Rare B-decays in ATLAS

BEAUTY 2005, Assisi (Perugia), Italy, June 20-24, 2005

N.Nikitine, F.Ohlson-Malek, **P.Reznicek**, S.Sivoklokov, L.Smirnova, M.Smizanska, K.Toms, **S.Viret**

Introduction - I

Physics: $b \rightarrow d$, s transitions (FCNC) are forbidden at the tree level in SM and occur at the lowest order through one-loop-diagrams "penguin" and "box".

Main points for study:

- a) The good test of SM and its possible extensions
 SUSY, Two Higgs-doublet, LR, Extra Dimensions;
- **b)** Information of the long-distance QCD effects;
- c) Determination of the $|V_{td}|$ and $|V_{ts}|$;
- d) Some of rare decays as BG to other rare decays (for example: $B_d^0 \rightarrow \pi^0 \mu^+ \mu^-$ as BG to $B_{d,s}^0 \rightarrow \mu^+ \mu^-$).

Branching Ratios Hierarchy in SM: Br($B_{d}^{0} \rightarrow \mu^{+} \mu^{-}$) ~ ~ "a few" * 10⁻¹⁰ Br($B_{d}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$) ~ "a few" * 10⁻¹⁰ Br($B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$) ~ ~ "a few" * 10⁻⁹ uct 4,c,t Br(B⁰_s $\rightarrow \mu^+ \mu^- \gamma$) ~ "a few" * 10⁻⁸ Br(B⁰_d $\rightarrow \pi^0 \mu^+ \mu^-$) ~ "a few" * 10⁻⁸ ٤ð $Br(B_{d}^{0} \rightarrow K \mu^{+} \mu^{-}) = (5.6 \pm 2.5) * 10^{-7}$ (BaBar, Belle, '02) Br($\Lambda_{\rm b} \rightarrow \Lambda \mu^+ \mu^-$) ~ "a few" * 10⁻⁶ Br(B⁰_s $\rightarrow \phi \mu^{+} \mu^{-}) \sim$ "a few" * 10⁻⁶ $Br(B_{d}^{0} \rightarrow K^{*} \mu^{+} \mu^{-}) = (1.3 \pm 0.4) * 10^{-6}$ (BaBar, Belle, '03) $Br(B_{d}^{0} \rightarrow K^{*}\gamma) = (4.3 \pm 0.4) * 10^{-5}$ (CLEO, '93) 3

Introduction - II

Current status of the branchings $B(B \rightarrow Kl^+l^-) = (6.5^{+1.4}_{-1.3} \pm 0.4) \times 10^{-7}$ BABAR. $B(B \rightarrow K^* l^+ l^-) = (8.8^{+3.3}_{-2.9} \pm 1.0) \times 10^{-7}$ $N_{BB} = 123M$ $B(B \rightarrow Kl^+l^-) = (5.50^{+0.75}_{-0.70} \pm 0.27 \pm 0.02) \times 10^{-7}$ B $B(B \rightarrow K^* l^+ l^-) = (16.5^{+2.3}_{-2.2} \pm 0.9 \pm 0.4) \times 10^{-7}$ $N_{BB} = 273M$ BB=85M BABAR N_{BB}=123M $\boldsymbol{B}(\boldsymbol{B}^{0} \rightarrow \boldsymbol{e}^{+}\boldsymbol{e}^{-}) < 19 \times 10^{-8}$ $- B(B^0 \rightarrow e^+e^-) \le 6.1 \times 10^{-8} (90\% CL)$

 $- B(B^0 \to \mu^+ \mu^-) < 8.3 \times 10^{-8} (90\% CL)$ $- B(B^0 \to e^+ \mu^-) < 18 \times 10^{-8} (90\% CL)$

D0 $B_s \rightarrow \mu^+ \mu^-$ result: 240pb⁻¹ $BF (B_s \rightarrow \mu^+ \mu^-) < 3.8 \times 10^{-7} 90 \% \text{ CL}$ CDF $B_{(s,d)} \rightarrow \mu^+ \mu^-$ results: 171pb⁻¹ $BF (B_s \rightarrow \mu^+ \mu^-) < 5.8 \times 10^{-7} 90 \% \text{ CL}$ $BF (B_d \rightarrow \mu^+ \mu^-) < 1.5 \times 10^{-7} 90 \% \text{ CL}$ $B(B^{0} \rightarrow e^{+}e^{-}) < 19 \times 10^{-8}$ $B(B^{0} \rightarrow \mu^{+}\mu^{-}) < 16 \times 10^{-8}$ $B(B^{0} \rightarrow e^{\pm}\mu^{\mp}) < 17 \times 10^{-8}$

Y.Kwon (BELLE Colab.), "EW Penguin & Leptonic B decays", Report on FPCP 2004, Oct. 4-9 04. Current status of the Differencial distributions for B⁰_d → K^{*} I⁺ I⁻ Y.Kwon (BELLE Colab.), "EW Penguin & Leptonic

B decays", Report on FPCP 2004, Oct. 4-9 2004.

Which new measurements can LHC make in <u>rare B-decays</u> comparing with B-factories?

- a) The rare decays of $\mathbb{B}_{s}^{0} \text{meson} (\mathbb{B}_{s}^{0} \rightarrow \varphi \gamma, \mathbb{B}_{s}^{0} \rightarrow \varphi \mu^{+} \mu^{-}, and \mathbb{B}_{s}^{0} \rightarrow \mu^{+} \mu^{-} (\gamma))$ and $\Lambda_{b} baryon (\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}, \Lambda_{b} \rightarrow \Lambda \gamma);$
- b) Differencial distributions for rare semileptonic Bmeson decays (dimuon-mass spectra, forwardbackward asymmetries) with needed accuracy – very sensitive to the SM extensions;
- c) Branching fractions of $B^0_{d,s} \rightarrow \mu^+ \mu^-$ and $B^0_{d,s} \rightarrow \mu^+ \mu^- \gamma$ decays – good sensitivity to the SM extensions.

The basic theoretical description -I

Effective Hamiltonian for $b \rightarrow d$,s transition:

$$\begin{split} &H_{eff} (b \rightarrow q) \sim G_F V^*_{tq} V_{tb} \sum C_i(\mu) \ O_i(\mu), \\ &\text{includes the lowest EW-contributions and perturbative} \\ &QCD \text{ corrections for Wilson coefficients } C_i(\mu) \ . \\ &\mu \text{ - scale parameter} \sim 5 \text{ GeV} : \text{ separates } \text{SD} \text{ (perturbative)} \\ &\text{tive) and } \text{LD} \text{ (nonperturbative) contributions of the} \\ &\text{strong interactions.} \end{split}$$

SM NLO: A.Buras, M.Munz, *PRD52*, *p.182*, *1995* **SM NNLO:** C.Bobeth et al., *JHEP 0404*, *071*, *2004* **MSSM NNLO:** C.Bobeth et al., *NPB713*, *p522*, *2005*

SUSY: main motivations for study in rare B-decays

- 1) SUSY is the best from all possible extensions of SM.
- Only lightest (m ~ 1 TeV) of SUSY- particles can be directly detected on LHC at high luminosity.
- **3)** All SUSY-particles give the virtual particle corrections in SM processes. To find the information on SUSY particles it is necessary to study the decays where:
 - a) SM contributions are suppressed as much as possible;
 - **b)** perturbative and nonperturbative QCD corrections known with high accuracy;
 - c) branchings can be measured in LHC already at low luminosity.

Rare $B^0_{d,s}$ and Λ_b decays are IDEAL CHOICE for that!

The basic theoretical description -II

O_i(μ) – set of the basic operators (specific for each model: SM, MSSM, LR and others);

LD (nonperturbative) contribution of the strong interactions are contained in the hadronic matrix elements:

 $\langle \text{final hadronic states} | O_i(\mu) | \text{initial hadronic states} \rangle$

and are described in the terms of relativistic invariant function - transition formfactors.

Need the nonperturbative methods (SR, QM, Lat).

The accuracy of calculations Stability of the Wilson coefficients to the choice of m_{t} and $\mu \in [m_{h}/2, 2m_{h}] \approx [2.5 \text{ GeV}, 10.0 \text{ GeV}]$: approximately 15%; **SM NLO:** approximately 6% - 7%; SM NNLO: MSSM NNLO: > 30% strongly depends from the parameters set boundaries! Accuracy of the nonperturbative calculations: depends on a method, but it's not less, than 15%.

For SM calculations – NLO, for MSSM – NNLO.

ATLAS muon trigger strategy

ATLAS LVL1, Trigger rates @10³³cm⁻²s⁻¹

1) The study of two-muons rare decays $(\mathbf{B}_{s}^{0} \rightarrow \mu^{+} \mu^{-}, \mathbf{B}_{d}^{0} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-})$ based on LVL1 di-muon trigger (can be continued at nominal $10^{34} \text{ cm}^{-2} \text{s}^{-1}$).

2) The study of rare radiative decays $(B_s^0 \rightarrow \varphi \gamma, B_d^0 \rightarrow K^* \gamma)$ based on single muon LVL1 (µ6) with photon reconstruction in EM CALO.

3) Rare decays $(\mathbf{B}^0_d \to \pi^0 \mu^+ \mu^-, \mathbf{B}^0_s \to \mu^+ \mu^- \gamma)$ based on 1) + 2).

Simulations of rare B-decays for ATLAS detector

B-physics simulation history

1) 1998-1999-years simulation

Early ATLAS Detector layout

CERN/LHCC/99-15, ATLAS TDR 15, 25 MAY 1999;

"1999 Workshop on SM Physics (and more) at the LHC", CERN Yellow Reports **CERN-2000-004**.

2) 2002-2003-years simulations

Final ATLAS Detector layout ATLAS B-Physics Group, ATL-PHYS-2005-002

3) 2004-2005-years simulation

Final ATLAS Detector layout with new software

ATLAS Physics workshop (Rome),

http://agenda.cern.ch/fullAgenda.php?ida=a044738

Models used for MC generation

$B^0_{\ s} \rightarrow \mu^+ \mu^-$	Br (B ⁰ _s $\rightarrow \mu^+ \mu^-$) = 3.5 * 10 ⁻⁹ at $ V_{ts}^* V_{tb} ^2 = 2.2 * 10^{-3}$
$B^0_{\ d} \rightarrow \mu^+ \mu^-$	Br (B ⁰ _d $\rightarrow \mu^+ \mu^-$) = 0.9 * 10⁻¹⁰ at $ V_{td}^* V_{tb} ^2 = 6.9 * 10^{-5}$
$B^0_d \rightarrow K^* \mu^+ \mu^-$	Br ($B^0_d \rightarrow K^* \mu^+ \mu^-$) = 1.3 * 10 ⁻⁶ from PDG'04
$B^0_{\ s} \rightarrow \phi \ \mu^+ \ \mu^-$	Br ($B_s^0 \rightarrow \phi \ \mu^+ \ \mu^-$) / Br ($B_d^0 \rightarrow K^* \ \mu^+ \ \mu^-$) = 0.8 D.Melikhov, N.Nikitin, S.Simula, PRD57, 6814, 1998
	D.Melikhov, B.Stech, PRD62, 014006, 2000
$\mathbf{R}^0 \longrightarrow \pi^0 \mathbf{u}^+ \mathbf{u}^-$	A.Buras, M.Munz, PRD52, 186, 1995
	Br (B ⁰ _d $\rightarrow \pi^0 \mu^+ \mu^-$) = 2.0 * 10 ⁻⁸ at $ V_{td}^* V_{tb} ^2 = 6.9 * 10^{-5}$
$B^0_{s} \rightarrow \mu^+ \mu^- \gamma$	Br ($B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$) = 1.9 * 10⁻⁸ at $ V_{ts}^{*} V_{tb} ^{2}$ = 2.2 * 10⁻³
	D.Melikhov, N.Nikitin, PRD70, 114028, 2004
	F.Kruger, D.Melikhov, PRD67,034002, 2003
	A.Buras, M.Munz, PRD52, 186, 1995
$\Lambda_{\rm h} \rightarrow \Lambda \ \mu^+ \ \mu^-$	$Br(\Lambda_b \to \Lambda \mu^+ \mu^-) = 2.0 * 10^{-6}$
	C-H.Chen, C.Q.Geng, PRD64, 074001, 2001
	T.M.Aliev et.al. , NPB649, p. 168-188 , 2003

$B^{0}_{d,s} \rightarrow \mu^{+}\mu^{-}$ decays in ATLAS - I

Points for study in ATLAS:

Very clear signature; BR very tiny in SM ,but good sensitive to the SUSY .

1998-2004 simulations history:

- Full Inner detector simulation and reconstruction at initial and nominal LHC luminosity
 - 1) for TDR layout signal + background (ATLAS TDR 15, Vol.II, 1999)
 - 2) for Initial layout only signal (ATL-PHYS-2005-002).

1998-year simulation results (TDR results):

Using SM branchings: $Br(B^0_{d,} \rightarrow \mu^+\mu^-) \approx 1.5^*10^{-10}$ and $Br(B^0_{d,} \rightarrow \mu^+\mu^-) \approx 3.5^*10^{-9}$ we obtaned the following sensitivities for ATLAS

After 3 year LHC work at L=10³³ cm⁻²s⁻¹ (30 fb⁻¹) will be expected

 B_d^0 : 4 signal ev., B_s^0 : 27 signal ev., 93 BG ev. common to both

After 1 year LHC work at L=10³⁴ cm⁻²s⁻¹ (100 fb⁻¹) will be expected

 B_d^0 : 14 signal ev., B_s^0 : 92 signal ev., 660 BG ev. common to both

 $B_d^0 \rightarrow \mu^+ \mu^-$: 3*10⁻¹⁰ upper limit at CL 95% $B_s^0 \rightarrow \mu^+ \mu^-$: 2.8 σ at 3year@10³³ and combining wiht 1year@10³⁴ - 4.3 σ

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ decays in ATLAS –II 2005 year results

Signal, BG and efficiencies of selection cuts (30 fb⁻¹)

Cuts	Background		B ⁰ _s - Signal	
Vertexing procedure	CTMVFT	VKalVrt	CTMVFT	VKalVrt
$p_{\rm T}(\mu) > 6 \text{ Gev}, \Delta R_{\mu\mu} < 0.9$	1.8 x 10⁷ events		150 events	
$M(\mu\mu) = M_B^{+140}_{-70} MeV$	2x10 ⁻²		0.77	
Isolation cut : no ch.tracks \mathbf{p}_{T} >0.8 GeV in cone with $\mathbf{\theta} < 15^{\circ}$	5x10-2	5x10-2	0.36	0.36
$\sigma < 90 \mu m$, $L_{xy} / \sigma > 15$, $\alpha < 1^{\circ}$	2.8x10 ⁻³		0.2	
$L_{xy}^{\prime}/\sigma > 11, \chi^2 < 15$		< 0.7x10 ⁻⁴		0.4
Number of events after cuts	45±30	< 60	9	21
S/√BG			(1.7±0.6)σ	>2.7 o

MSSM for $B^{0}_{d,s} \rightarrow \mu^{+}\mu^{-}$ decays and ATLAS sensitivity (2005 - results <u>ony for low luminosity</u>)

The $\mathbf{B}^{0}_{d,s} \rightarrow \mu^{+}\mu^{-}$ branchings as functions of charge Higgs boson mass $\mathbf{M}_{\mathbf{H}}$ for two choice the tan β .

$\Lambda_b \rightarrow \Lambda \ \mu^+ \ \mu^-$ - motivation for study

A_{FB} – is very sensitive to the SUSY

Impact of Trigger Cuts for $\Lambda_b \to \Lambda \ \mu^+ \ \mu^-$

• expected number of triggered events for 30 fb⁻¹

$\Lambda_{ m b}$ - production	$\sigma_{bb} = 500 \mu b, Br(b \rightarrow \Lambda_b) = 0.071$	1.1x10 ¹²
$\Lambda_{ m b}$ rare decay	$Br(\Lambda_b \rightarrow \Lambda \mu \mu) = 2x10^{-6}, Br(\Lambda \rightarrow p\pi) = 0.64$	1.400.000
Di-muon LVL1 cuts	$p_{\rm T} > 6/4 {\rm ~GeV}, \eta < 2.5$	26.000
Hadron cuts	$p_{\rm T}$ >0.5 GeV, $ \eta $ < 2.5	14.000

 trigger cuts prefers higher di-muon invariant masses and slightly lowers absolute value of A_{FB} in region of lower di-muon masses

2005 – year simulation results for A_{FB}

Expected precision for 30 fb⁻¹:

14% - reconstruction efficiency accounting 75% LVL1 efficiency

1500 events

ϥ ² /Ϻ _Λ ϧ	min 0.13	0.13 0.28	0.47 max
<afb> for SM</afb>	7.9%	-7.8%	-23.3%
A_{FB} for $C_{7\gamma}^{eff} > 0$	-13.8%	-25.0%	-27.9%
<afb> statistical error</afb>	4.8%	5.2%	6.2%
Number of events	430	370	280

$B_d^0 \rightarrow K^*(892)\mu^+\mu^- decay at ATLAS - I$

- **Points for study in ATLAS:**
- **Branching ratio sensitive to the SUSY ;**
- Differencial distributions (dimuon-mass spectra, A_{FB})

1998-1999 years simulations :

Full ATLAS Inner detector simulation and reconstruction at initial luminosity (ATLAS TDR 15, Vol.II, 1999) using theoretical matrix element from paper D.Melikhov, N.Nikitin, S.Simula, PRD57, 6814, 1998.

Results of 1998-1999 years simulation: After 3 year LHC work at L=10³³ cm⁻²s⁻¹ (30 fb⁻¹) will be expected ~2000 signal events at 290 BG events

→ very sensitive to the SUSY.

$B^{0}_{d} \rightarrow K^{*}(892)\mu^{+}\mu^{-} decay at ATLAS - II$ 2005-year results

MSSM in B \rightarrow K^{*}(892) $\mu^+\mu^-$ decay and ATLAS precision

Three intervals for variable q^2 / M_B^2 . If in the first interval the negative average asymmetry will be measured, it will be convincing demonstration of a SM extensions reality.

$B^0_{s} \rightarrow \phi \mu^+ \mu^- \text{ decay at ATLAS}$ 1998 and 2005 year results

~21 kEv of signal before the cuts for **30** fb⁻¹.

Cuts:

 $p_{T}(\mu) > 6 \text{ Gev}, |\eta(\mu)| < 2.5$ $M(h^+h^-) = M(\phi) \pm 9 \text{ MeV}$

Vertexing procedure VkalVrt:

 $\chi^2 < 18, L_{xy}/\sigma > 35$ Isolation cut: no ch.trecs

 \mathbf{p}_{T} >0.8 GeV in cone with $\mathbf{\theta} < 5^{\circ}$

2005-year

~ 900 signal events after all cuts;

- < 3000 BG (events, will be reconsidered when high statistics available)
- **410 signal** events after all cuts; 140 BG events.

Radiative penguins in ATLAS: 2002-2004 Points for study in ATLAS:

Branching for $B_s \rightarrow \phi \gamma$, angular distributions measurements.

Estimations based on the simplified trigger and the complete off-line studies for 3years LHC work at L=10³³cm⁻²s⁻¹ (30fb⁻¹) :

B_s→φ γ: 3400 signal ev., S/ $\sqrt{BG} > 7$; B_d→K^{*0} γ: ~10000 signal ev., S/ $\sqrt{BG} > 5$.

B \rightarrow K^{*0} π^0 BG rejection under investigation combining π^0/γ rejection cuts, kinematics and angle between B⁰ and K⁺ at K^{*}rest frame cuts.

$B^0_{d} \rightarrow \pi^0 \mu^+ \mu^- as BG to B^0_{d,s} \rightarrow \mu^+ \mu^- \gamma$ and $B^0_{d,s} \rightarrow \mu^+ \mu^- decays$

Number of events

Number of events

The particle level simulation with the theoretical branching ratio predictions for SM.

$B^0_{d} \rightarrow \pi^0 \mu^+ \mu^- as BG to B^0_{d,s} \rightarrow \mu^+ \mu^- \gamma$ and $B^0_{d,s} \rightarrow \mu^+ \mu^- decays$

 $|\eta(\mu)| < 2.5, p_T(\mu) > 6 \text{ GeV}, \pi^0 \to \gamma \gamma, p_T(\pi^0) < 2 \text{ GeV}$ At the particle level simulation the decay $B^0_{\ d} \to \pi^0 \mu^+ \mu^-$ are essential background for $B^0_{\ d,s} \to \mu^+ \mu^-(\gamma)$ decays 28

CONCLUSION

- a) All signal channels of interest and corresponding BG were subject to detail studies at 2004-2005 for final ATLAS Detector layout with new software at initial LHC luminosity 10³³cm⁻²s⁻¹.
- b) ATLAS proved to be capable to extracting signals of all main rare B-decays of interest at LHC.
- c) Earlier ATLAS studies (1998-1999) proved that dimuon channels program can be followed up to nominal LHC luminosity 10³⁴ cm⁻²s⁻¹.

Appendix

Other Wilson Coefficients of SM extensions for rare decays

- One-loop SUSY calculations and other SM extensions: C.Bobeth, T.Ewerth, F.Kruger, J.Urban, PRD66, 074021 (2002) G.Hiller, F.Kruger, PRD69, 074020 (2004) ... and many-many-many papers ...
- For good parametrisations and many references see: A.Dedes, B. Todd Huffman, PLB600, p.261 (2004)
- Two-loop MSSM calculations for rare penguins:
 - C.H.Chen, C.Q.Geng, PRD71, 054012 (2005)
 - S.Baek, PLB595, pp.461-468 (2004)

The last work: J.Ellis, K.A.Olive, V.C.Spanos, hep-ph/0504196

"Rome production": 2005 – Data Samples

- Generation (with theoretical matrix elements), full simulation, digitization and reconstruction with 9.0.4 and 10.0.1 software releases, analysis of AOD in 10.0.1.
- Signal channels:
- $B \rightarrow \mu 6 \mu 6$ Rome production. 5 kEv in analysis (AOD)
- $B \rightarrow K^{*0}\mu 6\mu 4$ Private (evgen-simul-digi-reco) 30 kEv (AOD)
- $B \rightarrow φ μ6μ4$ Private (evgen-simul-digi-reco) 12 kEv (AOD)
- $\Lambda_b \rightarrow \Lambda \mu 5 \mu 5$ Private (evgen-simul-digi-reco) ~50 kEv (AOD) Background samples:
- **bb** \rightarrow µ6µ6X **23kEV** included cut on M(µµ) ~ M(B⁰_s)
- **bb** \rightarrow μ 4 μ 4X **23kEV** for B-decays and ~31kEv for Λ_b -decays

$B^0_{d} \rightarrow \pi^0 \mu^+ \mu^- as BG to B^0_{d,s} \rightarrow \mu^+ \mu^- \gamma$ and $B^0_{d,s} \rightarrow \mu^+ \mu^- decays$

Number of events

Number of events

 $|\eta(\mu)| < 2.5, p_T(\mu) > 6 \text{ GeV}, \pi^0 \rightarrow \gamma \gamma$, no cuts on $p_T(\pi^0)$ The particle level simulation with the theoretical branching ratio predictions for SM.