## Weak Phases and CP Violation

Michael Gronau

Technion, Haifa, Israel

Beauty 2005

Assisi, June 20–24, 2005

### Outline

Precision tests of weak phases

- $\beta \equiv \phi_1 : B \rightarrow J/\psi K_S$  (other charmonulum,  $K_L, K^{*0}$ )
- $\alpha = \pi \beta \gamma \equiv \phi_2$ : Isospin in  $B \to \pi \pi, \ \rho \pi, \ \rho \rho$
- $\gamma \equiv \phi_3 : B \to DK$
- **•** Direct CP asymmetries in  $B \to K\pi$
- Signal beyond the Standard Model in  $b \rightarrow s$  transitions?
  - Asymmetry  $\neq \sin 2\beta$  in  $B(t) \rightarrow \pi^0 K_S, \ \eta' K_S, \ \phi K_S, \dots$
- Conclusion
- WA Data taken from CKM05, to be updated after LP03
- No time to discuss  $B_s$  decays, a single reminder

# PRECISION TESTS OF WEAK PHASES

Precision  $\beta: B^0(t) \to J/\psi K_S$ 

 $A(B^0 \to \psi K_S) \sim V_{cb}^* V_{cs}$  has a single real CKM phase  $\Rightarrow B^0(t) \to J/\psi K_S$  & other  $b \to c\bar{c}s$  measure  $\sin 2\beta$  precisely

interference between  $B^0$ - $\overline{B}^0$  mixing and decay Sanda, Carter Bigi, 1981

$$A(t) \equiv \frac{\Gamma(B^{0}(t) \to \psi K_{S}) - \Gamma(B^{0}(t) \to \psi K_{S})}{\Gamma(\bar{B}^{0}(t) \to \psi K_{S}) + \Gamma(B^{0}(t) \to \psi K_{S})} = \sin(2\beta) \sin(\Delta m t)$$

with other charmonium,  $K_L$ :  $\sin 2\beta_{\rm WA} = 0.726 \pm 0.037$ 

transversity  $B \to J/\psi K^{*0}$  favors  $\cos 2\beta > 0$ ,  $\beta = (23.3 \pm 1.5)^{\circ}$ (Babar :  $\cos 2\beta = 2.72^{+0.50}_{-0.79} \pm 0.27$ )

value of  $\beta$  fits beautifully all other CKM constraints (next)

conclusion : KM phase is the dominant source of CPV

### **CKM** matrix

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{array}{l} \beta = -\text{Arg}V_{td} = (23.3 \pm 1.5)^{\circ} \\ \gamma = -\text{Arg}V_{ub} = (58 \pm 12)^{\circ} \\ \alpha = \pi - \beta - \gamma = (99 \pm 12)^{\circ} \end{array}$$





two amplitudes with different weak phases



3 measurables,  $\Gamma_{\pi\pi}, C_{\pi\pi}, S_{\pi\pi}$  for 4 parameters,  $|T|, |P|, \delta, \gamma$ 

Isospin requires 
$$\Gamma_{\pi^+\pi^0}, \Gamma_{\pi^0\pi^0}, \Gamma_{\pi^0\pi^0}$$



### Bounds on $\theta \equiv \alpha_{\text{eff}} - \alpha$

• triangle inequalities:  $|\sin \theta| < \sqrt{\frac{\Gamma_{00}}{\Gamma_{+0}}}$  Grossman, Quinn  $\cos 2\theta \ge \frac{\left(\frac{1}{2}\Gamma_{+-} + \Gamma_{+0} - \Gamma_{00}\right)^2 - \Gamma_{+-} \Gamma_{+0}}{\Gamma_{+-}\Gamma_{+0}\sqrt{1 - C_{+-}^2}}$  MG, London, Sinha<sup>2</sup>  $\Rightarrow |\alpha_{\text{eff}} - \alpha| < 36^{\circ}$ 

 $|P/T| ≤ 1, |\delta| ≤ 90^\circ$  checked exptly, removes sign ambig.

  $\alpha_{\text{eff}} - \alpha > 0$   $\alpha = (88 \pm 18)^\circ$  MG, Lunghi, Wyler
 agrees with CKM bounds α = (99 ± 12)°

- expect slow progress in  $C_{\pi^0\pi^0} = -0.28 \pm 0.39$  for complete I-triangles. SU(3):  $C_{\pi^0\pi^0} = -1.0 \pm 0.4$
- using SU(3) and  $B \to K\pi$ :  $\alpha = (99 \pm 18)^{\circ}$ SU(3) breaking in Penguin? MG, Rosner



 $\blacksquare$   $B \rightarrow \rho \rho$  almost pure longitudinal  $\rightarrow$  identical to  $B \rightarrow \pi \pi$  $f_L^{+-} = 0.98 \pm 0.01^{+0.02}_{-0.03}$   $f_L^{+0} = 0.97^{+0.03}_{-0.07} \pm 0.04$ **small**  $\mathcal{B}(\rho^0 \rho^0) < 1.1 \times 10^{-6} (90\% \text{ c.l.})$  $\mathcal{B}(\rho^+\rho^-) = (30\pm 6) \times 10^{-6}, \quad \mathcal{B}(\rho^0\rho^+) = (26\pm 6) \times 10^{-6}$  $\Rightarrow$  stronger bound on  $|\alpha_{\text{eff}} - \alpha|$  than  $B \rightarrow \pi\pi$  $S_{Long} = -0.33 \pm 0.24^{+0.08}_{-0.14}, \quad C_{Long} = -0.03 \pm 0.18 \pm 0.09$  $\Rightarrow \alpha_{\text{eff}} = (100 \pm 9)^{\circ}, \quad |\alpha_{\text{eff}} - \alpha| < 11^{\circ}(1\sigma)$  $\alpha = (100 \pm 14)^{\circ}$  can sign( $\alpha_{eff} - \alpha$ ) be resolved? best single measurement, CKM bounds  $\alpha = (99 \pm 12)^{\circ}$ 

 $\mathcal{B}(\rho^0 \rho^0) = (0.54 \pm 0.39) \times 10^{-6}$ , expect slow progress



- Dalitz t-dependent analysis  $B \to \pi^+ \pi^- \pi^0$  Snyder, Quinn
- includes  $\rho^+\pi^-, \rho^-\pi^+, \rho^0\pi^0$  with interference
- many (27) measurables depending on many (12) parameters including  $\alpha$

• statistics limited, Babar: 
$$\alpha = (113^{+28}_{-17} \pm 6)^{\circ}$$

- other resonances  $\rho(1450), \rho(1700)$ , S-wave  $\pi\pi$  ?
- using quasi two-body  $B \to \rho^{\pm} \pi^{\mp}$  related by SU(3) to  $B \to K^* \pi, \ \rho K$ :  $\alpha = (94 \pm 16)^{\circ}$  MG, Zupan

Average  $\alpha$ 

#### Averaging $B \to \pi \pi, B \to \rho \rho$ using isospin alone

 $\alpha = (96 \pm 11)^{\circ}$ 

Other CKM constraints ( $V_{cb}, V_{ub}, \epsilon_K, \Delta m_{d,s}$ )

| $\alpha = (99 \pm 12)^{\circ}$ |
|--------------------------------|
|--------------------------------|

TOTAL AVERAGE

 $\alpha = (97 \pm 8)^{\circ}$ 

including bounds from SU(3):  $\delta \alpha = 6^{\circ} - 7^{\circ}$ CKMfitter:  $(97.9^{+5.0}_{-6.4})^{\circ}$  UTFit:  $(94.9 \pm 6.6)^{\circ}$ 

## How precise are isospin methods for $\alpha$ ?

- electroweak penguin amplitudes can be included
  - $H_{\rm eff, EWP}^{\Delta I=3/2} \propto H_{\rm eff, Tree}^{\Delta I=3/2} \Rightarrow \frac{\alpha}{\delta_{\rm E}}$

Neubert, Rosner

$$\begin{split} \alpha &= \alpha_{\rm eff} - \theta - \delta_{\rm EWP} \\ \delta_{\rm EWP} &= (1.5 \pm 0.4)^\circ \\ {\rm MG, Pirjol, Yan} \end{split}$$

- effect of  $\pi^0 \eta \eta'$  mixing:  $|\delta_{\pi \eta \eta'}| < 1.4^{\circ}$  MG, Zupan
- $\Gamma_{\rho} \neq 0 \Rightarrow I = 1$  for two  $\rho$  mesons with different "mass" effect  $\sim \mathcal{O}(\frac{\Gamma_{\rho}^2}{m_{\rho}^2}) \sim 4\%$  Falk, Ligeti, Nir, Quinn
- Iast two effects can be constrained experimentally
- other isospin breaking ( $\Delta I = 5/2$ )  $\leq 1\%$

 $\gamma \text{ in } B \rightarrow D^{(*)}$ 



\* measured  $\gamma$  by 2 interfering tree amps MG, London, Wyler

- \* every hadronic final state  $D^0 \to f$  is accessible to  $\overline{D}^0 \to f$
- \* no uncertainty from penguin amplitude
- \* negligible theoretical uncertainty from  $D^0 \overline{D}^0$  mixing
- \* 2nd amp suppressed  $r \sim 0.2$  combine f's for statistics

### Several variants

\* several variants for  $D, K: B^- \to DK^-, D^*K^-, DK^{*-}$ \* tagged and untagged neutral:  $B^0 \to DK_S, D^*K_S, DK^{*0}$ \*  $D \to f: f = (K^+K^-)_{CP}, (K^-\pi^+)_{\text{flavor}}, K_S\pi^+\pi^-$ GLW ADS GGSZ  $\frac{A(\bar{D}^0 \to f)}{A(D^0 \to f)}: 1 \sim \lambda^2$  f(Dalitz)

- \* combine several modes for common *B* or *D* decays \* all three types of *f*'s were studied, have a common factor in  $B \to DK$   $\frac{A(B^- \to \overline{D}^0 K^-)}{A(B^- \to D^0 K^-)} = re^{i\delta}e^{-i\gamma}$
- \* ADS sets upper limit  $r < 0.22 \ (90\% \text{ c.l.})$ , measure r soon? \* GLW sensitive to  $r^2$ ; Babar and Belle measure  $R_{\pm}, A_{\pm}$

 $R_{\pm} \equiv \frac{\mathcal{B}(D_{CP\pm}K)}{\mathcal{B}(D_{\mathrm{Flavor}}^{0}K)} = 1 + r^{2} \pm 2r \cos \delta \cos \gamma, \quad \mathcal{A}_{\pm} = \pm 2r \sin \delta \sin \gamma$ 

3 observables fix  $r, \delta, \gamma$ : need more statistics for determining  $\gamma$ 

Babar 
$$R_{+}^{K^*} = 1.77 \pm 0.39, \ R_{-}^{K^*} = 0.76 \pm 0.30$$
 Belle

<del>Beauty 2005 –</del> p.14

$$B^- \to (K_S \pi^+ \pi^-)_D K^-$$

\* 
$$\mathcal{B}(D^0 \to K_S \pi^+ \pi^-) = 3\%, \ \mathcal{O}(10^6)$$
 tagged;  $m_{\pm} \equiv m(K_S \pi^{\pm})$   
\*amplitude  $CP$ :  
 $A(B^-) = f(m_-^2, m_+^2) + re^{i(\delta - \gamma)}f(m_+^2, m_-^2)$   
 $A(B^+) = f(m_+^2, m_-^2) + re^{i(\delta + \gamma)}f(m_-^2, m_+^2)$ 

\* model flavor-tagged  $|f(m_+^2, m_-^2)|^2 = \Sigma_1^{17}$  (non)resonances \* fit  $\Gamma[B^{\pm} \to (K_S \pi^+ \pi^-)_D K^{\pm}]$  to  $r, \delta, \gamma$ 

- \* Babar ( $B \to DK$  and  $B \to D^*K$ ):  $\gamma = (70 \pm 31^{+12}_{-10} \, {}^{+14}_{-11})^\circ$
- \* Belle  $(B \to DK \text{ and } B \to D^*K)$ :  $\gamma = (68^{+14}_{-15} \pm 13 \pm 11)^{\circ}$
- \* however, Belle  $DK^*$ :  $\gamma = (112 \pm 35 \pm 9 \pm 11 \pm 8)^{\circ}$
- \* last errors from modeling  $\Sigma~({\rm non}){\rm resonances} \sim 10^\circ$  may be reduced by CLEO-c

\* 2-body  $D \rightarrow f$  are theoretically clean, but low in statistics

#### Intermediate summary

 $\alpha, \beta, \gamma$  from CP asymmetries agree with  $V_{cb}, V_{ub}, \epsilon_K, \Delta m_{d,s}$ 

$$B \to J/\psi K_S : \quad \beta = (23.3 \pm 1.5)^\circ$$
$$B \to \pi\pi, \ \rho\rho : \quad \alpha = (96 \pm 11)^\circ$$
$$B \to DK : \quad \gamma = (68 \pm 22)^\circ$$

 $\alpha + \beta + \gamma = (187 \pm 25)^{\circ}$  has  $180^{\circ}$  any significance?

\* unaffected by New Physics in  $B^0$ - $\overline{B}^0$  mixing, and by NP in  $\Delta I = \frac{1}{2} \quad b \to d\overline{q}q$  which is eliminated by Isospin analysis \* affected by NP in  $\Delta I = \frac{3}{2} \quad b \to d\overline{q}q$ , may also be observed in nonzero  $A_{CP}^{\pi^+\pi^0} = -0.02 \pm 0.07$ ,  $A_{CP}^{\rho^+\rho^0} = -0.09 \pm 0.16$ , and by NP in "tree"  $b \to u\overline{c}s$  (unlikely but not impossible)

# ONE SLIDE INTERMEZZO

### Direct CP asymmetries in $B \to K\pi$

- success of flavor SU(3) (1994, improved by  $f_K/f_{\pi}$ )
- $A_{CP}^{K^+\pi^-} \propto \sin(\text{strong phase})$ : failure of QCD-factorization
- $A_{CP}^{K^+\pi^0} = 0.04 \pm 0.04 \neq A_{CP}^{K^+\pi^-}$  puzzle?

 $A_{CP}^{K^{+}\pi^{-}} \approx A_{CP}^{K^{+}\pi^{0}} + A_{CP}^{K^{0}\pi^{0}}$ 

MG, Rosner

predict  $A_{CP}^{K^0\pi^0} = -0.13 \pm 0.04$  (currently  $-0.08 \pm 0.14$ )

# CP ASYMMETRIES $IN b \rightarrow s$ PENGUINS: NEW PHYSICS IN LOOPS?

The problem of 
$$-\eta_f S_f \neq \sin 2\beta$$
 ?

- $b \rightarrow s$  penguin-dominated decays  $B^0 \rightarrow f$ :  $f = \pi^0 K_S$ ,  $\eta' K_S$ ,  $\phi K_S$ ,  $f_0 K_S$ ,  $\rho^0 K_S$ ,  $\omega K_S$ ,  $K^+ K^- K_S$ ,  $K_S K_S K_S$
- $V_{tb}^* V_{ts}$  dominates:  $C_f = 0$ ,  $-\eta_f S_f = \sin 2\beta = 0.73 \pm 0.04$ Asymmetry $(t) = -C_f \cos \Delta m t + S_f \sin \Delta m t$

$$\begin{array}{cccccccc} f: & \pi^0 K_S & \eta' K_S & \phi K_S & \text{average} \\ -\eta_f S_f: & 0.34^{+0.27}_{-0.29} & 0.43 \pm 0.17 & 0.35 \pm 0.21 & 0.39 \pm 0.12 \end{array}$$

 $-\eta_f S_f$  is consistently smaller than  $\sin 2\beta$ : New Physics?

- what are the effects of  $V_{ub}^* V_{us}$  terms?
- can one predict the sign of  $-\eta_f S_f \sin 2\beta$ ?

### Two approaches:

- Flavor SU(3): MG, Hernandez, London, Rosner may involve 30% corrections to  $-\eta_f S_f \sin 2\beta$
- QCD-factorization: Beneke, Buchalla, Neubert, Sachrajda how large are corrections to calculated  $-\eta_f S_f - \sin 2\beta$ ? expand amplitudes and strong phases in  $1/m_b$  and  $\alpha_s$ large  $1/m_b$  corrections? how reliable are strong phase calculations? long distance final state interactions?

talk by Dan Pirjol

### Conclusions are similar

Effect of 
$$V_{ub}^* V_{us}$$
 terms

$$A(B^{0} \to f) = |V_{cb}^{*}V_{cs}P_{f}| + |V_{ub}^{*}V_{us}C_{f}|e^{i\delta_{f}}e^{i\gamma} \quad \xi_{f} \equiv \frac{|V_{ub}^{*}V_{us}C_{f}|}{|V_{cb}^{*}V_{cs}P_{f}|}$$
$$\Delta S_{f} \equiv -\eta_{f}S_{f} - \sin 2\beta \approx +2\xi_{f}\cos 2\beta\sin\gamma\cos\delta_{f}$$
eliminate  $\delta_{f} \downarrow \qquad C_{f} \approx 2\xi_{f}\sin\gamma\sin\delta_{f}$ 
$$(S_{f}, C_{f}) \text{ ellipse}: \quad (\Delta S_{f})^{2}/\cos^{2}2\beta + C_{f}^{2} = 4\xi_{f}^{2}\sin^{2}\gamma$$

• 
$$\xi_f$$
 determines axes of ellipse

• 
$$V_{ub}^* V_{us}$$
 term - related by SU(3) to  $V_{ub}^* V_{ud}$  term in  $\Delta S = 0$   
 $\Rightarrow$  measured  $\Delta S = 0$  rates set upper bounds on  $\xi_f$ 

• 
$$\operatorname{sign}(\Delta S_f) = \operatorname{sign}(\cos \delta_f); \text{ likely } |\delta_f| < 90^\circ \Rightarrow \Delta S_f > 0$$

next two figures from MG, Rosner, Grossman, Zupan

Bounds on  $(S, A \equiv -C)$  in  $B \rightarrow \pi^0 K_S$ 

#### SU(3) related decays: $B \rightarrow \pi^0 \pi^0, K^+ K^-$



**x SU(3) fit:**  $\Delta S = +0.10 \pm 0.02$ ,  $A = -0.12 \pm 0.03$ 

Bounds on (S, A) in  $B \to \eta' K_S$ 

SU(3) related decays:  $B \rightarrow \pi^0 \pi^0$ ,  $\pi^0 \eta$ ,  $\pi^0 \eta'$ ,  $\eta \eta$ ,  $\eta \eta'$ ,  $\eta' \eta'$ 



solid: flavor SU(3) x: SU(3) fit dashed: neglecting annihilation dotted: vary  $\delta_f$ 

\*  $B \rightarrow \phi K_S$ : no useful bound from SU(3), no limit  $\mathcal{B}(K^{*0}\bar{K}^0)$ \*  $|\Delta S_{\phi K}|, |A_{\phi K}| < 2|\frac{V_{ub}^*V_{us}}{V_{cb}^*V_{cs}}| \simeq 0.05; |\delta_f| < 90^\circ \Rightarrow \Delta S > 0$ \* test in  $B_s$  decays  $|S(B_s \rightarrow \phi \phi)| < 0.05$  requires t-dependence Intermediate summary ( $\eta_f = -1$ )

| mode        | $\Delta S \equiv S - \sin 2\beta$ | bound on $ \Delta S $ | likely $\mathrm{sign}\Delta S$ |
|-------------|-----------------------------------|-----------------------|--------------------------------|
| $\pi^0 K_S$ | $-0.39^{+0.27}_{-0.29}$           | 0.15                  | +                              |
| $\eta' K_S$ | $-0.30\pm0.17$                    | 0.05                  | +                              |
| $\phi K_S$  | $-0.38\pm0.21$                    | 0.05                  | +                              |
| average     | $-0.34 \pm 0.12$                  | $\simeq 0.05 - 0.10$  | +                              |

seems like a problem; await error reduction by factor 2

#### **Conclusions:** methods for $\alpha/\gamma$ proposed 15 years ago

- $\alpha$  from  $B \to \pi \pi$ ,  $\rho \rho$ ,  $\rho \pi$  agree with each other and with other CKM constraints, improves precision to  $\delta \alpha = \pm 8^{\circ}$
- $A_{CP}^{K^+\pi^-}$  is incalculable; predict  $A_{CP}^{K^0\pi^0} = -0.13 \pm 0.04$
- anomalies in several  $b \rightarrow s$  asymmetries,  $< 2\sigma$  in each, but  $> 3\sigma$  (or even  $> 4\sigma$ ?) when combined

KM phase is the dominant source of CP violation

are we seeing first signals of New Physics in  $b \rightarrow s$ ?

great progress since B03-Pitt, awaiting B06-Oxford, Sep 2006

question at Beauty06: what's the source of New Physics?