$\Lambda_{\rm b} \ {\rm Polarization} \\ {\rm Measurement} \ {\rm at} \ {\rm ATLAS} \\$

Beauty 2005 - 10th International Conference on B-Physics at Hadron Machines -June 20 - 24 2005, Assisi, Italy.

Michela Biglietti¹

<u>on behalf of the ATLAS A_b working group:</u> Eduard De La Cruz Burelo², Claudio Ferretti², Homer A Neal², Natalia Panikashvili^{2,4} Mária Smizanská³, Shlomit Tarem⁴

INFN Naples, Italy
 University of Michigan, USA
 University of Lancaster, UK
 Technion Institute of Technology, Israel

$\Lambda_{\rm b}$ Production at LHC

 ${}^{\bullet}$ Due to the parity conservation in the strong interactions, at LHC $\Lambda_{\rm b}$ can be produced with polarization orthogonal to the production plane

• ... but why polarization ?

*Large number of unanswered questions about the role of spin in production of hyperons at high energies which we wish to explore

 $+\Lambda$ hyperon (uds)

Why is the polarization is so large ?Why is the shape so unusual ?

 $+\Lambda_{\rm b}$ hyperon (udb)

+Are the mechanisms of Λ and Λ_{b} polarization different ?

Are the s and b production mechanisms similar ?

Does the polarization depend on quark mass?

K. Heller, Procedings of the 9th International Symposium on High Energy Physics, Bonn (1990)

$\Lambda_{\rm b}$ Decay

The considered decay, Λ_b → J/ψ(μμ) Λ(pπ), is characterizes by 4 helicity amplitudes and the asymmetry parameter α_b caused by the parity non conservation of the weak interactions
 1/2→1/2 +1

$$a_{+} = A(1/2,0)$$

$$a_{-} = A(-1/2,0)$$

$$b_{+} = A(-1/2,-1)$$

$$b_{-} = A(1/2,1)$$

$$\alpha_{b} = \frac{|a_{+}|^{2} - |a_{-}|^{2} + |b_{+}|^{2} - |b_{-}|^{2}}{|a_{+}|^{2} + |a_{-}|^{2} + |b_{+}|^{2} + |b_{-}|^{2}}$$

helicity amplitudes and asymmetry parameter α_b not yet measured
 they can, in principle, be predicted using PQCD, and thus be a tool to test theoretical models and to search for new physics
 Other interesting studies for this decay channel

- Lifetime of Λ_{b} hyperon
- CP violation in baryons

$\Lambda_{\rm b}$ in ATLAS

- For Low luminosity operations
- L= 10^{33} cm⁻² s⁻¹
- In the first 3 years $O(10^5)$ $\Lambda_b \rightarrow J/\psi (\mu^+\mu^-) \Lambda (\pi p)$ (ATLAS TDR estimation)
- The world's biggest sample so far is ~ $O(10^2) \Lambda_b \rightarrow J/\psi (\mu \mu) \Lambda (\pi p)$

Measurement of $\Lambda_b \rightarrow J/\psi \Lambda$

The Λ_b polarization (P_b) and decay parameters can be determined from the angular distributions p.d.f. of the cascade decay $_{i=19}^{i=19}$

$w(\Omega, \Omega)$	$\Omega_1,$	$\Omega_2) = \frac{1}{(4\pi)^3} \sum_{i=0} f_{1i} f_{2i}$	(P_b, a)	$(\alpha_{\Lambda})F_i(\theta,\theta_1,\theta_2,\phi_1,\phi_2)$
	i	f_{1i}	f_{2i}	F_i
$\Lambda \rightarrow I/\mu(uu) \Lambda(\pi \mathbf{n})$ n d f depends	0	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	1	1
	1	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	P_b	$\cos heta$
on 5 angles + 6 parameters of 4	2	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	α_{Λ}	$\cos heta_1$
complex helicity amplitudes and	3	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	$P_b \alpha_\Lambda$	$\cos\theta\cos\theta_1$
	4	$ -a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{+}^{*} $	1	$d^2_{00}(heta_2)$
polarization P_b (\rightarrow / unknowns).	5	$ -a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*} $	P_b	$d_{00}^2(heta_2)\cos heta$
	6	$ -a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*} $	α_{Λ}	$d_{00}^2(heta_2)\cos heta_1$
	7	$-a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*}$	$P_b \alpha_\Lambda$	$d_{00}^2(\theta_2)\cos\theta\cos\theta_1$
p -	8	$-3Re(a_+a^*)$	$P_b \alpha_\Lambda$	$\sin\theta\sin\theta_1\sin^2\theta_2\cos\phi_1$
\mathbf{Z}_{1} $\boldsymbol{\theta}_{1}$ $\boldsymbol{\theta}_{1}$	9	$3Im(a_+a^*)$	$P_b \alpha_\Lambda$	$\sin\theta\sin\theta_1\sin^2\theta_2\sin\phi_1$
Λ	10	$-\frac{3}{2}Re(b_{-}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\sin\theta\sin\theta_1\sin^2\theta_2\cos(\phi_1+2\phi_2)$
$\mathbf{v}_1 \qquad \boldsymbol{\theta}_1 \qquad \boldsymbol{\psi}_1 \qquad \boldsymbol{\psi}_2 \qquad \boldsymbol{v}_1 \qquad \boldsymbol{v}_2 \qquad \boldsymbol{v}_1 \qquad \boldsymbol{v}_2 \qquad \boldsymbol{v}_1 \qquad \boldsymbol{v}_2 \qquad \boldsymbol{v}_1 \qquad \boldsymbol{v}_2 \qquad \boldsymbol{v}_2 \qquad \boldsymbol{v}_1 \qquad \boldsymbol{v}_2 \qquad \boldsymbol$	11	$\frac{3}{2}Im(b_{-}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\sin\theta\sin\theta_1\sin^2\theta_2\sin(\phi_1+2\phi_2)$
X_1 π $J' \psi$ μ -2	12	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\cos\phi_2$
n de la companya de l	13	$\frac{3}{\sqrt{2}}Im(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\phi_2$
	14	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$
$\mu \phi_2$	15	$\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$
p p v	16	$\frac{3}{\sqrt{2}}Re(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$	P_b	$\sin\theta\sin\theta_2\cos\theta_2\cos\phi_2$
v ₂	17	$-\frac{3}{\sqrt{2}}Im(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$	P_b	$\sin\theta\sin\theta_2\cos\theta_2\sin\phi_2$
	18	$\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$
	19	$-\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$

What angular distributions do we expect?

A Model for $\Lambda_{\rm b}$ Decay

• The general amplitude for the decay $\Lambda_b \rightarrow \Lambda J/\psi$ is given by:

$$M = \overline{A(p_{A})} \varepsilon_{\mu}^{*}(p_{J/\psi}) \left[A_{1} \gamma^{\mu} \gamma_{5} + A_{2} \frac{p_{A_{b}}^{\mu}}{m_{A_{b}}} \gamma_{5} + B_{1} \gamma^{\mu} + B_{2} \frac{p_{A_{b}}^{\mu}}{m_{A_{b}}} \right] A_{b}(p_{A_{b}}),$$

- ϵ_{μ}^{*} polarization vector of the vector meson (J/ ψ)
- A₁, A₂, B₁, B₂ complex decay amplitudes are calculable within the framework of PQCD models using factorization theorems (*Phys. Rev.* D65:074030, 2002, hep-ph/0112145)

10

• Helicity amplitudes related to A_1 , A_2 , B_1 , B_2 :

 $a_{+} = -0.0176 - 0.4290i$ $a_{-} = 0.0867 + 0.2454i$ $b_{+} = -0.0810 - 0.2837i$ $b_{-} = 0.0296 + 0.8124i$

$$\alpha_{\rm b} = -0.457$$

Generation of Polarized Λ_b

- In order to study the feasibility of measuring Λ_b polarization in ATLAS we have developed a way to make polarized Λ_b in EvtGen
- EvtGen: originally written in BaBar and CLEO, now also in MC/LCG project
 - package providing a framework for implementation of processes relevant to B physics
 - uses spinor algebra and helicity amplitudes
 - it's possible to set the polarization of the particle before the particle is decayed
 - ... and obtain the correct angular distributions

EvtGen Cross Check

5 angular distributions are generated using both the probability function and using the full amplitude feature in EvtGen

Data Simulation, Reconstruction and Analysis

- Events generated with Pythia/EvtGen
 - several input models
 - Production cuts:
 - + p_T(μ₁) > 2.5GeV, p_T(μ₂) > 4.0GeV,
 - + p_T (π/p) > 0.5 GeV, |η|< 2.7
- Full simulation in ATLAS detector with Geant4

Recostruction

- + Dedicated algorithm for low p_T muons developed
 - + Better efficiency for J/ψ identification
- + Inner Detector tracking and vertexing algorithms for Λ and $\Lambda_{\rm b}$ identification
- Angular distributions determination
- Analysis
 - MC toy for "fast" predictions
 - + Maximum Likehood method to measure P_b and Λ_b decay parameters

Event Reconstruction

Angular distributions in ATLAS detector

ATLAS acceptance modifies the angular distributions and increases the difficulty of the measurement

Angular Resolutions

Maximum Likelihood Results

In the problem we have 9 parameters: P and four complex amplitudes

$$a_{+} = |a_{+}|e^{ia_{+}}, a_{-} = |a_{-}|e^{ia_{-}}, b_{+} = |b_{+}|e^{i\beta_{+}}, b_{-} = |b_{-}|e^{i\beta_{-}}$$

• The normalization + global phase constraint \rightarrow 7 independent parameters

$$a_{b}; r_{0} = |a_{+}|^{2} + |a_{-}|^{2}; r_{1} = |a_{+}|^{2} - |a_{-}|^{2}; \varphi_{+} = a_{+} - \beta_{-}; \varphi_{-} = a_{-} - \beta_{-}; \chi_{+} = \beta_{+} - \beta_{-}; P_{b}$$

- The ML results (Toy MC sample + angular resolution from reconstruction + detector acceptance)
 - only statistical uncertainties are shown

Estimating the statistical uncertainties

- 1) α_{b} can be measured with good precision even if P~O.
- 2) Small uncertainty (P), even for P~O.

Summary and Outlook

- We have done an extensive study of the feasibility of measuring Λ_b parameters in ATLAS:
 - + Generator model in EvtGen for producing polarized $\Lambda_{\sf b}$ in ATLAS
 - + Λ_{b} reconstruction from their decay into $\Lambda'\text{s}$ and J/ψ
 - Polarization and amplitudes extraction from the decay angles
 - Effects of angular resolution on the determination of the parameters
 - + Correlations between α_{b} and polarization

Future plans

- make background studies
- continue to develop likelihood fitting procedures
- + incorporate trigger in analysis
- * make Lifetime feasibility studies
- + develop plans for CP studies

Back-up Slides

Acceptance Effects

-0.4 -0.2

-0.6

-0 0.2 0.4 0.6 0.8

Maximum Likelihood (ML) Method

ML Mehod :

$$w(\Omega, \Omega_1, \Omega_2) = \frac{1}{(4\pi)^3} \sum_{i=0}^{i=19} f_{1i} f_{2i}(P_b, \alpha_\Lambda) F_i(\theta, \theta_1, \theta_2, \phi_1, \phi_2)$$

$$w_{obs}(\vec{\theta}',\vec{A},\vec{\alpha}) = \frac{\int w(\vec{\theta},\vec{A},\vec{\alpha})T(\vec{\theta},\vec{\theta}')d\vec{\theta}}{\int \int w(\vec{\theta},\vec{A},\vec{\alpha})T(\vec{\theta},\vec{\theta}')d\vec{\theta}d\vec{\theta}'}$$

θ': Measured anglesθ : Generated angles

where:

$$\vec{\theta} = \begin{pmatrix} \theta \\ \theta_1 \\ \phi_1 \\ \theta_2 \\ \phi_2 \end{pmatrix}, \vec{A} = \begin{pmatrix} a^+ \\ a^- \\ b^+ \\ b^- \end{pmatrix}, \vec{\alpha} = \begin{pmatrix} \alpha_{\Lambda} \\ P \end{pmatrix}$$

$$T(\vec{\theta}, \vec{\theta}') = \varepsilon(\vec{\theta}, \vec{\theta}') R(\vec{\theta}, \vec{\theta}')$$

 $R(\theta, \theta')$ is the resolution $\varepsilon(\theta, \theta')$ is the acceptance correction

Acceptance correction normalization :

$$\int F_i(\vec{\theta}) \varepsilon(\vec{\theta}) d\vec{\theta}$$

i=0...19

9

Backgrounds

- Dominated by J/ψ from b-hadrons + Λ from heavier hadrons and fragmentation
- fake μ and combinatorial background found negligible in similar topologies (B⁰ \rightarrow J/ ψ K_s)
- real J/ψ from cascade decay estimated at percent level (ex. $\Xi_b^{-,0} \rightarrow \Xi^{-,0} J/\psi \rightarrow \Lambda \pi^{-,0} J/\psi$)
- $B^0 \rightarrow J/\psi K_s$ where a proton mass is given to a projected with mass constraints
- for non direct Λ_b from Σ_b ; try to reconstruct Σ_b to reduce the diluition of polarization

20