivered

1 fb⁻¹ delivered in beginning of June .

<u>D0:</u>

- excellent muon system and coverage
- large forward tracking coverage
- new in RunII: magnetic field
 - \Rightarrow D0 has joined the field of B physics

<u>CDF:</u>

• precise tracking:

(silicon vertex detector and drift chamber)

• important for B physics:

direct trigger for displaced vertices

Physics at the Tevatron

• large *b* production rates:

 $\sigma(par{p},|\eta|<$ 1.0)pprox20 μ b

- \Rightarrow 10³ times bigger than $\Upsilon(4S)$!
- spectrum quickly falling with p_t
- Heavy and excited states not produced at B factories:

 $B_c, B_s, B^{**}, \Lambda_b, \Sigma_b, \ldots$

- enormous inelastic cross-section:
 - \Rightarrow triggers are essential
- events "polluted" by fragmentation tracks, underlying events
 - \Rightarrow need precise tracking and good resolution!

Dedicated trigger J/ $\Psi \to \mu^{+} \ \mu^{-}$

Evaluate muon chamber info on trigger level:

trigger events where $m(\mu^+ \mu^-)$ around $m(J/\Psi)$

- high quality J/Ψ events
- large statistics available

<u>N.B.</u> channel J/ $\Psi \rightarrow e^+e^-$ much more challenging in complex hadronic environment!

Likelihood function for measuring fraction from B

define likelihood:

$$\mathcal{L} = \prod_{i=1}^{N} \left[f_{Sig} \left((1 - f_{LL}) \mathcal{L}_P + f_{LL} \mathcal{L}_{LL} \right) + \left(1 - f_{Sig} \right) \mathcal{L}_B \right]$$

 $\mathcal{L}_i = \mathcal{F}_i(c au) imes \mathcal{M}_i(m)$ composed of lifetime and mass functions

mass component:

$$\mathcal{M}_{Sig}(m) = G(m - m_0, \sigma_0)$$
Signal: Gaussian, m₀, σ_0 from full fit
$$\mathcal{M}_B(m) = a_0 + a_1(m - \bar{m}) + a_2(m - \bar{m})^2$$
Background: 2nd degree polyn.

<u>lifetime component:</u> exponential with Gaussian resolution

$$\mathcal{F}(c\tau) = R(c\tau' - c\tau, \sigma_{\tau}) \otimes \exp(-c\tau'/\tau_{Sig})$$

Systematics for measuring fraction from B

- <u>mass window</u>
 - shift window at fixed width of 130 MeV/c^2
 - vary width of mass window: 50-250 MeV/c²
- <u>fit model</u>
 - vary parameterisations, e.g. 2 Gaussians instead of 1, etc. (negligible for X(3872))
- <u>multiple</u> candidates (L_{xy} dominated from J/ Ψ decay)
 - randomly select one candidate
 - take highest/lowest p_t candidate
 - take candidate with largest $m(\pi^+\pi^-)$
 - take candidate with smallest error on L_{xv}
 - take candidate with lowest χ^2 in vertex fit
- <u>fit bias</u>
 - generate many pseudo-experiments (Toy-MC) from original fit
 - define pulls and check for deviations from Gaussian at zero

Systematics for m(\pi^+\pi^-) measurement

- Yield systematics:
 - compare yield from Gaussian with counting bin entries
 - replace background parametrisation

$$A\frac{(\alpha+1)(x-x_0)^{\alpha}}{(x_{up}-x_{low})^{\alpha+1}} \cdot \frac{\beta e^{-\beta x}}{e^{-\beta x_{low}}-e^{-\beta x_{up}}} \qquad \begin{array}{l} \mathsf{x}_0 & : \text{turn-on value} \\ \mathsf{x}_{\mathsf{low}}, \mathsf{x}_{\mathsf{up}} & : \text{fit range} \end{array}$$

with polynomial

(n.b. special treatment for points at kinematic boundary)

- vary fit window size from 200 MeV/c² to 150, 250 MeV/c²
- Efficiency systematics:
 - efficiency correction determined from MC
 - measure p_t spectrum from data, vary parameters