

S. Stone Syracuse Univ. June 2005

Conference Summary

Many references not properly cited here. Apologies in advance. Far too much interesting Material to include in 45 min. Apologies in advance.

Physics Goals

- Discover, or help interpret, New Physics found elsewhere using b & c decays - There is New Physics out there: Standard Model is violated by the Baryon Asymmetry of Universe & by Dark Matter
- Measure Standard Model parameters, the "fundamental constants" revealed to us by studying Weak interactions
- Understand QCD; necessary to interpret CKM measurements.

Dark Matter

- <u>1933</u>: Fritz Zwicky measured the motions of galaxies in the Coma cluster
- Found velocities of 1000 km/sec relative to the cluster center.
- This is greater than the escape velocity computed by adding up the light of the cluster galaxies.

Zwicky suggested that a component of "dark matter" adds extra gravity to hold the cluster together.

The Basics: Quark Mixing & the CKM Matrix

$$\mathbf{V} = \mathbf{C} \begin{pmatrix} \mathbf{d} & \mathbf{s} & \mathbf{b} & \overline{\phantom{\mathbf{\partial}}} & \mathbf{mass} \\ 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3 \left(\mathbf{p} - i\eta \left(1 - \frac{1}{2}\lambda^2 \right) \right) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 - i\eta A^2 \lambda^4 & A\lambda^2 \left(1 + i\eta \lambda^2 \right) \\ \mathbf{t} & A\lambda^3 \left(1 - \mathbf{p} - i\eta \right) & -A\lambda^2 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{m} & \mathbf{a} \\ \mathbf{a} & \mathbf{s} \end{pmatrix}$$

- A, λ, ρ and η are in the Standard Model fundamental constants of nature like G, or α_{EM}
- η multiplies i and is responsible for CP violation
 We know λ=0.22 (V_{us}), A~0.8; constraints on ρ & η

All of The CKM Phases

- The CKM matrix can be expressed in terms of 4 phases, rather than, for example λ , A, ρ , η : $\beta = \arg\left(-\frac{V_{tb}V_{td}^*}{V_{cb}V_{cd}^*}\right) \qquad \gamma = \arg\left(-\frac{V_{ub}^*V_{ud}}{V_{cb}^*V_{cd}}\right)$ $\left(-\frac{V_{ub}^*V_{ud}}{V_{cb}^*V_{cd}}\right) \qquad \left(-\frac{V_{ub}^*V_{ud}}{V_{cb}^*V_{cd}}\right)$
 - $\chi = \arg\left(-\frac{V_{cs}^* V_{cb}}{V_{ts}^* V_{tb}}\right) \qquad \chi' = \arg\left(-\frac{V_{ud}^* V_{us}}{V_{cd}^* V_{cs}}\right)$

α= π-(β+γ), not independent
α, β & γ probably large, χ small ~2°, χ' smaller

The 6 CKM Triangles

From Unitarity "ds" - indicates rows or columns used There are 4 independent phases: β , γ , χ , χ' (α can be substituted for γ or β , as $\alpha + \beta + \gamma = \pi$

New Physics Tests

- We can use these CP violating or CP related variables to perform tests for New Physics, or to figure out what is the source of the new physics.
- There are also important methods using Rare Decays
- These tests can be either generic, where we test for inconsistencies in SM predictions independent of specific non-standard model, or model specific

Generic Test: Critical Check using γ

- Silva & Wolfenstein (hep-ph/9610208), (Aleksan, Kayser & London), propose a test of the SM, that can reveal new physics; it relies on measuring the angle χ.
 - ♦ BTeV can use CP eigenstates to measure χ , for example B_s→J/ψη^('), η→γγ, η'→ργ
 - \diamond Can also use J/ $\psi \phi$, but need complicated angular analysis
 - The critical check is: $\sin \chi = \lambda^2 \frac{\sin\beta \sin\gamma}{\sin(\beta+\gamma)}$
 - Very sensitive since $\lambda = 0.2205 \pm 0.0018$
 - Since $\chi \sim 2^{\circ}$, need lots of data

Rare b Decays

New fermion like
 objects in addition to t, c
 or u, or new Gauge-like
 objects

♦ Inclusive Rare Decays such as inclusive $b \rightarrow s\gamma$, $b \rightarrow d\gamma$, $b \rightarrow s\ell^+\ell^-$

♦ Exclusive Rare Decays such as $B \rightarrow \rho \gamma$, $B \rightarrow K^* \ell^+ \ell^-$: Dalitz plot & polarization

MSSM Measurements from Hinchcliff & Kersting (hep-ph/0003090)

CP asymmetry $\approx 0.1 \sin \phi_{\mu} \cos \phi_{A} \sin(\Delta m_{s} t), \sim 10 \text{ x SM}$

Contributions to direct CP violating decay

What have we learned?

CKM Fitter

 Not equivalent to CKM fitter: Much smaller input errors, e.g. V_{ub}. Bayesian statistics...

Example: V_{ub}

 Disagreement between exclusive & inclusive semileptonic V_{ub} determinations

New Belle Results

Important: α via $B \rightarrow \rho\rho$ (mostly)

- From Babar, similar results from Belle in excellent agreement
- ◆ Error dominated by upper limit on
 B→p°p° statistically limited, ideal for
 LHCb

Important: γ from B \rightarrow D°K⁻, D° \rightarrow K_o $\pi^+\pi^-$

Rohar

Are Babar & Belle compatible?

D-11-

DK :	Dabai	Delle
$r_B = 0.118$	$\pm \ 0.079 \pm 0.034 \ _{-0.034}^{+0.036}$	$r_B = 0.21 \pm 0.08 \pm 0.03 \pm 0.04$
$\delta_{\!B}$	$= (104 \pm 45 {}^{+17}_{-21} {}^{+16}_{-24})^{\circ}$	$\delta_B = (157 \pm 19 \pm 11 \pm 21)^{\circ}$
$D^*K: r_B^*$	$= 0.169 \pm 0.096^{+0.030}_{-0.028} {}^{+0.029}_{-0.026}$	$r_B^* = 0.12 + 0.16 \pm 0.02 \pm 0.04$
${\delta_{\!B}}^*$	$= (296 \pm 41 + 14_{-12} \pm 15)^{\circ}$	$\delta_B^* = (321 \pm 57 \pm 11 \pm 21)^\circ$
$\gamma = (7)$	70 ± 31 $^{+12}_{\text{stat.}}$ $^{+14}_{-10}$ $^{-11}_{-11}_{-11}$) °	$\gamma = (68 + 14 + 13 + 13 + 11)_{\text{syst.}} \circ$
◆ Differ	rent r _B values	DK* :
gener	ate very different	$r_{R}(K^{*}) = 0.25 + 0.17 \pm 0.09 \pm 0.04 \pm 0.08$
errors	. If r _B is fixed are	$\delta_{B}(K^{*}) = (353 \pm 35 \pm 8 \pm 21 \pm 49)^{\circ}$
result	s for g compatible?	$\gamma = (112 \pm 35 \pm 9 \pm 11 \pm 8)^{\circ}$

Limits on New Physics via B_d mixing

- Many ways to do this
- Ligeti Beijing 2004
 - ♦ Take V_{ub}/V_{cb} and γ from B→DK⁻ as tree level processes not affected by new physics
 - Take $\Delta m_b = r_d^2 \Delta m_b(SM)$, (r_d magnitude of NP)
 - Take $S_{\psi Ks} = sin(2\beta + 2\theta_d)$, $S_{\rho+\rho} = sin(2\alpha 2\theta_d)$, (θ_d phase of NP)
- Silvestrini UT triangle fits

Constraints on New Physics

gure 8. Allowed regions in the $\rho - \eta$ plane (top) and the $r_d^2 - 2\theta_d$ plane (bottom) in the presence of new vsics in $B - \overline{B}$ mixing. The left [right] plots are the allowed regions without [with] the new constraints on α , cos 2β , and $2\beta + \gamma$. The dark, medium, and light shaded areas have CL > 0.90, 0.32, and 0.05, respectively.

UT Constraints on NP

 Generally same answer as Ligeti, though one can argue with the precision

- ϕ_{Bd} is probably close to ϕ_{SM} and NP can be large wrt to SM for close to equal phases
- Physics via B_s mixing (angle χ is unconstrained)

Using:

- ϵ , Δm_d , sin 2β
- α , cos 2 β & A_{SL}

Rare b Decays

New fermion like objects in addition to t, c or u, or new Gauge-like objects

♦ Inclusive Rare Decays such as inclusive $b \rightarrow s\gamma$, $b \rightarrow d\gamma$, $b \rightarrow s\ell^+\ell^-$

♦ Exclusive Rare Decays such as $B \rightarrow \rho \gamma$, $B \rightarrow K^* \ell^+ \ell^-$: Dalitz plot & polarization

Hadronic B Decays: Phase shifts can be large

Known to be large in D decays

- ♦ B°→D°π° observed by CLEO & Belle & BaBar; construct isospin triangle with B°→D⁺π⁻ & B⁻→D°π⁻, find strong phase shift between 16.5° - 38.1°
- ◆ B^o→D_s⁻K⁺ observed by Belle & BaBar at 4x10⁻⁵ level, evidence for W exchange diagram? or is it rescattering from D⁺π⁻? (phase shifts & rescattering go hand-in-hand) b \overline{d} W^{-} $C_{\overline{s}}$ D_{s}^{+} \overline{d} K^{-}
- Final state rescattering plays a role in interpreting the fundamental CP violating angles from charmless two-body decays

 $(3.4\pm0.7\pm0.3)x10^{-7}$ $(7.8\pm1.8\pm1.2)$ x10⁻⁷ Based on 229 M **BB's** Almost nothing yet

on polarization

Babar here (also Belle)

Thus Beware of Theory

- Example: BBNS a real theory in QCD but failed to get the right two-body branching ratios for $B \rightarrow \pi^{o} \pi^{o}$ and $B \rightarrow K \pi$ (M. Beneke, G. Buchalla, M. Neubert & C.T. Sachrajda, Nucl.Phys. B606 (2001) 245-321)
- Best to test a theory in one place and then use it in another.
- Examples
 - Unquenched Lattice QCD. Check with f_D measurements and ratio f_{D^+}/f_{Ds}

f_D^+ From CLEO-c

New value will be announced at Lepton-Photon conference in Artuso's talk. Error will be $\pm 16^{+9}_{-7}$ MeV

- New Unquenched Lattice result to also appear
- Thus we will have an interesting comparison

Combining Semileptonics & Leptonics

• Decay rate: $\frac{d\Gamma(D \to Pev)}{dq^2} = \frac{\left|V_{cq}\right|^2 P_p^3}{24\pi^3} \left|f_+(q^2)\right|^2$

◆ Test of models in D decays: predictions of shapes of form factors (for D→Vector $\ell^+\nu$ there are 3 form-factors)

Note that this ratio depends only on QCD:

$$\frac{1}{\Gamma(D^+ \to \ell \nu)} \frac{d\Gamma(D^+ \to \pi e \nu)}{dq^2} \alpha \frac{P_{\pi}^3 \left| f_+(q^2) \right|^2}{f_{D^+}^2}$$

New Particles

- This teaches us about QCD & is also lots of fun
- X(3870) found in $B^- \rightarrow K^- \pi^+\pi^- J/\psi$, in $\pi^+\pi^- J/\psi$ mass spectrum by Belle

 $M_x = (3871.9 \pm 0.5) \text{ MeV}$ is within error equal to the D°D°* threshold $(3871.3 \pm 1) \text{ MeV} \rightarrow \text{Speculation: X might be a molecule - like bound state}$

- ◆ Belle observes X→ γ J/ ψ (~14% of $\pi\pi$ J/ ψ rate) ⇒C=+1

• They also see $X \rightarrow \pi^+ \pi^- \pi^0 J/\psi$ (ω below threshold)

CDF & D0 confirmation

Mass Peaks

- m(π⁺π⁻) favours high end of mass spectrum, compatible with intermediate ρ⁰ ! π⁺ π⁻ resonance
- also ³S₁ multipole-expansion for charmonium possible
 - no charmonium candidate at that mass
 - ³S₁ also has J^{PC} = 1⁻) nonobservation by BES

 $\rightarrow \gamma \chi_{C1}$

- CLEO measures $\psi'' \rightarrow \gamma \psi / \psi'' \rightarrow \pi^+ \pi^- \psi$ =1.8±0.4±0.2
- The ψ'' is primarily a 1³D₁ state, expect a 2-3X larger rate for a 1³D₂ state
- ♦ \Rightarrow X(3870) is not a 1³D₂ state

FIG. 1: Energy of the lower energy photon for the selected $e^+e^- \rightarrow \gamma\gamma J/\psi$, $J/\psi \rightarrow l^+l^-$ events at the $\psi(3770)$ resonance. The solid line shows the fit. The dashed lines show the smooth background and the expected background peaks from radiatively produced tail of the $\psi(2S)$ resonance (see the text). The latter saturates the χ_{c2} contribution. The excess of data over the χ_{c1} peak indicated with the dashed line represents the evidence for $\psi(3770) \rightarrow \gamma\chi_{c1}$ transitions.

Other new particles

Belle $e^+e^- \rightarrow J/\psi X$

Fit yields:

	N	$M \left[{\rm GeV}/c^2 \right]$	σ	
η_c	471 ± 40	2.969 ± 0.006	∞	
χ_{c0}	232 ± 37	3.406 ± 0.007	large	
η_c'	350 ± 17	3.626 ± 0.006	HUGE	
X	236 ± 71	3.937 ± 0.012	5.0	
$\overline{\Gamma_X} =$	27 ± 211	MeV; $< 95 \mathrm{MeV}$	at 90)%
CL				

◆Babar – NO PENTAQUARKS!

B_c

Not new but now much better mass determination

Mass = 6287.0 \pm 4.8(stat.) \pm 1.1(syst.) MeV Also confirmation from both CDF & D0 in J/ ψ ℓ ν

Technology

- Necessary elements for a first class heavy flavor experiment
 - Excellent vertex detection time resolution of ~40 fs desired for B_s physics & to reduce bkgrds
 - Particle identification usually via some form of RICH technique
 - \diamond γ, π^o & η detection
 - At hadron colliders selective and efficient b triggers
 - Efficient charged particle tracking
- Sufficient computing resources, include code for alignment, monitoring, calibration & analysis

Trigger Comparison

- ◆ B factories trigger on all hadronic events
- CMS & ATLAS: Single muons above a relatively high p_t threshold & dimuons above a somewhat lower threshold or at high luminosity plus other triggers (see next slide)
- Problem: p_t of the b's peaks at $\sim M_b$
- LHCb: Triggers on intermediate p_t hadrons, electrons or muons then looks for evidence of a detached vertex
- BTeV: Looked for detached vertex in lowest trigger level

ATLAS Trigger Summary

Trigger	LVL1	LVL2 & event filter	Example channels
Di-muon	2 muons	Confirm muons	B _d → J/ψ(μμ)K ⁰ s
	$p_T > 6 GeV (barrel)$	Refit tracks in ID	B _s → J/ψ(μμ)φ
L @	3 GeV (end-caps)	Decay vertex reconstr.	В→µµ В→К⁰∗µµ В→фµµ
2.10 ³³ (L ≈ 10 ³⁴)		Select decays using mass/decay length cuts	$\Lambda_b \rightarrow \Lambda^0 J/\psi(\mu\mu) \Lambda_b \rightarrow \Lambda^0 \mu\mu$
EM+µ	<u>1 muon</u>	Confirm muons & EMC	B _d → J/ψ(μμ)K⁰ _s + b→ eX
	р _т > 6 GeV	Decay vertex reconstr.	$B_d \rightarrow J/\psi(ee)K_s^0 + b \rightarrow \mu X$
L < 2.10 ³³	1 EM cluster	Refit tracks	$B_d \rightarrow K^{0*\gamma} B_s \rightarrow \phi \gamma + b \rightarrow \mu X$
	E _T > 2GeV	Selections	u , s ,, .
Hadronic	<u>1 muon</u>	Confirm muons & j.c.	B _s →D _s (φ(KK))π
	р _т > 6 GeV	Decay vertex reconstr.	B _s →D _s (φ(KK)) a ₁ (ρ ⁰ π ⁺)
L < 2.10 ³³	1 jet cluster	Refit tracks	$B^+ \rightarrow K^+ K^+ \pi^- B_d \rightarrow \pi^+ \pi^-$
	$E_T > 5GeV$	Selections	(+ b→ μX)

As luminosity drops during the fill, more triggers are turned on

Event Environment

- ◆e⁺e⁻ one interaction per crossing
- LHCb ~<1 interaction per crossing, running at 2x10³²/cm²s
- ATLAS & CMS low luminosity (2x10³³/cm²s)
 ~7 int/crossing (initial period ~200 days giving 30 fb⁻¹)
- ATLAS & CMS high luminosity (10³⁴/cm²s) ~35 int/crossing B physics a real challenge
 BTeV was ~7 int/crossing

BTeV Silicon Pixel Detector

Differences due to Trigger

- ♦ CMS ATLAS do relatively well on $B \rightarrow \mu^+\mu^-$, $B \rightarrow K \mu^+\mu^-$, & $B \rightarrow J/\psi$ X, but its harder for them to get purely hadronic decays. Much is from the other B for when they trigger on a single muon, from which they also get a muon flavor tag
- However muon flavor tag is not that good εD²~1% as demonstrated by CDF & D0
- LHCb triggers directly on all "interesting" final states but restricts itself to ~1 interaction per crossing

Differences in Particle ID

- LHCb has (& BTeV had) excellent kaon/pion identification using Ring Imaging Cherenkov detection
 LHCb has effectively 3 systems: one for high momentum in its own tank using CF₄ & two for lower momentum using C₄F₁₀ gas & separately using aerogel
 - CDF & D0 have demonstrated that pid is necessary to get reasonable ~5% εD²
 - ◆ LHCb will be able to measure B_s mixing quickly if CDF/D0 don't do it and will also be able to measure CP violation in $B_s \rightarrow D_s K^-(\gamma)$
- ◆ B factories have good particle id as well

LHCb RICH

Uses HPD's, basically a phototube with a pixel readout chip

Effective pixel size is 2.5x2.5 mm² at the front glass

LHCb beam test

C_4F_{10} run, ring on four HPDs.

single event

accumulated rings

BTeV RICH Test

◆120 GeV proton beam at Fermilab Uses MAPMTs 2.5 cm

BTeV RICH Results

Ng is 43.1 (data), 40.5 MC, excess due to some cross-talk

 5σ separation up to 70 GeV

One Physics Reach Comparison: χ or ϕ_s

♦ Use $B_s \rightarrow J/\psi \phi$, take one year of data for ATLAS 30 fb⁻¹, for LHCb 2 fb⁻¹

гт	1	11_
Н		D
	. –	· ·

Sensitivity (1 year)	$\sigma(\Delta\Gamma_s/\Gamma_s)$	$\sigma(\phi_s)$ [rad]	Annual yield	B/S
$B^0_{\ s} \to J/\psi \phi$	0.018	0.06	100k	< 0.3
B⁰ _s →J/ψη	~ 0.025	~0.1	7k	< 5.1
B⁰₅→η。¢	~ 0.025	~ 0.1	3.2k	< 1.4
Combined ϕ_s sensitivity		~ 0.05	-> Evene	oncitivity

• Although ATLAS gets 15x the data and is using a favored dimuon mode, LHCb does better, result of a dedicated trigger, particle identification, geometry...

Differences in Physics Reach

Good to do what you can, but also need to realize what needs to get done to complete the physics studies

$$B_s$$
 at e^+e^-

 $B \rightarrow \tau \nu$ at hadron colliders

 $B{\rightarrow}\rho\rho$ at ATLAS & CMS

Combination of LHCb & Super-B would address all these issues

The Future

- Unfortunately we will lose CLEO, Babar, CDF, & D0 by ~2009
- LHCb, & Belle are dedicated to heavy flavor physics and will have much to do
- ATLAS & CMS will be able to make a few measurements better
- We will need these data to interpret the new physics found directly at the LHC

Thanks to the Organizers

Without Giancarlo Mantovani and

- Maurizio Biasini, Patrizia Cenci, Riccardo Faccini, Orlando Panella, Attilio Santocchi, Leonello Servoli
- There would not have been this wonderful meeting
- •We all thank you very much!

Thanks to the speakers who after all provide the intellectual input!