

Measurement of CKM angle ϕ_2/α from Belle

Takeo Kawasaki (Niigata University) for the Belle collaboration

Beauty2005, June 20-24, Assisi, Italy

Analysis flow

1) $B^{\theta} \rightarrow \pi^+ \pi^-$ selection

2,820 candidates containing (666 ± 43) $\pi^+\pi^-$ signal events

Obtained by an unbinned 2 D maximum likelihood fitting to $\Delta E-M_{bc}$

Δt distribution and raw asymmetry

Unbinned CP Fit Result

Background subtracted fit projection for all events

Points: ΔE-Mbc 2D fits to individual time intervals

Significance calculation with Feldman-Cousins method

Consistency checks with Time-integrated fits

 $A_{\pi\pi} = +0.52 \pm 0.14$

consistent with time-dependent fit

LR>0.86 & 0.5<r≤1.0 (high likelihood and high tag quality region)

$$A(B^{0} \rightarrow \pi^{+}\pi^{-}) = -(|T| e^{i\delta_{T}} e^{i\phi_{3}} + |P| e^{i\delta_{P}}), \qquad \text{convention taken from} \\ A(\overline{B}^{0} \rightarrow \pi^{+}\pi^{-}) = -(|T| e^{i\delta_{T}} e^{-i\phi_{3}} + |P| e^{i\delta_{P}}), \qquad \text{Phys. Rev. D65, 093012 (2002)} \\ \lambda_{\pi\pi} = e^{i2\phi_{2}} \frac{1 + |P/T| e^{i(\delta+\phi_{3})}}{1 + |P/T| e^{i(\delta-\phi_{3})}} \qquad 4 \text{ parameters} \\ S_{\pi\pi} = [\sin 2\phi_{2} + 2|P/T| \sin(\phi_{1} - \phi_{2})\cos\delta - |P/T|^{2} \sin 2\phi_{1}]/R_{\pi\pi}, \\ A_{\pi\pi} = -[2|P/T| \sin(\phi_{1} + \phi_{2})\sin\delta]/R_{\pi\pi}, \\ R_{\pi\pi} = 1 - 2|P/T| \cos(\phi_{1} + \phi_{2})\cos\delta + |P/T|^{2} \qquad \delta_{T} = \delta_{P} - \delta_{T} \\ \text{Strong phase difference} \\ \hline P/T| \qquad \text{Theory $\widehat{\ 0.15 \ 0.45}} \\ \text{M.Gronau and J.L.Rosner PRD 65, 013004 (2002), YY.Keum, \\ H.-N.Li and A.I.Sanda PRD 63, 054008 (2001)} \\ \sin 2\phi_{1} \qquad 0.736 \pm 0.049 (HFAG Summer 2003) \\ \hline \end{array}$$

Interpretation: |P/T| and δ

We scan ϕ_2 with a constraint of $0^{\circ} < \phi_1 + \phi_2 < 180^{\circ}$, $\phi_1 = (23.5 \pm 1.6)^{\circ}$ to search for the minumim C.L. for various |P/T| and δ

Model-independent 95.4% confidence interval

$$P/T > 0.17$$
, $-180^{\circ} < \delta < -4^{\circ}$

Interpretation: ϕ_2 constraint using isospin

M. Gronau and D. London, PRL 65, 3381 (1990)

 $Br(\pi^{0}\pi^{0}) = (2.3^{+0.4+0.2}_{-0.5-0.3}) \times 10^{-6}$ $A_{CP}(\pi^{0}\pi^{0}) = +0.44^{+0.53}_{-0.52} \pm 0.17$

Use summer 2004 values hep-ex/0412037, appear to PRL

Interpretation : ϕ_2 constraint using isospin

B^0 →($\rho\pi$)⁰ CP analysis (brief result)

Full Dalitz analysis not done yet.

Result on Summer 2004

Use signals with applying cuts on the interference regions

$$B^{0} \rightarrow (\rho \pi)^{0} CP \text{ analysis (brief result)}$$

$$A_{CP} = -0.16 \pm 0.10 \pm 0.02$$

$$S_{\rho \pi} = -0.28 \pm 0.23^{+0.10}_{-0.08}$$

$$C_{\rho \pi} = 0.25 \pm 0.17^{+0.02}_{-0.06}$$

$$\Delta S_{\rho \pi} = -0.30 \pm 0.24 \pm 0.09$$

$$\Delta C_{\rho \pi} = 0.38 \pm 0.18^{+0.02}_{-0.04}$$
From SU(3) constraint
M.Gronau&J.Zupan:PRD70,074031(2004)

$$\phi_{2} = (102 \pm 13 \pm 15)^{\circ}$$
PRL 94, 121801 (2005)

-2.5

0

 $\Delta t \, (ps)$

2.5

-2.5

0

 $\Delta t \, (ps)$

2.5

5

-5

5

PRL 94, 121801 (2005)

Summary of Belle ϕ_2 measurement results

•
$$B^0 \rightarrow \pi^+ \pi^- CP$$
 analysis with 275M BB

 $A_{\pi\pi} = +0.56 \pm 0.12 (stat) \pm 0.06 (syst)$

 $S_{\pi\pi} = -0.67 \pm 0.16 (stat) \pm 0.06 (syst)$

[hep-ex/0502035] accepted and appear to PRL soon

- Large direct CP violation with 4.0σ significance is observed
- The results confirm the previous Belle results.
- Isospin analysis gives at 95.4% C.L.

 $0^{\circ} < \phi_2 < 19^{\circ}$, $71^{\circ} < \phi_2 < 180^{\circ}$

The result is consistent with UT fit value,

 $\phi_2 = 180^{\circ} - \phi_1 - \phi_3 = (89 \pm 23)^{\circ}$

See you at LP05

Backup slides

Systematic errors

	S _{ππ}	Α _{ππ}	
wrong tag	±0.01	±0.01	
physics param.	<0.01	±0.01	
resolution func.	±0.04	±0.01	
bkg ∆t shape	<0.01	<0.01	including uncertainties
event fraction	±0.02	±0.04	State Radiation
fit bias	±0.01	±0.01	
vertexing	±0.04	+0.03	
		-0.01	
tag side	±0.01	+0.02	O. Long, M. Baak,
interfere		-0.04	← R.N. Cahn, and D. Kirkby, PRD 68, 034010 (2003)
total	± 0.06	± 0.06	

Interpretation of direct CP violation

$$A_{CP}(K^{+}\pi^{-}) = -\frac{1}{3}A_{CP}(\pi^{+}\pi^{-})$$

M.Gronau, J.L.Rosner, PLB 595,339(2004)

$$A_{CP}(K^+\pi^-) = -0.109 \pm 0.019$$
 HFAG 2004 summer

Consistent
$$A_{CP}(K^{+}\pi^{-}) = -0.133 \pm 0.030 \pm 0.009$$
 Babar
 $A_{CP}(K^{+}\pi^{-}) = -0.101 \pm 0.025 \pm 0.005$ Belle
PRL 93, 191802(2004)

$$-\frac{1}{3}A_{CP}(\pi^+\pi^-) = -0.19 \pm 0.04$$

New experimental situation

HFAG Moriond 2005

Probability Density Functions (PDFs) for the CP fit

a likelihood function

$$L = (1 - f_{ol}) \int d\Delta t' \{ (f_{\pi\pi} p_{\pi\pi} + f_{K\pi} p_{K\pi}) R_{sig} (\Delta t - \Delta t') + f_{q\bar{q}} p_{q\bar{q}} R_{q\bar{q}} (\Delta t - \Delta t') \} + f_{ol} p_{ol} (\Delta t)$$

$$f_{\pi\pi} + f_{K\pi} + f_{q\bar{q}} = 1$$

 $f_{\pi\pi}, f_{K\pi}, f_{q\bar{q}}$ are event fractions as functions of ΔE and M_{bc} $L_{tot} = \prod L(\Delta t_i, q_i)$ is maximized.

two free parameters: $A_{\pi\pi}$ and $S_{\pi\pi}$

Probability Density Functions (PDFs) for the CP fit

For $\pi^+\pi^-$

$$p_{\pi\pi}(\Delta t, q; A_{\pi\pi}, S_{\pi\pi}) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \{1 - q\Delta w + q(1 - 2w) [A_{\pi\pi} \cos \Delta m\Delta t + S_{\pi\pi} \sin \Delta m\Delta t]\}$$

wrong tag fraction obtained from data

For $K^+\pi^-$

$$p_{K\pi}(\Delta t,q) = \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} \{1 - q\Delta w + q(1 - 2w)A_{K\pi}^{eff}\cos(\Delta m\Delta t)\}$$

$$A_{K\pi}^{eff} = \frac{A_{\varepsilon} + A_{K\pi}}{1 + A_{\varepsilon}A_{K\pi}} \quad A_{\varepsilon} = \frac{p(K^{-} \to \pi^{-})\varepsilon_{\pi^{+}} - p(K^{+} \to \pi^{+})\varepsilon_{\pi^{-}}}{p(K^{-} \to \pi^{-})\varepsilon_{\pi^{+}} + p(K^{+} \to \pi^{+})\varepsilon_{\pi^{-}}}$$

$$A_{K\pi} = -0.109 \pm 0.019 \text{ HFAG2004}$$

For $q\overline{q}$

$$p_{q\bar{q}}(\Delta t,q) = \frac{1+q\delta_{q\bar{q}}}{2} \{f_{\tau} \frac{e^{-|\Delta t|/\tau_{q\bar{q}}}}{2\tau_{q\bar{q}}} + (1-f_{\tau})\delta(\Delta t)\}$$

backup
$$\delta_{q\bar{q}} \text{ is set to 0 in default}$$