Semileptonic and radiative B decays

Paolo Gambino INFN Torino

A set of interdependent measurements

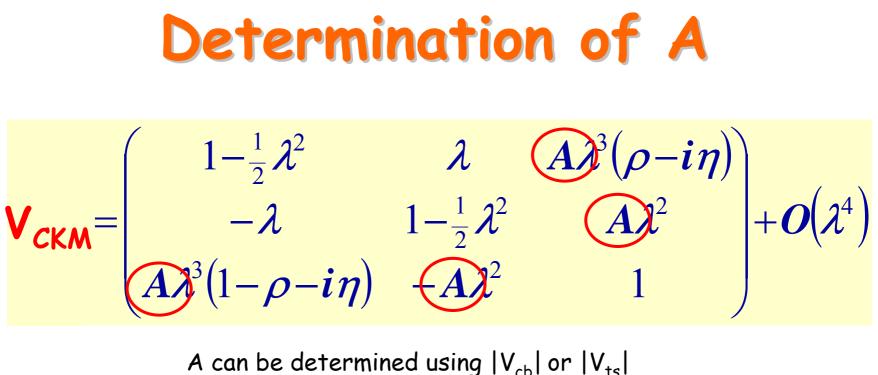
b→clv	tree	BR~10%	V _{cb}	
b→ulv	tree	~10 ⁻³	V _{ub}	
b→s γ	loop	~3 10-4	new physics, V _{ts}	
b→d γ	loop	~ 10 ⁻⁶	new physics, V _{td}	

There are also $b \rightarrow s, dl^+l^-$ to complement the radiative modes Not only BR are relevant: various asymmetries, spectra etc

What do they have in common?

<u>Simplicity</u>: ew or em currents probe the B dynamics

IN	CL	US:	CVE

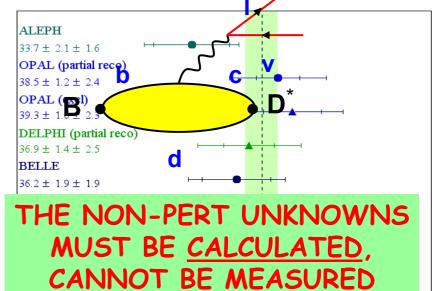

B

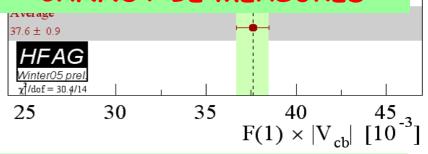
OPE: non-pert physics described by B matrix elemnts of local operators can be extracted by exp suppressed by $1/m_b^2$

EXCLUSIVE

Form factors: in general computed by non pert methods (lattice, sum rules,...) symmetry can provide normalization

Simplicity is almost always destroyed in practical situations...

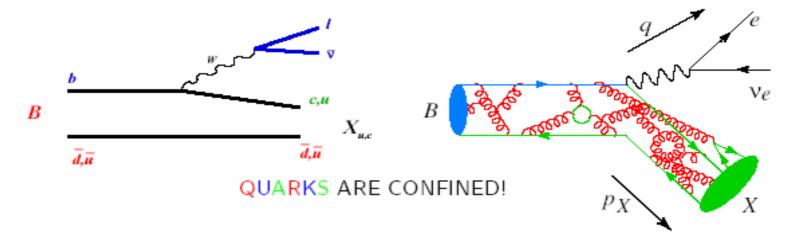

$|V_{cb}|$ from $B \rightarrow D^* |_V$


At zero recoil, where rate vanishes. Despite extrapolation, exp error ~ 2% Main problem is form factor F(1)

The non-pert quantities relevant for excl decays cannot be experimentally determined Must be calculated but HQET helps.

 $F_{B\to D^*}(1) = \eta_A [1 - O(1/m_b, 1/m_c)^2]$

Lattice QCD: F(1) = 0.91^{+0.03}-0.04 Sum rules give consistent results Needs unquenching (under way) Even slope may be calculable...


 $\delta V_{cb}/V_{cb} \sim 5\%$ and agrees with inclusive det, despite contradictory exps

 $B \rightarrow DIv$ gives consistent but less precise results; lattice control is better

The advantage of being inclusive

 $\Lambda_{QCD} \ll m_b$: inclusive decays admit systematic expansion in Λ_{QCD}/m_b Non-pert corrections are generally small and can be controlled

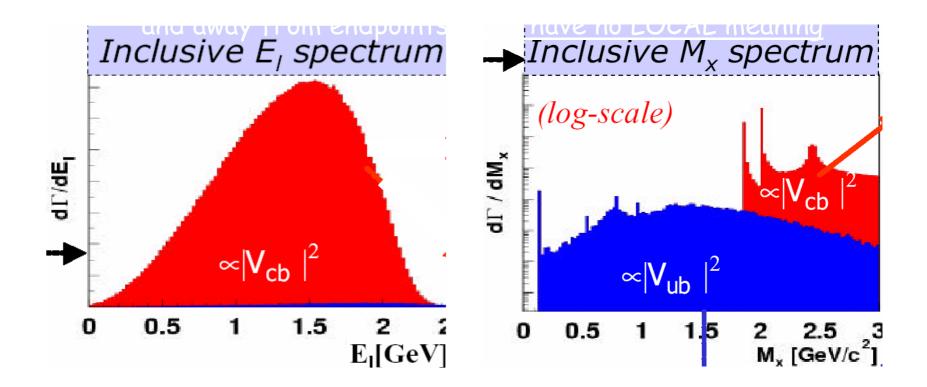
Hadronization probability =1 because we sum over all states Approximately insensitive to details of meson structure as $\Lambda_{QCD} \ll m_b$ (as long as one is far from perturbative singularities)

 $\frac{d^{2}\Gamma}{dE_{l}dq^{2}dq_{0}}$ can be expressed as double series in α_{s} and Λ_{QCD}/m_{b} (OPE) with parton model as leading term No 1/m_b correction!

A double expansion

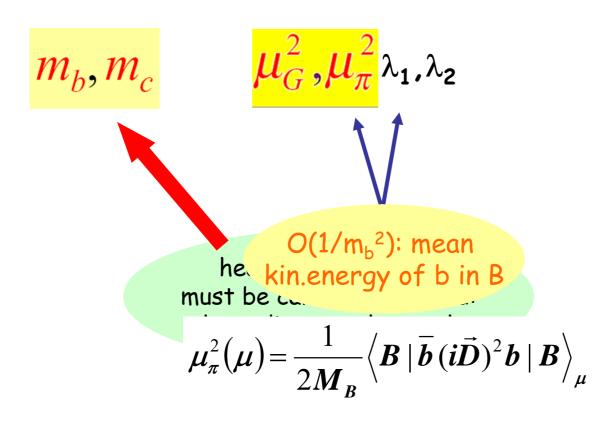
 $d^2\Gamma$

can be expressed in terms of structure functions $dE_1 dq^2 dq_0$ related to Im of

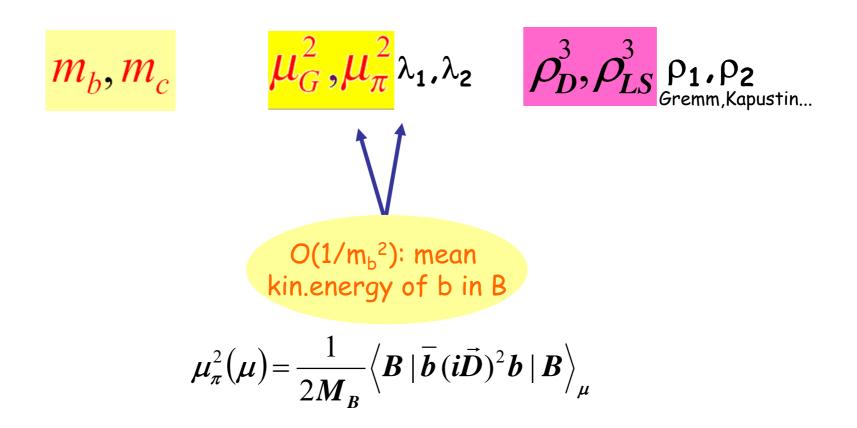

$$h_{\mu\nu}(q^2, q_0) = \frac{1}{2M_B} \langle B | \int d^4x \, e^{-iqx} \, iT \left\{ J_{\mu}(x), J_{\nu}^{\dagger}(0) \right\} | B \rangle$$

OPE (HQE): $T J(x)J(0) \approx c_1 \overline{b}b + c_2 \overline{b} \overline{D}^2 b + c_3 \overline{b}\sigma \cdot Gb + \dots$

> The leading term is parton model, c_i are series in α_s >New operators have non-vanishing expection values in B and are suppressed by powers of the energy released, E.~ m.-m. >No 1/m_b correction!


OPE predictions can be compared to exp only after SMEARING and away from endpoints: they have no LOCAL meaning

Leptonic and hadronic spectra



Total **rate** gives CKM elmnts; global **shape** parameters tells us about B structure

State of the art

State of the art

State of the art

$$m_b, m_c \qquad \mu_G^2, \mu_\pi^2 \lambda_1, \lambda_2 \qquad \rho_D^3, \rho_{LS}^3 \rho_{1}, \rho_2_{Gremm, Kapustin...}$$

$$\Gamma_{clv} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 A_{ew} z_0 \left(r \right) \left(1 + a_1(r) \frac{\mu_{\pi}^2}{m_b^2} + a_2(r) \frac{\mu_G^2}{m_b^2} + a_3(r) \frac{\rho_D^3}{m_b^3} + a_4(r) \frac{\rho_{LS}^3}{m_b^3} \right)$$

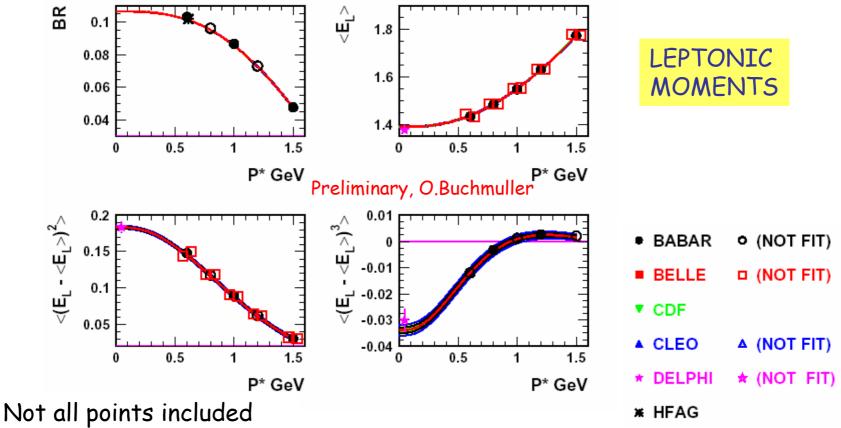
Recent implementation for moments of lept and hadronic spectra including a cut on the lepton energy Bauer et al., Uraltsev & PG

 $\frac{Perturbative \ Corrections}{For hadronic \ moments \ thanks \ to \ NEW \ calculations} \\ Trott \\ Aquila, PG, Ridolfi, Uraltsev$

Using moments to extract HQE parameters

We do know something on HQE par. need to check consistency.

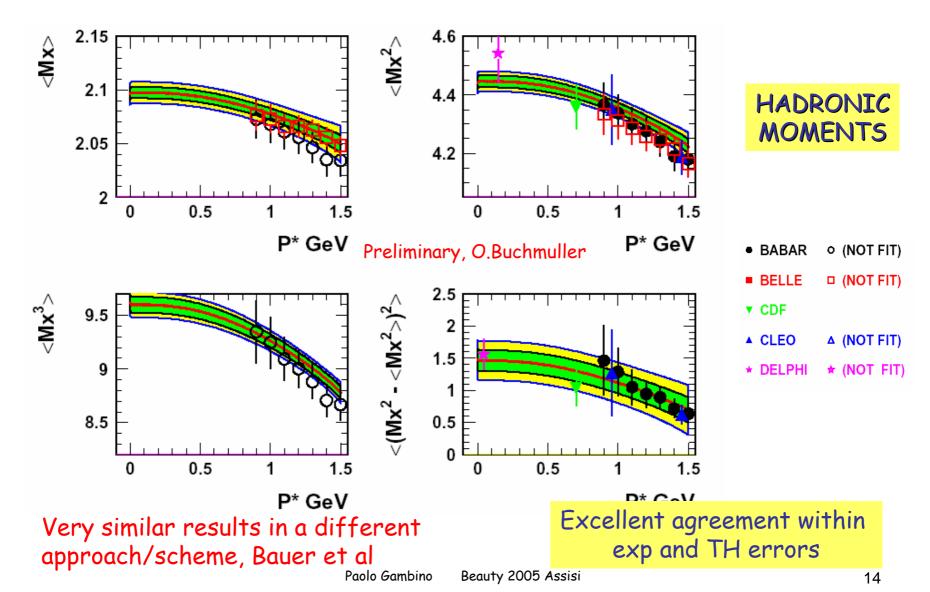
• M_{B^*} - M_B fix μ_G^2 = 0.35±0.03 •Sum rules: $\mu_G^2 < \mu_{\pi}^2$, $\rho_D^3 > -\rho_{LS}^3$...


Central moments can be VERY sensitive to HQE parameters

$$\left\langle \left(\boldsymbol{M}_{\boldsymbol{X}}^{2} - \left\langle \boldsymbol{M}_{\boldsymbol{X}}^{2} \right\rangle \right)^{2} \right\rangle \approx \left[1.3 + 0.4 (\boldsymbol{m}_{b} - 4.6) - (\boldsymbol{m}_{c} - 1.2) + 5 (\boldsymbol{\mu}_{\pi}^{2} - 0.4) - 6 (\boldsymbol{\rho}_{D}^{3} - 0.1) + \dots \right] \boldsymbol{GeV}^{4}$$

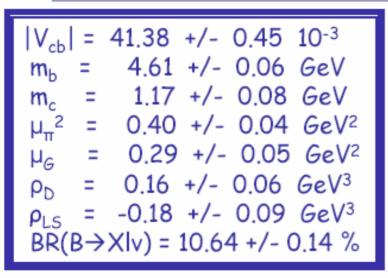
Variance of mass distribution

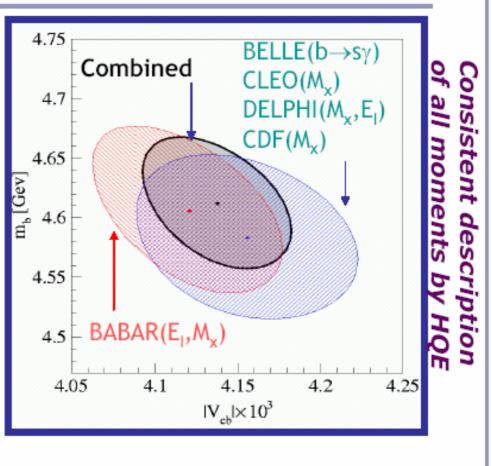
BUT: OPE accuracy deteriorates for higher moments (getting sensitive to local effects) Provided cut is not too severe (~1.3GeV) the cut moments give additional info


Global fit to $|V_{cb}|$, BR_{sl}, HQE parmts

No external constraint

Pioneer work by CLEO & Delphi employed less precise/complete data, some external constraints, and CLEO a different scheme

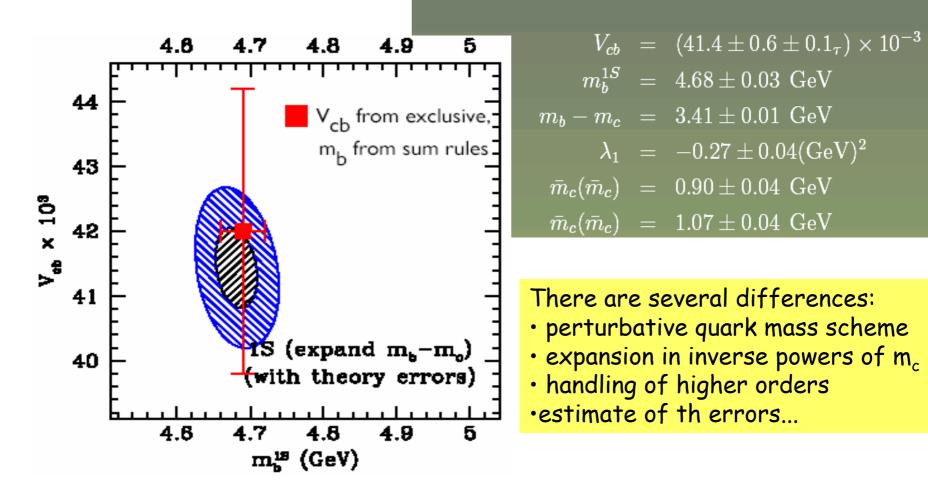

Global fit to $|V_{cb}|$, BR_{sl}, HQE parmts


H.Flaecher, CKM 2005

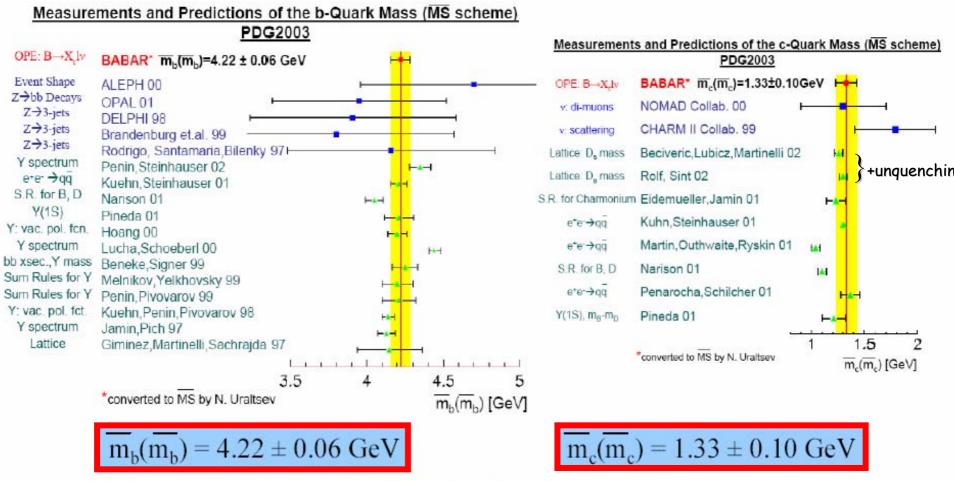
Combined fit in kinetic scheme

Benson, Bigi, Gambino, Mannel, Uraltsev

- Stat., syst. and theo. (HQE,α_s) errors included.
- Error from uncertainty in Γ_{SL} (intrinsic charm) not included!
- $|V_{cb}|$ error of $\approx 1\%$
- →Substantial improvement from combination!



Could also be done in alternative schemes


 $\chi^2/
u=51/86$. (no theory errors $\chi^2=158/86$)

Bauer, Manohar, Ligeti, Luke, Trott 2005

Comparison with other Determinations

Conversion from kinetic mass scheme to MS scheme with hep-ph/9708372, hep-ph/0302262 See also report from CKM WS hep-ph/0304132

Moriond QCD 30. March 04

Henning Flächer (RHUL)

Theoretical uncertainties are crucial for the fits

- Missing higher power corrections
- Intrinsic charm
- ✓ Missing perturbative effects in the Wilson coefficients: $O(\alpha_s^2)$, $O(\alpha_s/m_b^2)$ etc
- Duality violations

How can we estimate all this?

Different recipes, results for $|V_{cb}|$ unchanged

Testing parton-hadron duality

What is it? For all practical purposes: No OPE, no duality

✓ Do we expect violations? ye because OPE must be continued analytically. the described by the OPE like bed

described by the OPE, like hadronic thresholds decays

Inclusive M_x spectrum (log-scale)

 $\propto |V_{ub}|^2$

0.50 ✓ Can we constrain them eff_

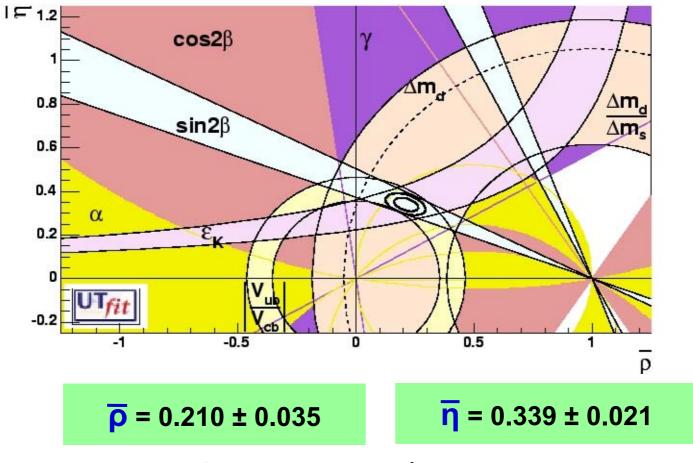
in a self-consistent way: just check the OPE predictions. E.g. leptonic vs hadronic moments. Models may also give hints of how it works

Caveats? HQE depends on many parameters and we know only a few terms of the double expansion in α_s and Λ/m_b .

M_x [GeV/c²]

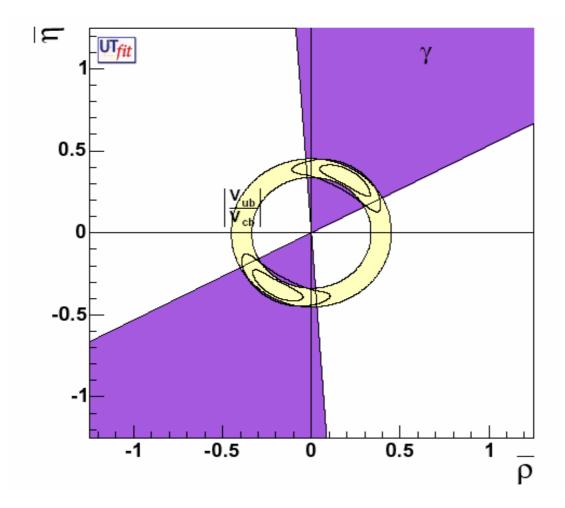
It is not just V_{cb} ...

HQE parameters describe *universal* properties of the B meson and of the quarks

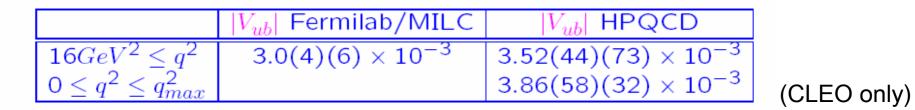

- c and b masses can be determined with competitive accuracy (likely better than 70 and 50 MeV) m_b-m_c is already measured to better than 30 MeV: a benchmark for lattice QCD etc?
- It tests the foundations for inclusive measurements

...

- most V_{ub} incl. determinations are sensitive to a shape function, whose moments are related to μ_{π}^2 etc,
- Bounds on ρ , the slope of IW function (B \rightarrow D^{*} form factor)


Need precision measurements to probe limits of HQE & test our th. framework

$|V_{ub}|$ is the priority now


http://www.utfit.org

Strictly tree level

b-ulv exclusive

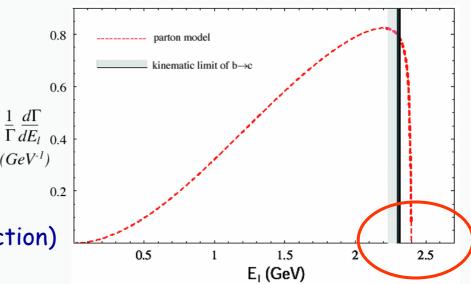
There is NO normalization of З form f.s from HQ symmetry UKQCD 00 2 New first unquenched results FNAL 01 JLOCD 01 lattice errors still ~15% 2 $f^{+}(q^{2})$ Sum rules good at low q^2 lattice at high q²: complement 1 each other $f^{0}(q^{2})$ Lattice (distant) goal is 5-6% 0 0 5 15 20 25 New strategy using combination 0 10 ŝ q^2 (GeV²) of rare B,D decays Grinstein& Pirjol

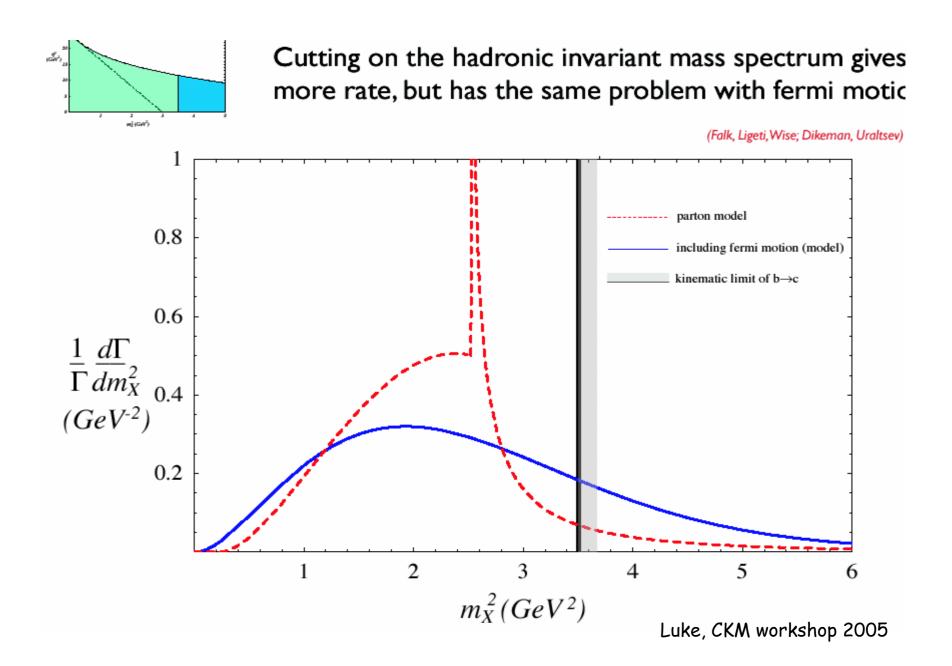
The first error is from the lattice and second from experiment.

Paolo Gambino Beauty 2005 Assisi

$|V_{ub}|$ (not so much) inclusive

 $|V_{ub}| \text{ from total BR(b \rightarrow ulv) almost exactly like incl } |V_{cb}| \text{ but we need kinematic cuts to avoid the ~100x larger } b \rightarrow clv \text{ background:}$


$$m_X < M_D$$
 $E_I > (M_B^2 - M_D^2)/2M_B$
or combined (m_X,q^2) cuts


$$q^2 > (M_B - M_D)^2 \dots$$

The cuts destroy convergence of the OPE, supposed to work only away from pert singularities

Rate becomes sensitive to "local" b-quark wave function properties (like Fermi motion

 \rightarrow at leading in 1/m_b SHAPE function)

Each strategy has pros and cons

cut		% of rate	good	bad
25 20 q ² 15 (GeV ²) 10 3 0.5 1 1.5 2 K _g (GeV)	$E_\ell > \frac{m_B^2 - m_D^2}{2m_B}$	~10%	don't need neutrino	- depends on f(k ⁺) (and subleading corrections) - WA effects largest - reduced phase space - duality issues?
	$s_H < m_D^2$	~80%	lots of rate	 depends on f(k⁺) (and subleading corrections) need shape function over large region
	$q^2 > (m_B-m_D)^2$	~20%	insensitive to f(k+)	 very sensitive to mb WA corrections may be substantial effective expansion parameter is I/mc
	"Optimized cut"	~45%	 insensitive to f(k⁺) lots of rate can move cuts away from kinematic limits and still get small uncertainties 	- sensitive to <i>m_b</i> (need +/- 60 MeV for 5% error in best case)
	$P_+ > m_D^2/m_B$	~70%	- lots of rate - theoretically simplest relation to b→sγ	depends on <i>f(k</i> +) (and subleading corrections)

Luke, CKM workshop 2005

What do we know about $f(k_{+})$?

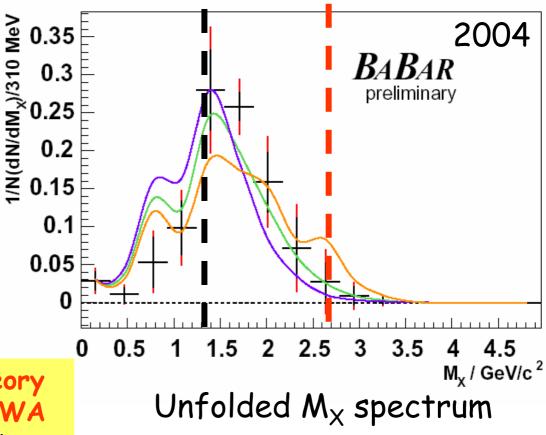

- Its moments can be expressed in terms of m.e. of *local* operators, those extracted from the b->c moments
- It can be extracted from $b \rightarrow s\gamma$ (see later)
- It can also be studied in $b \rightarrow ulv$ spectra (see next)
- It gets renormalized and we have learned how (delicate interplay with pert contributions)

V_{ub} incl. and exclusive

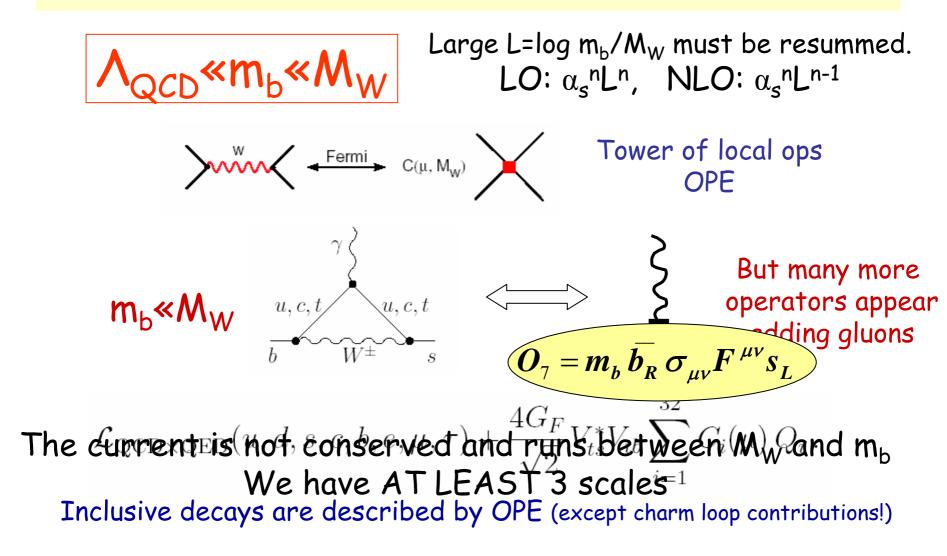
A lot can be learned from exp

(on shape function from $b \rightarrow s\gamma$, WA, indirect constraints on s.f., subleading effects from cut dependence,...)

REQUIRES MANY COMPLEMENTARY MEASUREMENTS (affected by different uncert.) There is no Best Method


Cutting the cuts...

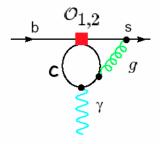
New exp analyses based on fully reconstructed events allow high discri mination of charmed final states


Babar measured M_X moments. Results can be improved by cutting in a milder way than usual

It's time to start using b->u data to constrain sf!

> Useful to validate theory and constrain f(k₊) & WA PG,Ossola,Uraltsev

$b \rightarrow s$ transitions

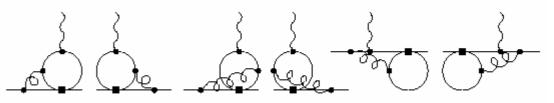

The main ingredients

Process independent:

- The Wilson coefficients C_i (encode the short distance information, initial conditions)
- The Anomalous Dimension Matrix (mixing among operators, determines the evolution of the coefficients, allowing to resum large logs)

Process dependent: matrix elements

 $B{\to}\,X_{s\gamma}$: NLO QCD calculation completed, all results checked, EW , power corrections



 $B \rightarrow X_{sll}: NNLO \& EW calculation just completed, power corrections$

The charm mass problem

m_c enters the phase factor $C = \left|\frac{V_{ub}}{V_{cb}}\right|^2 \frac{\Gamma[\bar{B} \to X_c e\bar{\nu}]}{\Gamma[\bar{B} \to X_u e\bar{\nu}]} = 0.581 \pm 0.017$ due to normalization

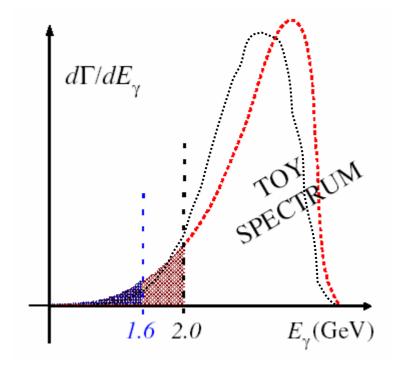
and the NLO matrix elements

As the related LO diagrams vanish, the definition of m_c is a NNLO issue. Numerically very important because these are large NLO contributions: $m_c(m_c)=1.25\pm0.10 \text{ GeV}$ $m_c(m_b)=0.85\pm0.11 \text{ GeV}$ $m_c(\text{pole})\sim1.5\text{GeV}$ But pole mass has nothing to do with these loops Changing m_c/m_b from 0.29 (pole) to 0.22 (MSbar) increases BR γ by 11% 0.22 ±0.04 gives DOMINANT 6% theory error

Error anatomy of BR γ

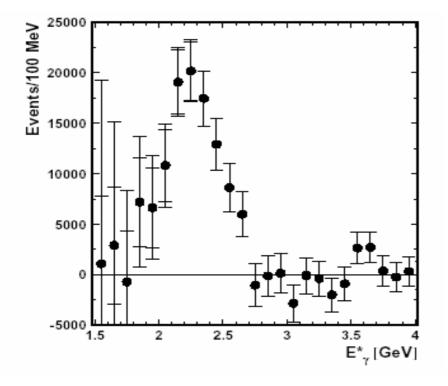
$$BR \left[\bar{B} \rightarrow X_s \gamma \right]_{E_{\gamma} > 1.6 \text{ Gev}} = (3.61 \pm 0.30) \times 10^{-4},$$

= 3.61 × 10⁻⁴ (1 ± 0.06<sub>(m_c/m_b)n K_c) ± 0.04_(other NNLO)
±0.01_(pert C) ± 0.02_{λ1} ± 0.02_Δ
±0.02_{α_s(M_Z)} ± 0.02_{BR(semilept)exp} ± 0.01_{m_t})
Misiak, PG 2001
Total error 8% dominated by charm mass
Can be partially resolved by NNLO
Update under way</sub>


Photon spectrum vs total BR

The OPE does not predict the spectrum, only its <u>global</u> <u>properties</u>: the higher the cut the higher the uncertainty

Conversely, constraining the HQE parameters constrains the possible shape functions


Possible subleading shape functns effects in $V_{\rm ub}$ applications

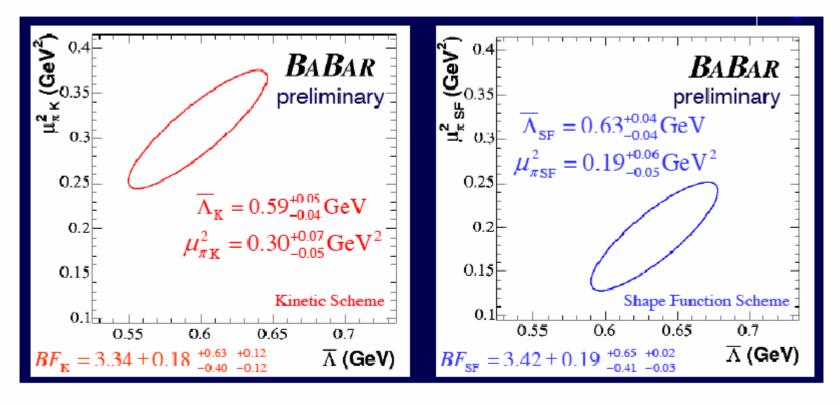
The shape function gets renormalized by perturbative effects: some complications may be better understood in SCET (Bauer & Manohar, Neubert et al)

Universality: spectrum of $B \rightarrow X_s \gamma$

Motion of b quark inside B and gluon radiation smear the spike at $m_b/2$

Belle: lower cut at 1.8GeV

The photon spectrum is very insensitive to new physics, can be used to study the B meson structure

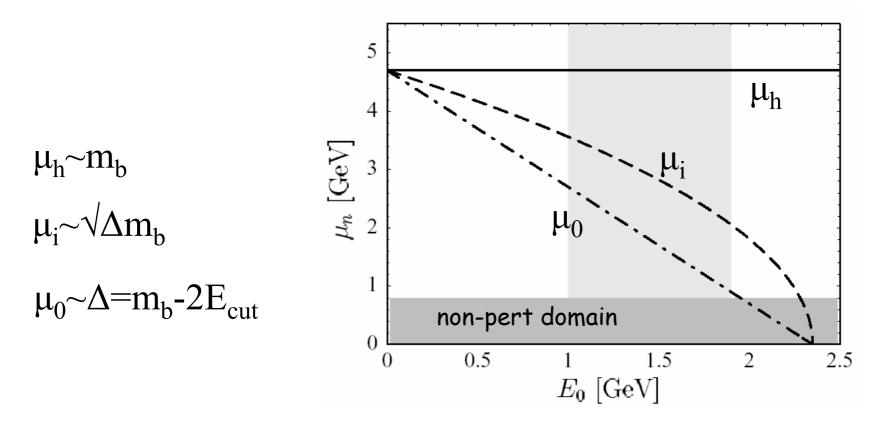

 $\langle E_{\gamma} \rangle = m_{b}/2 + ... \text{ var} \langle E_{\gamma} \rangle = \mu_{\pi}^{2}/12 + ...$

 $\begin{array}{l} \mbox{Importance of extending to } E_{\gamma}^{\mbox{ min}} \sim 1.8 \mbox{ GeV or} \\ \mbox{less for the determination of both the BR AND} \\ \mbox{the HQE parameters} & \mbox{Bigi Uraltsev} \end{array}$

Info from radiative spectrum compatible with semileptonic moments $\rightarrow \rightarrow$

BaBar: Fit to new b → s gamma spectrum

Erkcan Ozcan



Benson-Bigi-Uraltsev

Neubert

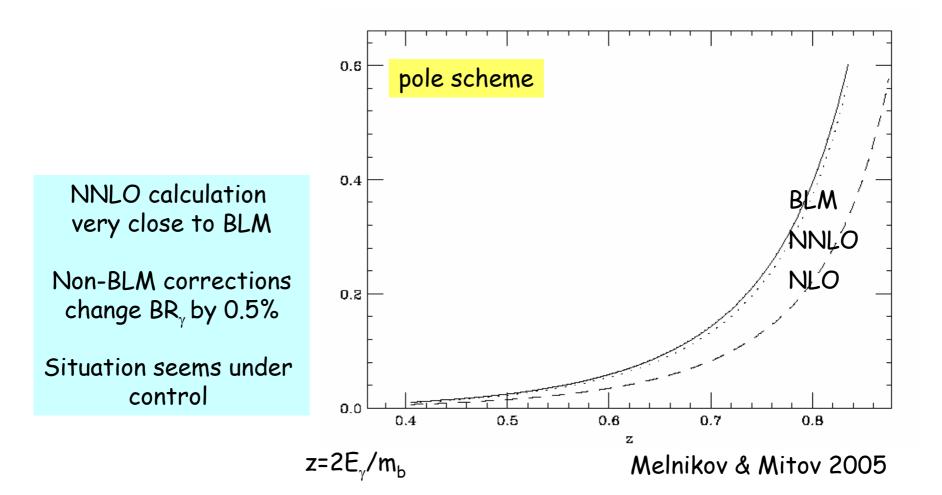
CKM 2005, Mar. 15-18, 2005 results in two different schemes, agree well with b->clv

More cuts complications Neubert 2004

The lower photon energy cut E_{cut} introduces two new scales EVEN when local OPE works fine \rightarrow terms $\alpha_s(\Delta)$ could be large

Neubert (II)

Need to disentangle 3 scales → MultiScaleOPE

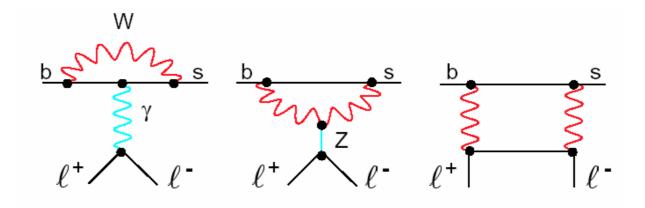

QCD \rightarrow SCET \rightarrow HQET \rightarrow local OPE μ_h μ_i μ_0 How well can we predict the radiative tail?

 Neubert finds F(E_γ >1.8GeV)=0.89±0.07, BR 3% lower, and theory error on BR 50% larger FUNDAMENTAL LIMITATION?

• Main effect due to pert corrections whose scale is determined by higher orders (BLM etc): NNLO is the solution (at least to large extent)

- Sudakov resummation is irrelevant for $\rm E_{cut}$ <1.8 GeV
- New result of dominant 77 photon spectrum at $O(\alpha_s^2)$

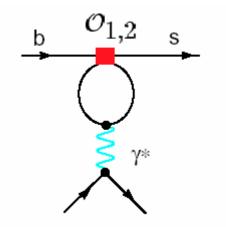
The NNLO spectrum (dominant part)


NNLO status report

- NNLO C_{7,8} matching completed Misiak, Steinhauser
- All Sloop NNLO ADM Gorbahn, Haisch, Misiak
- Parts of the 3loop NNLO matrix elements Bieri et al & Asatrian et al
- · 2100p matrix element of Q7 Czarnecki et al
- Dominant part of NNLO spectrum Melnikov Mitov

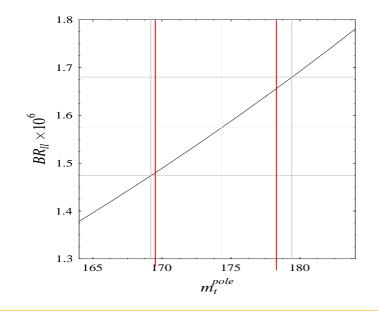
Still missing:

- 4loop ADM
- 3loop ME with charm
- subdominant 2loop ME


b->sl+l-: a more complicated case

This decay mode is sensitive to different operators, hence to different new physics

Here large logs are generated even without QCD: LO $\alpha_s^{n}L^{n+1}$, NLO $\alpha_s^{n}L^{n}$...


However, numerically the leading log is subdominant, yielding an awkward series: in BR 1+ 0.7 (α_s)+ 5.5 (α_s^2)+ ...

Error Anatomy for BR_{II}

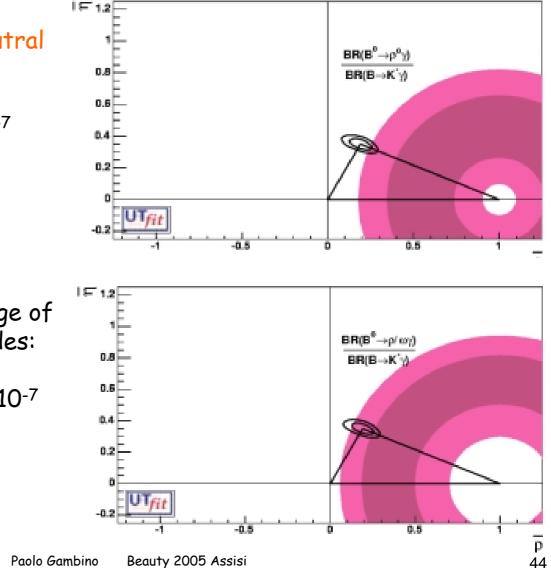
 $\begin{aligned} \mathrm{BR}_{\ell\ell} \left(1 \,\mathrm{GeV}^2 \le q^2 \le 6 \,\mathrm{GeV}^2 \right) = \\ \left[1.574 \pm_{0.100}^{0.106} |_{M_t} \pm_{0.075}^{0.059} |_{\mathrm{scale}} \pm 0.045_C \pm 0.035_{\mathrm{BR}_{sl}} \pm_{0.067}^{0.072} |_{m_b} \pm_{0.013}^{0.001} |_{m_c} \right] \times 10^{-6} \end{aligned}$

Bobeth,PG,Gorbahn,Haisch

EXP: only inclusive rate, Belle (140fb⁻¹⁾: (4.4±0.8±0.8)×10⁻⁶ Babar(80fb⁻¹): (5.6±1.5±1.3)×10⁻⁶ We get (4.6±0.8)×10⁻⁶ (m_{II}>0.2GeV) $\cdot M_{top}$ dominant error 7%

- scale uncertainty 5%
- $\cdot m_b^{\text{pole}} = 4.80 \pm 0.15 \text{ GeV} \rightarrow 5\%$
- phase space factor 3%
- ·No m_c issue as charm enters at LO

TOTAL ERROR ~10%


 $\begin{array}{l} \underline{\text{BUT:}} & \text{bottom uncertainty is not} \\ a \ fundamental \ limitation \\ \delta m_b{}^{\text{short distance}} \approx 30\text{-}50 \ \text{MeV} \\ \text{simply change scheme!} \end{array}$

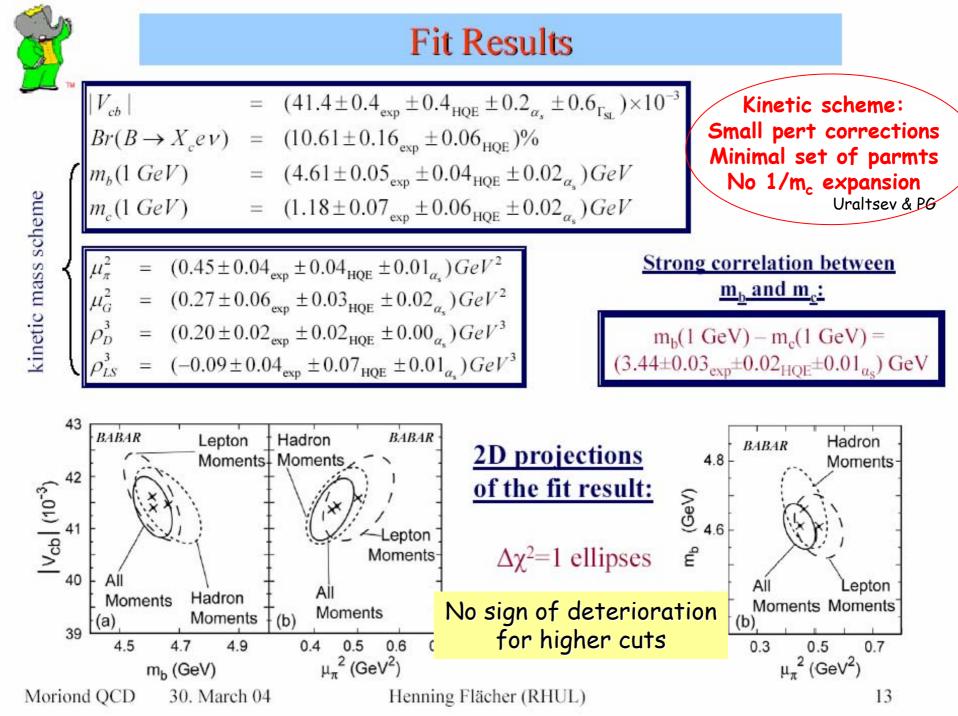
oino

the UT from excl radiative decays

- •Inclusive b->d γ experimentally impossible, but exclusive modes start being accessible
- Ratios of $B \rightarrow \rho \gamma / B \rightarrow K^* \gamma$ allow a determination of $|V_{td}/V_{ts}|$ that is independent of form factors in the limit of SU(3)
- Calculations rely on QCD factorization and on lattice/sum rules for the estimate of SU(3) violation (Beneke et al, Bosch Buchalla) power corrections apparently suppressed
- •Neutral modes don't have WA, ξ =1.2±0.1 (CKM 2005)
- •LC sum rules errors large, Lattice calculations only exploratory...

An interesting deviation?

Impact on UT using only neutral modes:


BR($B^0 \rightarrow \rho^0 \gamma$)=0.6^{+1.9}-1.4×10⁻⁷

Impact on UT using average of neutral and charged modes:

BR(B $\neg \rho/\omega \gamma$)=(6.4± 2.7)×10⁻⁷

Summary of main theory limitations

process	quantity	Th error	needs	goal
B→D*lv	V _{cb}	~4%	New lattice results	1%
B→XIv	[V _{cb}]	~1.5%	New pert calculations	<1%
B→π Iv	V _{ub}	~15%	Lattice developments	6%?
B→X _u lv	V _{ub}	~10%	More data synergy th/exp	5%
B→X _s γ	BR	≲10%	NNLO,MSOPE?	<5%
$B \rightarrow \rho^0 \gamma / B \rightarrow K^{*0} \gamma$	V _{td} / V _{ts}	10-20%	Better understanding of th errors, lattice	?

