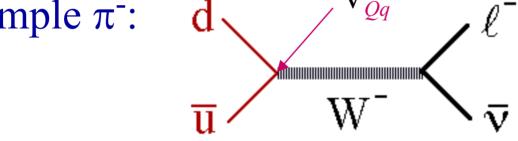


Measurement of $f_D^+ \text{via } D^+ \rightarrow \mu^+ \nu$

Sheldon Stone, Syracuse University

"I charm you, by my once-commended beauty" Julius Cæsar, Act II, Scene I



- \blacklozenge We can compare theoretical calculations of f_D to our measurements and gain confidence in theory to predict f_B
- ◆ f_B is necessary to translate measurement of B°-B° mixing into value for |V_{td}|.
 ◆ If we B⁺→ℓ⁺ν was measured, then we would have a measurement of the product of |V_{ub}| f_B. Knowing f_B gives V_{ub}
- Similarly, can check f_{Ds}/f_D to learn about f_{Bs}/f_B

Leptonic Decays: $D \rightarrow \ell^+ \nu$

Introduction: Pseudoscalar decay constants Q and \overline{q} can annihilate, probability is ∞ to wave function overlap Example π^- : $d \sum_{Qq} V_{Qq} \int_{0}^{-}$

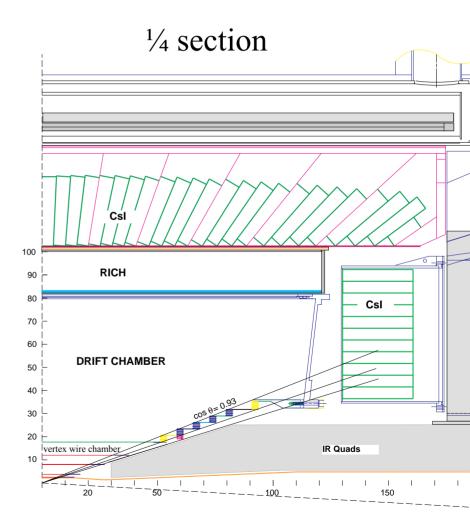
In general for all pseudoscalars:

$$\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}} \right)^{2} |V_{Qq}|^{2}$$

Calculate, or measure if V_{Qq} is known

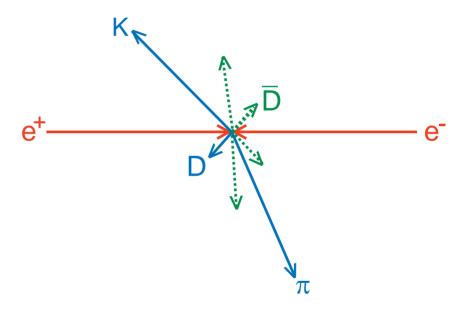
Expected \mathscr{B} for $P^+ \rightarrow \ell^+ \nu$ decays

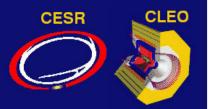
• We know:


- $f_{\pi} = 131.73 \pm 0.15 \text{ MeV}$
- $f_{K} = 160.6 \pm 1.3 \text{ MeV}$
- The D_s has the largest \mathcal{B} , the $\mu^+\nu$ rate is ~0.5%
- f_{Ds} Measured by several groups, best CLEO II, but still poorly known
- \blacklozenge For D⁺ also use $\mu^+\nu$

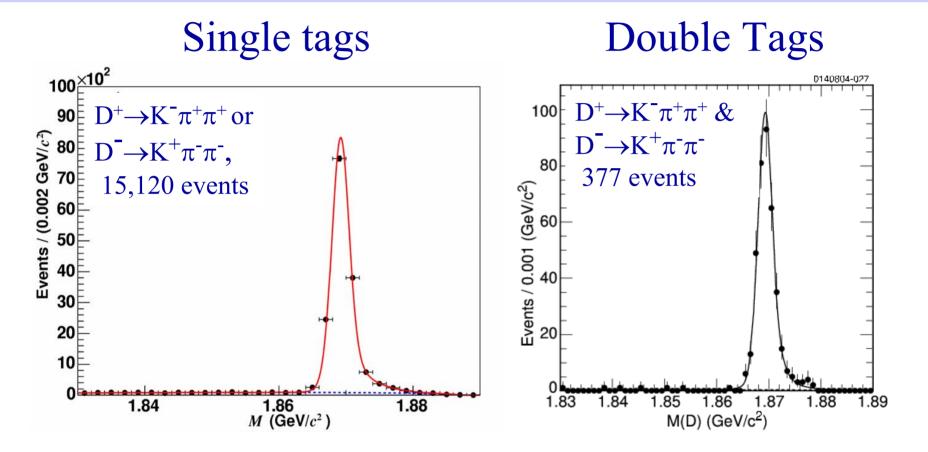
Leptonic Branching Ratios for f=250 MeV 10^{-2} 10^{-4} 10^{-4} 10^{-6} 10^{-6} 10^{-8} 10^{-10} 10^{-10} B^+ D^+ D^+ D^+

CLEO-c Detector


- Upgrade of CLEO II.
 Kept CsI EM calorimeter, magnet & muon system
- New charged particle tracking
- New particle id via RICH
- New inner wire chamber
- B now 1 T, lowered from
 1.5T



Kinematical Niceties


- Ease of \mathcal{B} measurements using "double tags" $\mathcal{B}_A = \# \text{ of } A/\# \text{ of } D's$
- Possible because
 - \diamond relatively large \mathcal{B} (many %),
 - multiplicities typically small
 - $< n_{charged} > = \sim 2.5, < n_{\pi^0} > \sim 1.2,$
 - enough luminosity
- Reconstruct D mesons using: $M_D^2 = \sum E_i^2 - \sum \vec{P}_i^2 = E_{beam}^2 - \sum \vec{P}_i^2$

•System is over constrained if all particles are observed: $\Sigma p_i \Rightarrow 3, E_{tot} \Rightarrow 1, m_D = m_{\overline{D}} \Rightarrow 1$

57 pb⁻¹ of data, we now have 280 pb⁻¹

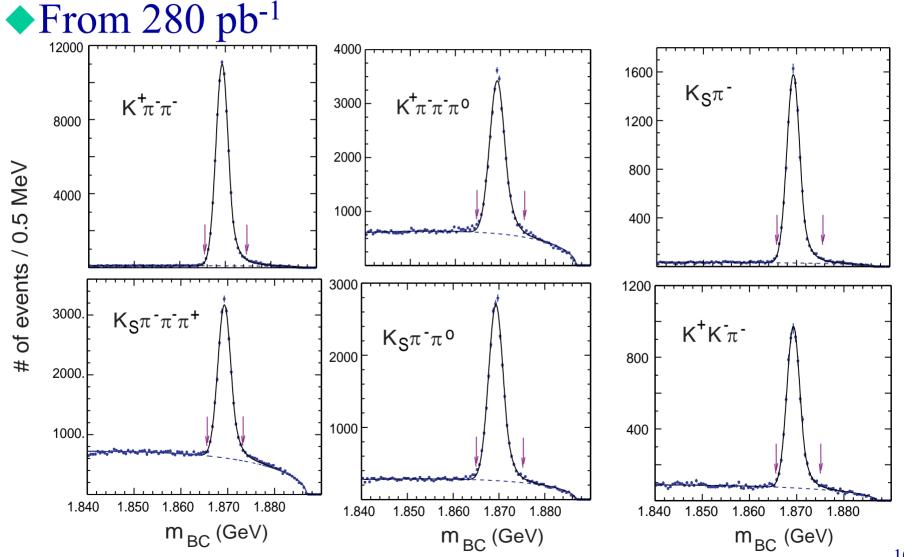
 Ease of leptonic decays using double tags & MM² technique

> $MM^{2} = (E_{D} - E_{\ell})^{2} - (\vec{p}_{D} - \vec{p}_{\ell})^{2}$ We know $E_{D} = E_{\text{beam}}, \vec{p}_{\overline{D}} = -\vec{p}_{D}$

Search for peak near MM²=0

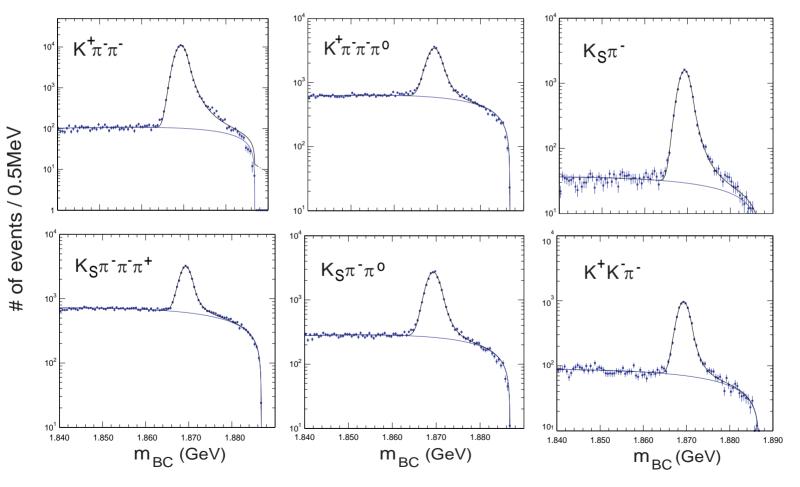
• Since resolution ~ $M_{\pi^0}^2$, reject extra particles with calorimeter & tracking

Note that this method is used to evaluate systematic errors on the tracking efficiency, simply by using double tags with one missing track

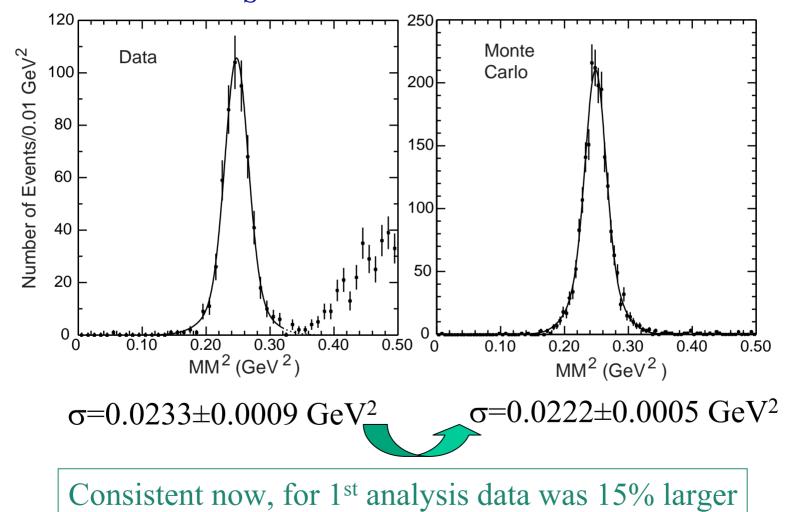


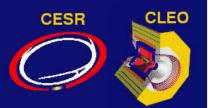
Technique for $D^+ \to \mu^+ \nu$

- Fully reconstruct one D^{\pm}
- Seek events with only one additional charged track and no additional photons > 250 MeV to veto $D^+ \rightarrow \pi^+ \pi^0$
- Charged track must deposit only minimum ionization in calorimeter
- Compute MM²
 - If close to zero then almost certainly we have a $\mu^+\nu$ decay.
 - Can identify electrons to²check background level
 - Expect resolution of $\sim M_{\pi^0}$
 - If $MM^2 > 0$, candidate for $\tau^+\nu$, but this is difficult



Single Tag Sample

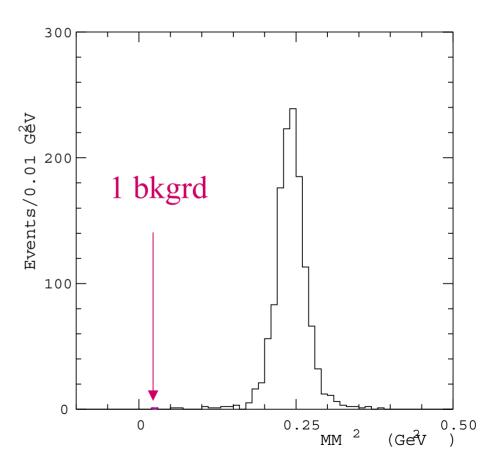

 Fits to Asymmetric signal function (Crystal Ball shape) plus smooth background shape (ARGUS function) – error in tags ±0.3%


MM² resolution

• MM² from K_S π^- from data & MC

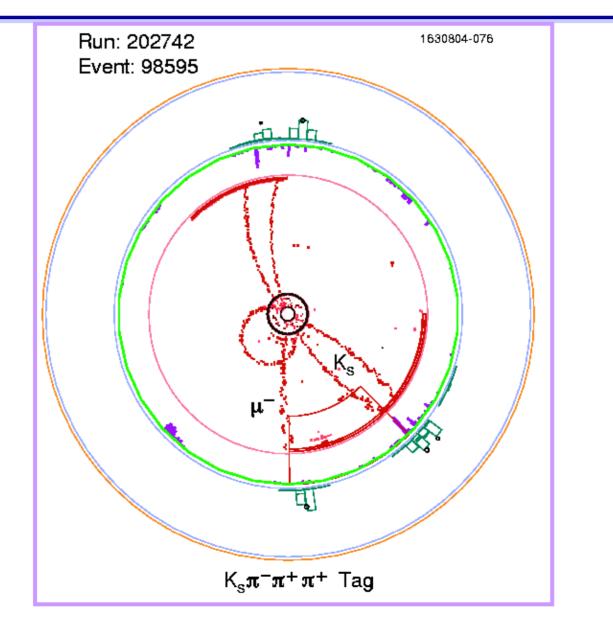
- We don't specifically identify muons, only reject hadronic interactions in the crystals.
- This mode has a $\mathcal{B} = (0.13 \pm 0.02)\%$
- Eliminate by requiring muon candidate be in good barrel region & reject events with an extra γ with E > 250 MeV. Residual effect is 0.3 events in 57 pb⁻¹ and 1.4 events for 280 pb⁻¹.

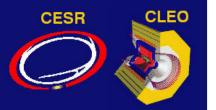
Backgrounds: $D^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow \pi^+ \nu$


- Because D⁺ is nearly at rest can get some very fast π⁺.
- \mathcal{B} is 2.65 x $\mathcal{B}(D^+ \rightarrow \mu^+ \nu)$
- Background is calculated via MC with small error,
 0.2 events for 57 pb⁻¹ and
 1.08 events for 280 pb⁻¹

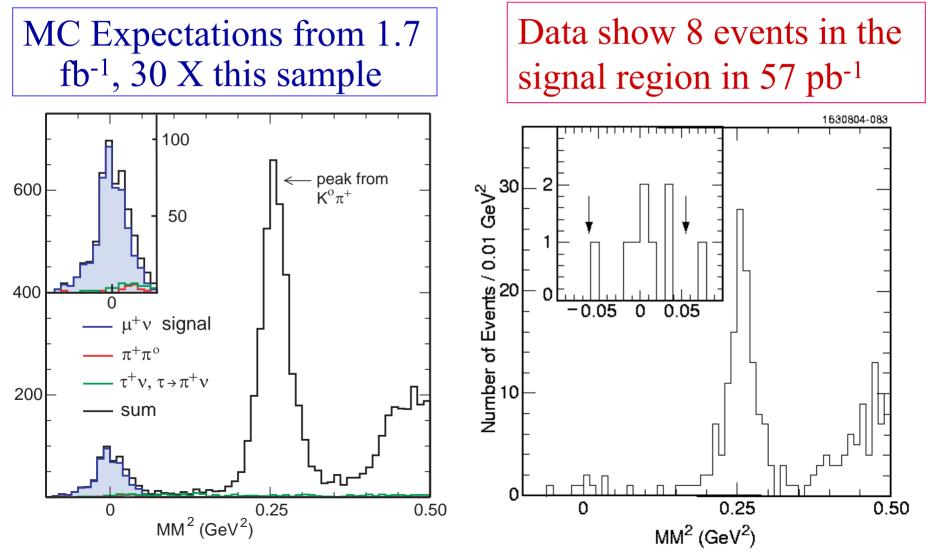
Backgrounds: tail of $D^+ \rightarrow K^0 \pi^+$

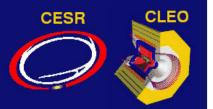
- Two methods
 - Monte Carlo: Simulation gives
 0.44±0.22 events for
 280 fb⁻¹
 - Measurement using double tag events with one $D^{o} \rightarrow K^{-}\pi^{+}$ gives 0.44±0.44 events for 280 fb⁻¹




Simulate:

Continuum sample 540 pb⁻¹ gives 0 events
D°D° sample 540 pb⁻¹ gives 0 events
D+D- 1700 pb⁻¹ gives 0 events, other than the 3 modes we have already considered.



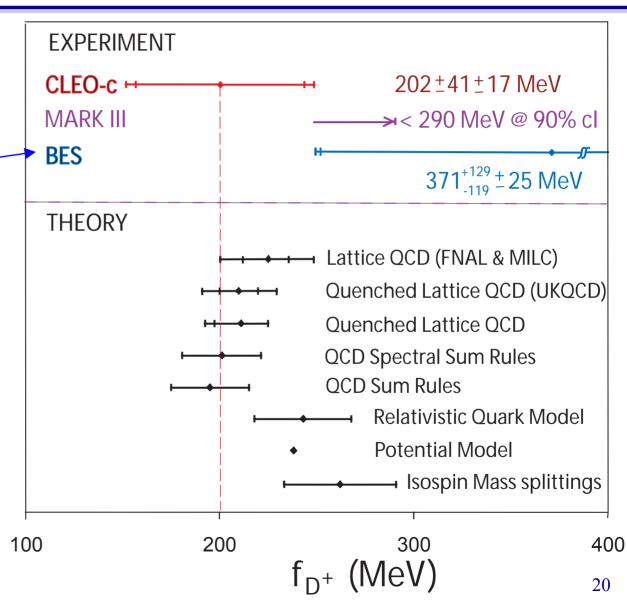

One $D^+ \rightarrow \mu^+ \nu$ Candidate

Measurement of f_{D^+}

Deriving a Value for f_{D^+}

Backgrounds		
Mode	<i>B</i> (%)	# Events
$\pi^+\pi^0$	0.13±0.02	0.31±0.04
$\mathrm{K}^{0}\pi^{+}$	2.77±0.18	0.06 ± 0.05
$\tau^+\nu (\tau \rightarrow \pi^+\nu)$	$2.64^* \mathcal{B}(D^+ \rightarrow \mu^+ \nu)$	0.30 ± 0.07
$\pi^0\mu^+ u$	0.25 ± 0.15	negligible
Continuum	(old estimate)	0.33 ± 0.23
Total		1.00±0.25

For 57 pb⁻¹


- Tags are 28,575 events, $\varepsilon = 69.9\%$
- ♦ $\mathcal{B}(D^+ \to \mu^+ \nu) = (3.5 \pm 1.4 \pm 0.6) \times 10^{-4}$
- $f_{D^+} = (202 \pm 41 \pm 17) \text{ MeV}$
- No $D^+ \rightarrow e^+ v$ events seen

Comparison to Theory

CLEO-c measurement – 8 events

- BES measurement based on 2.67±1.74 events
- Current Lattice measurement (unquenched light flavors) is consistent
- But errors on theory
 & data are still large

Systematic Errors (Current)


	Systematic errors (%)
MC statistics	0.4
Track finding	0.7
PID cut	1.0
MM^2 width	1.0
Minimum ionization cut	1.0
Number of tags	0.3
Extra showers cut	0.6
Total	2.0

Much smaller than statistical errors

New Data

- Now have ~50 events in peak around MM²=0
- New value will be announced at Lepton-Photon conference in Artuso's talk. Error will be ±16⁺⁹₋₇ MeV
- New Unquenched Lattice result to also appear
- Thus we will have an interesting comparison

