Beauty`05, Assisi June 20, 2005

Measurements of the angle α (ϕ_2) at BABAR

saclay

17/06/2005

Sandrine Emery: alpha with BaBar

Outline

- Physics motivation
- How to extract α
- BABAR analysis of the decays:
 - $B \rightarrow \pi \pi$
 - $B \rightarrow \rho \rho$
 - $B \rightarrow \pi \pi \pi$ Dalitz
- Summary on α

CP violation

In Standard Model: due to complex CKM unitary matrix

Wolfenstein parameterization:

$$V_{CKM} = \begin{pmatrix} V_{ud} V_{us} V_{ub} \\ V_{ud} V_{us} V_{ub} \\ V_{cd} V_{cs} V_{cb} \\ V_{td} V_{ts} V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

with $\lambda \cong 0.22$, $A \cong 0.83$ CP violation if $\eta \neq 0$.

CP violation in the interference between mixing and decay

Sandrine Emery: alpha with BaBar

Isospin analysis

Use SU(2) (u and d quarks) to relate amplitudes of all $\pi\pi$ (pp) modes.

$$\frac{A^{+-}}{\sqrt{2}} + A^{00} = A^{+0} = \tilde{A}^{-0} = \frac{\tilde{A}^{+-}}{\sqrt{2}} + \tilde{A}^{00}$$

$$h h = \pi \pi, \rho \rho$$

$$\frac{1}{\sqrt{2}}A^{+-} \qquad A^{00} \qquad A^{+-} = A(B^{0} \rightarrow h^{+}h^{-})$$

$$A^{00} = A(B^{+} \rightarrow h^{+}h^{0})$$

$$A^{00} = A(B^{0} \rightarrow h^{0}h^{0})$$

$$A^{00} = A(B^{0} \rightarrow h^{0}h^{0})$$

$$\sim \text{ for charge conjugate reaction}$$
EW penguins neglected

Measurements of α at BABAR

CP Asymmetry Measurement

- Exclusive B⁰ meson reconstruction.
- Time measurement: $\Delta z \approx 250 \ \mu m$, $\sigma_{\Delta z} \approx 170 \ \mu m$.
- B-flavor tagging: $Q = \sum \epsilon (1-2\omega)^2 \approx 30\%$. with ϵ efficiency and ω mistag rate.

Signal Selection

•Hadron ID \Rightarrow separation π/K

Kinematical identification with

Beam energy substituted mass

•Energy difference

$$m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$$

$$\Delta E = E_B^* - E_{beam}^*$$

•Event-shape variables combined in a neural network or Fisher discriminant to suppress jet-like continuum events

Results of the $B^0 \rightarrow \pi^+\pi^-$ analysis

 $227\times10^6 \ BB$

 $B^0 \rightarrow \pi^0 \pi^0$

 $227 \times 10^6 \text{ BB}$

PRL 94, 181802 (2005)

$$B^+ \rightarrow \pi^+ \pi^0$$

BR = $(1.17 \pm 0.32 \pm 0.10) \times 10^{-6}$ C₀₀ = -0.12 ± 0.56 ± 0.06

BR =
$$(5.8 \pm 0.6 \pm 0.4) \times 10^{-6}$$

A_{±0} = -0.01 ± 0.10 ± 0.02

 C_{00} and A_{+0} : time-integrated charge asymmetries

 $\textbf{379} \pm \textbf{41} \text{ signal events}$

$B^0 \to \rho^+ \rho^-$ analysis

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{d\cos\theta_1 d\cos\theta_2} = \frac{9}{4} \left\{ \frac{1}{4} \left(1 - f_L \right) \sin^2\theta_1 \sin^2\theta_2 + f_L \cos^2\theta_1 \cos^2\theta_2 \right\}$$

But eventually the best mode:

- \blacktriangleright Branching fraction ~ 6 times larger than for $B{\rightarrow}\pi\pi$
- > Penguin pollution much smaller than in $B \rightarrow \pi\pi$ (see later)
- >Almost 100% longitudinally polarized! Pure CP-even state.

17/06/2005

Sandrine Emery: alpha with BaBar

$B^0 \rightarrow \rho^+ \rho^-$ analysis (2) 232 × 10⁶ BB

- Unbinned extended maximum likelihood fit on a data sample of 68703 events.
- Signal Efficiency: 7.7%.
- 8 observables:
 - m_{ES} , ΔE , Δt , NN (like $B^0 \rightarrow \pi\pi$ analysis)
 - $m(\rho \rightarrow \pi\pi) (x2), \cos\theta(\rho \rightarrow \pi\pi)_{hel} (x2)$
- Model signal (1% of sample), continuum (92%), and 38 different modes of B-background (7%).
- Extract signal yield, longitudinal polarization fraction, cosine and sine coefficients.

$A_{CP}(t)$ in $B^0 \rightarrow \rho^+ \rho^-$ decays

${\rm B}^{0} \rightarrow \rho^{0} \rho^{0} \, {\rm and} \, \, \rho^{\scriptscriptstyle +} \rho^{0} \, {\rm analyses}$

PRL 94, 131801 (2005) $227 \times 10^{6} BB$

BR(B⁰→ $\rho^0\rho^0$) < 1.1 ×10⁻⁶ @90% C.L.

 $33^{+22}_{-20}~\pm~12$ signal events

No significant signal, Penguins small in $\rho\rho!$

 f_L = 1 assumed: most conservative limit on BR Dominant systematic: potential interference from $B \rightarrow a_1^{\pm} \pi^{\pm}$ (~22%).

No update yet for $\rho^+\rho^0$: old world average for isospin analysis

Constraining α with $B \rightarrow \pi\pi$, $\rho\rho$

Dalitz analysis of $B^0 \rightarrow (\rho \pi)^0 \rightarrow \pi^+ \pi^- \pi^0$

- Dominant decay $B^0 \to \rho^+ \pi^-$: not a CP eigenstate
- Isospin analysis not viable, too many amplitudes to consider

 $B^0 \rightarrow \rho^+ \pi^-$, $B^0 \rightarrow \rho^- \pi^+$, $B^0 \rightarrow \rho^0 \pi^0$, $B^+ \rightarrow \rho^+ \pi^0$, $B^+ \rightarrow \rho^0 \pi^+$ and charge conjugates

• <u>Better approach</u>: Time-dependent Dalitz analysis • Simultaneous fit of α and T, P amplitudes Snyder-Quinn, PRD **48**, 2139 (1993)

• α constrained with no ambiguity (not like in sin(2 α) measurement)

$$^{O} \rightarrow \pi^{+}\pi^{-}\pi^{0}$$
 results

 $213\times10^6 \ BB$

$$A(B^{0} \to \rho^{\kappa} \pi^{\lambda}) = A^{\kappa \lambda} = T^{\kappa \lambda} e^{-i\alpha} + P^{\kappa \lambda}$$
$$A(\overline{B}^{0} \to \rho^{\kappa} \pi^{\lambda}) = \overline{A}^{\kappa \lambda} = T^{\kappa \lambda} e^{+i\alpha} + P^{\kappa \lambda}$$

(-) $A(B^{0}\rightarrow 3\pi)$: functions of the $A^{\kappa\lambda}$ and well-known kinematics functions of the Dalitz variables $m^{2}(\pi^{+}\pi^{0})$ and $m^{2}(\pi^{+}\pi^{0})$

(__) A(B⁰ \rightarrow 3 π) Time-dependent analysis: Disentangles:

•One constant term

- •One $sin(\Delta mt)$ term
- •One $cos(\Delta mt)$ term

Providing enough contraints on α and tree and penguin amplitudes

Weaker constraint than pp but pp mirror solutions disfavored

Summary on α

1.2

0.8

0.6

0.4

0.2

С

 $\cdots B \rightarrow \pi\pi$

 $---- B \rightarrow \rho \pi$

 $\cdots B \rightarrow \rho \rho$

80

α

100

(deg)

120

140

- pp: best single measurement
- ρπ: disfavors pp mirror solutions
- Combined value: $\alpha = (103^{+10}_{-9})^{\circ}$
- Good agreement with global CKM fit

Accuracy will improve with: 0 More data Update of $\rho^+\rho^0$ and $\rho^+\rho^-$ BR with full data sample

17/06/2005

20

40

60

180

160

BABAR

Combined

H CKM fit