Evidence for $B_s^{(*)}$ Production at the Y(5S)

S. Stone

Outline:

> Physics Motivation

> Analysis:

The Inclusive D_s Spectrum.
Exclusive Bs reconstruction
Inclusive D⁰ & D⁺ yields of η,η'& φ

Conclusions & Summary.

Syracuse University CLEO Collaboration

S. Stone Syracuse U

Beauty 2005

Y(5S), Knowledge & Expectations

1. Knowledge from CLEO 1.5

- $\sigma(Y(5S))/\sigma(cont) \sim 1/10.$
- $L=116 \ pb^{-1} \rightarrow No$ direct measurement of B_s production cross section.
- 2. Expectations:
 - Decay channels:

 $B_d B_d$, $B_d B_d^*$, $B_d^* B_d^*$, $B_s B_s$, $B_s B_s^*$, $B_s^*B_s^*$, $B_dB_d\pi\pi$, $B_dB_d\pi$, $B_dB_d\pi$, $B_dB_d^*\pi$, $B^0B^+\pi$.

• The Unitarized Quark Model (UQM):

The B cross section dominated by B^*B^* and $B_s^*B_s^*$; $B_s^{(*)}B_s^{(*)}$ production ~ 1/3 of the total Y(5S) cross section.

 $\sigma(B_{s}B_{s}) + \sigma(B_{s}B_{s}^{*}) + \sigma(B_{s}B_{s}^{*}) \sim 0.1nb.$

• Other models: Predict a smaller $Y(5S) \rightarrow B_s^* \overline{B}_s^*$ component S. Stone Svracuse U

Can we Use the Y(5S) to study B_s ?

Need to investigate the composition of the Y(5S) and see how much B_s is produced
If enough is found, some properties of the B_s can be determined, i.e. semileptonic decay rates, etc...

We will use here inclusive D_s yields as a measure of B_s production

Inclusive $D_s^{\pm} Y$ ields

In the simple spectator model the B_s decays into the D_s nearly all the time. "Normal" B's have smaller rates, in fact $\mathcal{B}(B \rightarrow D_s X) = (10.5 \pm 2.6 \pm 2.5)\%$,

Dominant Decay Diagrams for a B_s meson into D_s meson

Dominant Decay Diagrams for a B meson into D_s meson

Data Sample from CLEO III

We used all the data we collected near or at the Y(4S) resonance and all the data taken right at the Y(5S) peak

with the CLEOIII detector.

Data Type	E_{beam} (GeV)	Luminosity (fb ⁻¹)	# Had events $(x10^6)$
On the Y(4S)	~10.58	6.34	32.2
Below the Y(4S)	~10.54	2.32	9.5
On the $Y(5S)$	~10.86	0.42	1.8

S. Stone <u>Svrac</u>use U

D_s candidates invariant Mass Spectra

Y(4S) on resonance data

Syracuse U

Beauty 2005

D_s Spectra & Production Rates at the Y(4S) & at the Y(5S)

Continuum subtracted, ε corrected & normalized to # of resonance

events.

Yields

 $B(\Upsilon(4S) \Rightarrow D_{s}X) = (22.3 \pm 0.7 \pm 5.7)\%$ $B(B \Rightarrow D_{s}X) = (11.1 \pm 0.4 \pm 2.9)\%$ $PDG \qquad (10.5 \pm 2.6 \pm 2.5)\%$ $Using B(D_{s} \Rightarrow \phi\pi) = (3.6 \pm 0.6)\%$

$Br(\Upsilon(5S) \to \mathcal{D}_{s}X) = (55.0 \pm 5.2 \pm 17.8)\%$

Model Estimate of $B_s \rightarrow D_s X$

- For B_s , b \rightarrow c is ~100%, W \rightarrow c, ~ 15%, could get >100% D_s
- However, $B \rightarrow DD_s$ is ~5%, include unmeasured

- D**D_s + DD_{sJ}, estimate upper vertex gives $(7\pm3)\%$ •However, some Ds are lost due to popping of light quark pair at lower vertex, estimate $(-15\pm10)\%$
- •Total $B_s \rightarrow D_s$ X then is (100 + 7 15)% = 92% with an error of 11%

$B_s^{(*)}$ Production at the Y(5S)

Significant excess of D_s yields at the Y(5S) $\longrightarrow B_s^{(*)} \overline{B_s^{(*)}} B(D_s \rightarrow \phi \pi)/2$ $= f_s . B(B_s \rightarrow D_s X) B(D_s \rightarrow \phi \pi^{\pm})$ $+ \frac{(1 - f_s)}{2} . B(B \rightarrow D_s X) B(D_s \rightarrow \phi \pi^{\pm})$

x (|p|/beamE)

• Using $\mathcal{B}(\mathcal{B}_s \to \mathcal{D}_s X) = (92 \pm 11) \%$ we find:

 $f_{s} = Br(\Upsilon(5S) \rightarrow \mathcal{B}_{s}^{(*)}\mathcal{B}_{s}^{(*)}) = (21 \pm 3 \pm 9)\%$

Systematic Errors

> The 25% error on the absolute branching ratio $D_s \rightarrow \phi \pi$

➤ The 1% relative error on the S_1 scale factor (which caused a 4% error on the number of Y(4S) resonance events), and 1.7% on S_2 (which caused a 21% error on the number of Y(5S) resonance events).

> The 12% on our estimate of $B(B_s \rightarrow D_s X)$.

> The 4.1% component from the D_s detection efficiency.

Evidence for Exclusive B_s Decays

 $B_s^* B_s^*$ production appears to be dominant

Inclusive η , η' , and ϕ Rates

- Maybe useful to distinguish B from B_s
- Use CLEO-c data to measure
- Tag a D^o or a D⁺

Mode	$D^o(\%)$		$D^{+}(\%)$		
	Our result	PDG	Our result	PDG	
η X	$9.4{\pm}0.4{\pm}0.6$	<13	$5.7{\pm}0.5{\pm}0.5$	$<\!\!13$	
$\eta' X$	$2.6{\pm}0.2{\pm}0.2$	-	$1.0{\pm}0.2{\pm}0.1$	-	
ϕ X	$1.0{\pm}0.1{\pm}0.1$	$1.7{\pm}0.8$	$1.1{\pm}0.1{\pm}0.2$	$<\!\!1.8$	

• Since $D_s \rightarrow \eta' X \& \phi X$ are $\geq \approx 16\%$, then these • particles indicative of Bs decays & will be used to S. Stone Syracuse U • further investigate the Y(5S) I_4 Beauty 2005

Conclusions

We report a preliminary measurement of the following Inclusive Production Rates: $B(\Upsilon(4S) \rightarrow \mathcal{D}_s X) \cdot B(\mathcal{D}_s \rightarrow \phi \pi) = (8.0 \pm 0.3 \pm 0.4) \cdot 10^{-3}$ $B(\Upsilon(5S) \rightarrow \mathcal{D}_s X) \cdot B(\mathcal{D}_s \rightarrow \phi \pi) = (20 \pm 2 \pm 4) \cdot 10^{-3}$ $B(\Upsilon(5S) \rightarrow \mathcal{B}_{S}^{(\star)}\overline{\mathcal{B}}_{S}^{(\star)}) = (21 \pm 3 \pm 9)\%$ At the $\Upsilon(5S) \mathcal{B}_{s}^{\star} \mathcal{B}_{s}^{\star}$ appears dominant