Charmless B decays at CDF

Beauty 2005 10th International Conference on B-Physics at Hadron Machines June 20th-24th, 2005

Simone Donati

INFN Pisa

Charmless decays in hadronic machines

- Why hadronic machines ?
 - Large B_d, B_u yields (comparable with B-factories)
 - Additional access to B_s and Λ_b
- Charmless 2-body B decays are a laboratory for understanding the CKM matrix and looking for new physics.
 - B \rightarrow PP: BR and A_{CP} predictable and sensitive to CKM parameters (γ)
 - $B \rightarrow VV/PV$: Study polarization and CP violation
- Special interest:
 - $B_s \rightarrow K^+K^- \& B_d \rightarrow \pi^+\pi^-$: sensitive to γ [R. Fleischer, Phys. Lett. 459,306 (1999)]
 - $B_s \rightarrow K^+K^-$: CP-eigenstate with sizeable BR, sensitive to $\Delta\Gamma_s$.
 - Hint NP in ϕK_s (ICHEP04), if true, also visible in: $B_{d,u} \rightarrow \phi K^*$, $B_s \rightarrow \phi \phi$

In this talk L_{int} =180(360) pb⁻¹ \rightarrow TODAY about 700 pb⁻¹ on tape

CDFII: the first hadronic experiment to study charmless B decays

Tracking:

- Central Drift chamber (COT)
 96 layers, σ(P_T)/P_T² ~ 0.1% GeV⁻¹
- Silicon Vertex detector (1+5+2 layers)
 I.P. resolution 35 µm @2GeV
- PID from dE/dx+TOF
- Trigger:
 - Drift chamber tracks: eXtremely Fast Tracker (at L1)
 - Silicon Vertex Trigger (at L2): allows powerful triggers based on impact parameters and transverse B decay length (CDF first hadron experiment)

See M. Dell'Orso's talk "The SVT Trigger at CDF"

$B^{0}_{d,s} \rightarrow PP(\pi^{+}\pi^{-}, K^{+}\pi^{-}, K^{+}K^{-})$ sample selection

- \rightarrow small B impact parameter
- ✓ Light quark background
 → require B isolated (offline)

$$I(B) = \frac{P_{T}(B)}{P_{T}(B) + \sum_{cone} P_{Ti}}$$

85% efficient on signal, reduces background by factor 4

$B^{0}_{d,s} \rightarrow PP(\pi^{+}\pi^{-}, K^{+}\pi^{-}, K^{+}K^{-})$ selection cuts

- 2 opposite charge tracks, p_{T1} , $p_{T2} > 2.0$ GeV/c
- $p_{T1} + p_{T2} > 5.5 \text{ GeV/c}$
- 20° < $\Delta \phi$ < 135°
- ✓ 150 μ m < |d0_{1, 2}| < 1 mm
- |d0(B)| < 80 μm
- Lxy(B) > 300 μm
- Isolation(B) > 0.5

Signal: 893 ± 47 events. S/B > 2 at peak. **N.B. S/B ~10⁻⁸ at production.** The 4 major expected modes $B_d \rightarrow \pi\pi$, $K\pi$, $B_s \rightarrow K\pi$, KK overlap to form a single unresolved bump.

Disentangling the $B^0_{d,s} \rightarrow h^+h^-$ contributions

Separation from Kinematics

- \checkmark Use $\pi\pi$ -mass vs signed momentum imbalance.
- $\sim \alpha = [1 p_{min} / p_{max}] \times q$ discriminates amongst modes and between flavors for $K\pi$ decays.
- All 4 possible mass assignments depend of $(\alpha, M \pi \pi)$ which have a information.

the mass vs signed
entum imbalance.
**1-p_{min}/p_{max}] x q_{min}
minates amongst
es and between
rs for K
$$\pi$$
 decays.
possible mass
nments depend on
 $l\pi\pi$) which have all
mation.
 $\mathbf{B}^{0}_{d} \rightarrow \pi \mathbf{K} \ (\alpha < \mathbf{0})$
 $\mathbf{B}^{0}_{d} \rightarrow \pi \mathbf{K} \ (\alpha < \mathbf{0})$
 $\mathbf{M}^{2}(\pi \mathbf{K}) = \mathbf{M}^{2}(\mathbf{B}^{0}_{d}) + (\mathbf{2} + \alpha)(\mathbf{m}^{2}_{\pi} - \mathbf{m}^{2}_{K})$
 $CDF Run 2, Monte Carlo
 5.5
 5.4
 5.4
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.5
 5.6
 5.7
 5.6
 5.7
 5.7
 5.7
 5.7
 5.6
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 5.7
 $5.7$$**

 $\overline{\mathbf{B}^{\mathbf{0}}}_{\mathbf{d}} \rightarrow \pi \mathbf{K} (\alpha > \mathbf{0})^{\prime}$ $M^{2}(\pi K) = M^{2}(B^{0}_{d}) + (2 - \alpha)(m^{2}_{\pi} - m^{2}_{K})$

Separation from PID (dE/dx)

- K/π separation: 1.4 σ @P_T>2 GeV/c CDF Run II preliminary 0.06 Performance calibrated and separation measured on very pure K and π samples from huge $D^{*+} \rightarrow D^0 \pi^+$ sample 0.05 collected by the ŠVT trigger. 0.04 Calibration performed in the same momentum range as of the analysis 0.03 tracks. 0.02 Control of systematic errors: Residual gain/baseline fluctuations cause correlated fluctuations of tracks 0.01 in same event. They have been measured and explicitly included in the 0 fit.
 - dE/dx residuals (ns)

Fit projections (I)

9

Fit projections (II)

Results: B_d sector

 $A_{CP}(B_d \rightarrow K\pi) = -0.04 \pm 0.08(\text{stat.}) \pm 0.01(\text{sys.})$

BaBar: $A_{CP}(B_d \rightarrow K\pi) = -0.133 \pm 0.030(stat.) \pm 0.009(syst.)$

Belle: $A_{CP}(B_d \rightarrow K\pi) = -0.101 \pm 0.025(stat.) \pm 0.005(syst.)$

A_{CP} result compatible with B-factories

✓ Current sample being analyzed: x3 statistics ($B_d \rightarrow K\pi \sim 1600$) expect A_{CP} at ~ 4.5% level

Good cross check: $BR(B_d \rightarrow \pi\pi)/BR(B_d \rightarrow K\pi)$ = 0.24 ±0.06(stat.) ± 0.04(sys.)

HFAG w.a.: BR(B_d $\rightarrow \pi\pi$)/BR(B_d $\rightarrow K\pi$) = 0.246 ± 0.025

Results: B_s sector

 $BR(B_s \rightarrow KK) = 0.50 \pm 0.08(stat.) \pm 0.09(sys.) \times BR(B_d \rightarrow K\pi) \times (f_d/f_s)$

Using PDG 2004 we obtain: $BR(B_{s} \rightarrow KK) = (34.3 \pm 5.5 \pm 5.2) \times 10^{-6}$

BR(B_s \rightarrow K π)/BR(B_d \rightarrow K π) < 0.11 × (f_d/f_s) @ 90%C.L.

- ✓ BR(B_s→KK) measured with resolution 15%(stat)+15%(syst)

Systematic $B_{d,s} \rightarrow PP$

C Dominant systematics:

- dE/dx calibration
- Isolation cut efficiency (measured from CDF samples of Bs \rightarrow J/ $\psi\phi$, Bs \rightarrow D_s π , Bd \rightarrow J/ ψ K^{0*})
- Both systematics are of statistical origin, and expected to go down with sample size

source	$\frac{f_s}{f_d} \cdot \frac{BR(B_s \to KK)}{BR(B_d \to K\pi)}$
background model	$+0.005 \\ -0.005$
mass resolution	+0.001 -0.004
dE/dx correlation: RMS(s)	+0.043 -0.031
dE/dx correlation: $pdf(s)$	+0.002 -0.002
dE/dx tail	+0.056
dE/dx shift	+0.001
input masses	+0.002 +0.027
B_d , B_s lifetime	+0.028 +0.004
$\Delta \Gamma_{e}/\Gamma_{e}$ Standard Model	+0.004 +0.007
MC statistics	+0.006 +0.004
isolation efficiency	$+0.051 \\ -0.051$
charge asymmetry	-
XFT-bias correction	$+0.010 \\ -0.007$
$p_T(B)$ spectrum	+0.007 -0.007
TOTAL	±0.09

Theory: $B_s \rightarrow K^+K^- vs B_d \rightarrow \pi^+\pi^-$

Limits on rare B_d, B_s modes

$$BR(B_{d} \rightarrow KK)/BR(B_{d} \rightarrow K\pi) < 0.17 @ 90\% C.L.$$

$$BR(B_s \rightarrow \pi \pi)/BR(B_s \rightarrow KK) < 0.10 @ 90\% C.L.$$

BR×10⁶, Limits @90% CL

The equal lifetimes for KK and $\pi\pi$ modes

	CDF	PDG04	Expectations
BR(B _d →K ⁺ K ⁻)	<3.1*	< 0.6	[0.01 - 0.2] [Beneke&Neubert] NP B675, 333(2003)
BR(B _s →π ⁺ π ⁻)	<3.4**	< 170	0.42 ± 0.06 [Li et al. hep-ph/0404028] [0.03 - 0.16] [Beneke&Neubert]
		·	*Based on BR($B_d \rightarrow K^+\pi^-$) from PDG2004

- ✓ Greatly improved limit on B_s→π⁺π⁻

Charmless Λ_{b} decays

- Use the same data to look to search for charmless Λ_b decays to ph⁻
 - Large direct CP asymmetries expected
- Predictions:
 - BR(Λ_b→pK), BR(Λ_b→pπ) ~ 10⁻⁶ -2*10⁻⁶ [Mohanta, Phys. Rev. D63:074001, 2001]
- Current limits:
 - BR(∧_b→pK)<50×10⁻⁶ @90% C.L.
 - BR(Λ_b→pπ)<50×10⁻⁶ @90% C.L.

Using f_{Λ}/f_{d} =0.25±0.04: BR(Λ_{b} \rightarrow $p\pi$)+BR(Λ_{b} \rightarrow pK)<23×10⁻⁶

Improved sensitivity in the future with proton PID from TOF+dE/dx

$B_s \rightarrow \phi \phi(VV)$ sample selection

<u>TRIGGER: very similar requirement to $B \rightarrow PP$, based just on impact parameter</u> <u>Blind analysis (expected a small yield)</u>

<u>Optimized cuts</u>: lifetime, Vertex quality, impact parameter of B_s , transverse momentum of ϕ , impact parameter of ϕ daughter tracks

Signal search and BR

```
measurement \rightarrow maximize:
```

$$\frac{1}{S_{\min}} \propto \frac{\mathcal{E}(t)}{a/2 + \sqrt{B(t)}} \quad ; a=3. \quad t=set \text{ of cuts}$$

Where $\epsilon(t)$ is the signal efficiency from MC and B(t) is the expected background from sidebands extrapolation for the set t of selection

Cuts. For a=3 maximize the sensitivity region for a 3 sigma discovery with 99% C.L. [G.Punzi,hep-ph/0308063]

Nice feature: optimization independent of MC normalization

For the control sample $B_s \rightarrow J/\psi \phi$ maximize usual Significance = S(t)/sqrt(S(t)+B(t))

Optimization sample $B_s \rightarrow \phi \phi$

- Optimized set of cuts:
 - L_{xy}(B) > 350 μm
 - |d0(B)| < 80 μm
 - χ²_{xy} < 10
 </p>
 - p_T(ϕ₁) > 2.5 GeV/c

● |d0(ϕ₁)|>40 μm |d0(ϕ₂)|>110 μm

Μ(ΚΚμμ) [GeV/c²]

Decay	Signal region	Sideband
J/ψ φ	М _{µµ} -М _{J/ψ} <50 МеV/с² М _{КК} -М _¢ <15 МеV/с²	M _{KK} ∈ [0.985,1.0] U [1.04,1.06] GeV/c ² M _B ∈ [5.0,5.5] GeV/c ²
φφ	M _{KK} -M _φ <15 MeV/c² for both φ's	M _{KK} ∈ [0.985,1.0] U [1.04,1.06] GeV/c ² M _B ∈ [4.9,6.0] GeV/c ²

Towards second generation analyses

 $B_s \rightarrow \phi \phi$ 12 events (180 pb⁻¹) \longrightarrow 44 events (360 pb⁻¹) Plan to perform polarization measurements

$B_d \rightarrow \phi K^{*0} (VV)$

- Other interesting $B \rightarrow VV$ mode for polarization measurement.
- ✓ Selection similar to $B_s \rightarrow \phi \phi$

Optimized set of cuts:

- L_{xy}(B) > 350 μm
- |d0(B)| < 100 μm</p>
- χ²_{xy} < 8
 </p>
- p_T(B) > 4.0 GeV/c
- p_T(soft) > 1.3 GeV/c
- |d0(soft)| > 120 μm
- Isol(B) > 0.5
- Extended unbinned ML fit to:
 - М_{ккк}
 - Μφ

 - dE/dx deviation from the expected value (pion hypothesis) for the lowest momentum trigger track.

- Background sources:
 - B[±]→f⁰K[±]
 - **B**[±]→K*⁰π[±]
 - **B**_{u,d}→ \(\phi X)
 - combinatorial background

$B^{\pm} \rightarrow \phi K^{\pm}$ projections (I)

$B^{\pm} \rightarrow \phi K^{\pm}$ projections (II)

$B^{\pm} \rightarrow \phi K^{\pm}$ results

Normalize yield to $B^{\pm} \rightarrow J/\psi$ K[±] to measure BR, similar technique as for $B_s \rightarrow \phi \phi$

$$BR(B^{\pm} \to \varphi K^{\pm}) = (7.6 \pm 1.3(stat.) \pm 0.7(syst.)) \cdot 10^{-6}$$
$$A_{CP}(B^{\pm} \to \varphi K^{\pm}) = \frac{\Gamma(B^{-} \to \varphi K^{-}) - \Gamma(B^{+} \to \varphi K^{+})}{\Gamma(B^{-} \to \varphi K^{-}) + \Gamma(B^{+} \to \varphi K^{+})} = -0.07 \pm 0.17(stat.)^{+0.03}_{-0.02}(syst.)$$

Accepted for publication on PRL (hep-ex/0502044)

Conclusions and Perspectives

- Charmless 2-body B decays are reality to CDFII now increasingly important with Tevatron higher luminosity and Trigger upgrade.
- For a long time unique results on B_s and Λ_b modes: $B_{s} \rightarrow KK, B_{s} \rightarrow K\pi, B_{s} \rightarrow \pi\pi, B_{s} \rightarrow \phi\phi, \Lambda_{b} \rightarrow p\pi, \Lambda_{b} \rightarrow pK$
- Now better tracking and PID and x2 luminosity.
- Much more to come:
 - Precision BR(B_s \rightarrow KK), B_s \rightarrow KK lifetime $\rightarrow \Delta \Gamma_{s}$
 - $B_s \rightarrow K\pi$ BR and direct A_{CP}
 - Precision $A_{CP}(B_d \rightarrow K\pi)$ (full Run II statistics 1%)
 - Measure "untagged" quantities with $B_s \rightarrow \phi \phi$ events
- ✓ Tagged time-dependent measurements further ahead:
 A_{CP}(t) parameters for B_d→ππ and B_s→KK.

CDFII the first hadronic experiment to study charmless B decays

Tracking:

- Central Drift chamber 96 layers (COT) σ(P_T)/P_T² ~ 0.1% GeV⁻¹
- Silicon Vertex detector (1+5+2 layers) I.P. resolution 35µm@2GeV
- PID from dE/dx+TOF

Trigger:

• eXtremely Fast Tracker (at L1): trigger on drift chamber tracks (axial view only)

 Silicon Vertex Trigger (at L2): Allows powerful triggers based on impact parameters and transverse B decay length, (unique to CDF)

See M. Dell'Orso's talk "The SVT Trigger at CDF"

$B_{d,s} \rightarrow PP$ analytic equations

B mesone	$\mathcal{M}^2(\alpha) = \mathcal{M}(\alpha < 0)$
$B_d \to \pi\pi$	$M_{B_d^0}^2$
$B_d^0 \to \pi K$	$M_{B_d^0}^2 + (2+\alpha)(m_\pi^2 - m_K^2)$
$\overline{B}^0_d \to K\pi$	$M_{B_d^0}^2 + (1 + \frac{1}{1 + \alpha})(m_\pi^2 - m_K^2)$
$\overline{B}{}^0_s \to \pi K$	$M_{B_s^0}^2 + (2+\alpha)(m_\pi^2 - m_K^2)$
$B_s^0 \to K\pi$	$M_{B_s^0}^2 + (1 + \frac{1}{1 + \alpha})(m_\pi^2 - m_K^2)$
$B_s \to KK$	$M_{B_s^0}^2 + (3 + \alpha + \frac{1}{1 + \alpha})(m_\pi^2 - m_K^2)$

${\cal B}$ mesone	$\mathcal{M}^2(\alpha) = \mathcal{M}^2(\alpha > 0)$
$B_d \to \pi\pi$	$M_{B_d^0}^2$
$\overline{B}_d^0 \to \pi K$	$M_{B_d^0}^2 + (2 - \alpha)(m_\pi^2 - m_K^2)$
$B^0_d \to K\pi$	$M_{B_d^0}^2 + (1 + \frac{1}{1 - \alpha})(m_\pi^2 - m_K^2)$
$B_s^0 \to \pi K$	$M_{B_s^0}^2 + (2 - \alpha)(m_\pi^2 - m_K^2)$
$\overline{B}{}^0_s \to K\pi$	$M_{B_s^0}^2 + (1 + \frac{1}{1 - \alpha})(m_\pi^2 - m_K^2)$
$B_s \to KK$	$M_{B_s^0}^2 + (3 - \alpha + \frac{1}{1 - \alpha})(m_\pi^2 - m_K^2)$

Systematic $B_{d,s} \rightarrow PP$

source	$\frac{f_s}{f_d} \cdot \frac{BR(B_s \rightarrow KK)}{BR(B_d \rightarrow K\pi)}$	$A_{CP}(B_d \to K\pi)$	$\frac{BR(B_d \rightarrow \pi\pi)}{BR(B_d \rightarrow K\pi)}$	$\frac{f_d}{f_s} \cdot \frac{BR(B_d \rightarrow \pi \pi)}{BR(B_s \rightarrow KK)}$
mass resolution	$^{+0.001}_{-0.004}$	$^{+0.001}_{-0.001}$	$^{+0.001}_{-0.002}$	$^{+0.001}_{-0.001}$
dE/dx correlation: RMS(s)	$^{\mathrm +0.043}_{\mathrm -0.031}$	$^{+0.002}_{-0.002}$	$^{+0.034}_{-0.025}$	$^{+0.029}_{-0.017}$
dE/dx correlation: $pdf(s)$	$^{+0.002}_{-0.002}$	$^{+0.002}_{-0.002}$	$^{+0.000}_{-0.000}$	$^{+0.002}_{-0.002}$
dE/dx tail	$^{+0.056}_{-0.056}$	$^{+0.003}_{-0.003}$	$^{+0.020}_{-0.020}$	$^{+0.017}_{-0.017}$
dE/dx shift	$^{+0.001}_{-0.002}$	$^{+0.001}_{-0.001}$	$^{+0.001}_{-0.003}$	$^{+0.017}_{-0.005}$
input masses	$^{+0.027}_{-0.028}$	$^{+0.003}_{-0.003}$	$^{+0.009}_{-0.010}$	$^{+0.009}_{-0.010}$
background model	$^{+0.005}_{-0.005}$	$^{+0.002}_{-0.002}$	$^{+0.003}_{-0.003}$	$^{+0.000}_{-0.000}$
lifetime	$^{+0.004}_{-0.004}$	-	-	$^{+0.004}_{-0.004}$
isolation efficiency	$^{+0.051}_{-0.051}$	-	-	$^{+0.050}_{-0.050}$
MC statistics	$^{+0.004}_{-0.004}$	$^{+0.001}_{-0.001}(*)$	$^{+0.003}_{-0.003}$	$^{+0.006}_{-0.006}$
charge asymmetry	-	$^{+0.002}_{-0.002}$	-	-
XFT-bias correction	$^{+0.010}_{-0.007}$	-	$^{+0.004}_{-0.004}$	$^{+0.015}_{-0.010}$
$p_T(B)$ spectrum	$^{+0.007}_{-0.007}$	-	-	$^{+0.007}_{-0.007}$
$\Delta \Gamma_s / \Gamma_s$ Standard Model	$^{+0.007}_{-0.006}$	-	-	$^{+0.006}_{-0.006}$
TOTAL	±0.09	± 0.01	± 0.04	± 0.07

Systematics of $B_s \rightarrow \phi \phi$

- Systematic error dominated by normalization mode BR uncertainty and already similar in size to the statistical error
- Theory uncertainty on polarization very conservative (vary longitudinal fraction in 20 % to 80% range as suggested by A. Kagan)
- $\Delta \Gamma_{\rm s}$ uncertainty based on the preferred theory value of: $\Delta \Gamma_{\rm s}/\Gamma_{\rm s} = 0.12 \pm 0.06$
- BR is rather on the low side respect to QCDF (2.5 σ) 1.4 vs 3.7 E-5

Source	Relative error on BR
Trigger efficiency	3.3 %
$J/\psi\phi$ yield and efficiency	8.4%
Background subtraction	5.4%
$B_s \rightarrow \phi \phi$ polarization	3.8%
$B_s \rightarrow J/\psi \phi$ polarization	1.4%
$\Delta\Gamma_{s}$ uncertainty	0.6%
J/ ψ and ϕ BR	2.1%
Sub Total	11 %
BR(J/ ψφ)	35%
Total	37%

BR($B^{\pm} \rightarrow \phi K^{\pm}$) syst. uncertainties

- Systematic error on BR dominated by fit uncertainty and acceptance correction, largely below statistical uncertainty
- A_{CP} systematic is largely statistical in nature, intrinsic systematic below 0.01
- Comparable to B-factory experiments

Source	Relative error on BR
Trigger efficiency	3.3 %
J/wK yield and efficiency	4.0%
Efficiency Ratio	3.6%
B [±] → φ K [±] fit syst.	3.0%
J/ψ and φ BR	2.1%
B [±] → φ K [±] BR	0.4%
Total	7.4 %
Source	error on Acp
B [±] → φ K [±] fit syst.	+0.034
	-0.020
Charge asymmetry	±0.005