

Measurements of γ at *BABAR* and *BELLE*

Max Baak, NIKHEF on behalf of the *BABAR* and *BELLE* Collaborations

Beauty 2005, Assisi

α

 $\gamma = \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$ $\gamma \equiv \phi_3$

FF

Outline

(1.) Measurements of γ using B[±] \rightarrow D^(*)K^{(*)±}

- ➤ GLW Method
- ADS Method
- D⁰ Dalitz Method (GGSZ)

(2.) Measurements of sin(2 β + γ) using B⁰ \rightarrow D^{(*)±} π^{\mp}/ρ^{\mp}

γ in the Unitarity Triangle

Beauty 2005, Assisi

3

p

γ from B⁻ \rightarrow D^(*) K⁻

• Access γ via interference between $B^- \rightarrow D^{(*)0} K^-$ and $B^- \rightarrow \overline{D}^{(*)0} K^-$.

- Reconstruct D in final state f accessible both to D^0 and \overline{D}^0 .
- Will discuss 3 methods with different final states f in this talk:

1. GLW Gronau – London – Wyler
$$B^- \to \overline{D}_{CP}^{(*)0} K^{(*)-}$$
, $\overline{D}^0 \to CP$ eigenstate
2. ADS Atwood – Dunietz – Soni $B^- \to \overline{D}^0 K^-$, $\overline{D}^0 \to K\pi$
3. GGSZ Giri – Grossman – Soffer – Zupan $B^- \to \overline{D}^{(*)0} K^{(*)-}$, $\overline{D}^0 \to K_S \pi^+ \pi^-$
Belle collaboration $B^- \to \overline{D}^{(*)0} K^{(*)-}$, $\overline{D}^0 \to K_S \pi^+ \pi^-$
 $A_{CP} = \frac{\Gamma(B^- \to DK^-) - \Gamma(B^+ \to DK^+)}{\Gamma(B^- \to DK^-) + \Gamma(B^+ \to DK^+)} \propto r_B \sin \gamma$
Critical parameter $r_B \sim 0.1$
for sensitivity to γ !

• In order to determine r_B , γ , δ_B simultaneously, need to measure as many D^{(*)0} modes as possible. Max Baak Beauty 2005, Assisi

Preface: Analysis Techniques

2. Combinatoric e⁺e⁻ \rightarrow qq bkg suppression $\begin{array}{c}
\overset{g}{\to} 1000 \\
\overset{g}{\to} 1000 \\
\overset{g}{\to} 1000 \\
\overset{g}{\to} 1000 \\
\overset{g}{\to} 1400 \\
\overset{g}{\to} 1400 \\
\overset{g}{\to} 1200 \\
\overset{g}{\to} 1200 \\
\overset{g}{\to} 1400 \\
\overset{g}{\to} 1200 \\
\overset{g}{\to} 1$

GLW Method

 B^{+}

- Reconstruct D meson in CP-eigenstates (accessible to D^0 and \overline{D}^0)
- Theoretically very clean ("golden mode") to determine γ
- Relatively large BFs (10⁻⁵), small CP asymmetry

CP even modes:
$$K^+K^-$$
, $\pi^+\pi^-$ CP odd modes: $K_S\pi^0$, $K_S\omega$, $K_S\phi$, $K_S\eta$

$$A_{CP\pm} = \frac{\Gamma\left(B^{-} \to D_{CP\pm}K^{-}\right) - \Gamma\left(B^{+} \to D_{CP\pm}K^{+}\right)}{\Gamma\left(B^{-} \to D_{CP\pm}K^{-}\right) + \Gamma\left(B^{+} \to D_{CP\pm}K^{+}\right)} = \frac{\pm 2r_{B}\sin\gamma\sin\delta_{B}}{R_{CP\pm}}$$
$$R_{CP\pm} = \frac{R^{D_{CP\pm}}}{R^{D_{0}}} = 1 + r_{B}^{2} \pm 2r_{B}\cos\gamma\cos\delta_{B}$$

Phys. Lett. B253, 483 (1991); Phys. Lett. B265, 172 (1991); Phys. Lett. B557, 198 (2003)

\Rightarrow 3 Independent measurements (A₊R₊ = -A₋R₋) and 3 unknowns (r_B, γ , δ_B)

$$\begin{pmatrix} \mathbb{R}^{D_{CP\pm}} = \frac{\Gamma\left(B^{-} \to D_{CP\pm}K^{-}\right) + \Gamma\left(B^{+} \to D_{CP\pm}K^{+}\right)}{\Gamma\left(B^{-} \to D_{CP\pm}\pi^{-}\right) + \Gamma\left(B^{+} \to D_{CP\pm}\pi^{+}\right)} ; \quad \mathbb{R}^{D^{0}} = \frac{\Gamma\left(B^{-} \to D^{0}K^{-}\right) + \Gamma\left(B^{+} \to \overline{D}^{0}K^{+}\right)}{\Gamma\left(B^{-} \to D^{0}\pi^{-}\right) + \Gamma\left(B^{+} \to \overline{D}^{0}\pi^{+}\right)} \\ \text{Beauty 2005, Assisi} \end{cases}$$

GLW Method Results $B^+ \rightarrow D_{CP}^{(*)} \kappa^{(*)+}$

GLW Results Combined $B^+ \rightarrow D_{CP}^{(*)} \kappa^{(*)+}$

D⁰ _{CP} K⁻	BaBar PRL92,202002, 214M BB	Belle B-CONF-0443, 275M BB	Average (HFAG)
R_{CP}^{+}	$0.87 \pm 0.14 \pm 0.06$	$0.98 \pm 0.18 \pm 0.10$	0.91 ± 0.12
R _{CP} ⁻	$0.80 \pm 0.14 \pm 0.08$	$1.29 \pm 0.16 \pm 0.08$	1.02 ± 0.12
A _{CP} +	$+0.40 \pm 0.15 \pm 0.08$	$+0.07 \pm 0.14 \pm 0.06$	$+0.22 \pm 0.11$
A _{CP} ⁻	$+0.21 \pm 0.17 \pm 0.07$	$-0.11 \pm 0.14 \pm 0.05$	$+0.02 \pm 0.12$

D ^{*0} _{CP} K [−] (D [*] →D ⁰ _{CP} π ⁰)	BaBar PRD71,031102, 123 M BB	Belle B-CONF-0443, 275M $B\overline{B}$	Average (HFAG)
R_{CP}^{+}	$+1.06 \pm 0.26^{+0.10}_{-0.09}$	$1.43 \pm 0.28 \pm 0.06$	1.24 ± 0.20
R _{CP} ⁻		$0.94 \pm 0.28 \pm 0.06$	0.94 ± 0.29
A _{CP} ⁺	$-0.10 \pm 0.23 ^{+0.03}_{-0.04}$	$-0.27 \pm 0.25 \pm 0.04$	-0.18 ± 0.17
A _{CP} ⁻		$+0.26 \pm 0.26 \pm 0.03$	+0.26 ± 0.26
$\begin{array}{c} {\sf D}^0{}_{{\sf CP}}{\sf K}^{*-}\ ({\sf K}^{*-} ightarrow{\sf K}_{{\sf S}}\pi^-) \end{array}$	BaBar hep-ex/0408069, 227M BB	No useful constraints on vot due to small branching	Average (HFAG)
$ \frac{D^{0}_{CP} K^{*-}}{(K^{*-} \to K_{S} \pi^{-})} R_{CP}^{+} $	BaBar hep-ex/0408069, 227M BB 1.77 ± 0.37 ± 0.12	No useful constraints on γ yet due to small branching ratios and limited statistics.	Average (HFAG) 1.77 ± 0.39
$\frac{D^{0}_{CP} K^{*-}}{(K^{*-} \rightarrow K_{S} \pi^{-})}$ R_{CP}^{+} R_{CP}^{-}	BaBar hep-ex/0408069, 227M BB $1.77 \pm 0.37 \pm 0.12$ $0.76 \pm 0.29 \pm 0.06 \stackrel{+ 0.04}{_{- 0.14}} (*)$	No useful constraints on γ yet due to small branching ratios and limited statistics. Belle hep-ex/0307074, 96M BB	Average (HFAG) 1.77 ± 0.39 $0.76^{+0.30}_{-0.33}$
$\frac{D^{0}_{CP} K^{*-}}{(K^{*-} \rightarrow K_{S} \pi^{-})}$ R_{CP}^{+} R_{CP}^{-} A_{CP}^{+}	BaBarhep-ex/0408069, 227M BB $1.77 \pm 0.37 \pm 0.12$ $0.76 \pm 0.29 \pm 0.06^{+0.04}_{-0.14}$ $-0.09 \pm 0.20 \pm 0.06$	No useful constraints on γ yet due to small branching ratios and limited statistics. Belle nep-ex/0307074, 96M BB $-0.02 \pm 0.33 \pm 0.07$	Average (HFAG) 1.77 ± 0.39 $0.76^{+0.30}_{-0.33}$ -0.07 ± 0.18

Max Baak (*) CP-even pollution in the CP-odd channels Beauty 2005, Assisi

ADS Method

• Reconstruct D in final state $K\pi$ - small BF (10⁻⁶)

Phys. Rev. Lett. 78, 3257 (1997)

 B^{+}

- Amplitude: $A(B^- \rightarrow [K^+\pi^-]K^-) \propto r_B e^{i\delta_B} e^{-i\gamma} + r_D e^{i\delta_D}$
- $() \qquad \text{Amplitudes comparable in size } \to \text{ large CP violation} \\ \frac{\left| A \left(B^- \to K^- \overline{D}^0 \left[\to K^+ \pi^- \right] \right) \right|^2}{A \left(B^- \to K^- D^0 \left[\to K^+ \pi^- \right] \right)} \right|^2 \sim \left| \frac{V_{ub} V_{cs}^*}{V_{cb} V_{us}^*} \right|^2 \left| \frac{a_2}{a_1} \right|^2 \frac{\Gamma \left(\overline{D}^0 \to K^+ \pi^- \right)}{\Gamma \left(D^0 \to K^+ \pi^- \right)} \sim 1$

PDG, Phys.Lett. B592, 1 (2004) $r_{D} \equiv \left| \frac{A \left(D^{0} \rightarrow K^{+} \pi^{-} \right)}{A \left(D^{0} \rightarrow K^{-} \pi^{+} \right)} \right| \square 0.060 \pm 0.003$ $\delta_{D} : D \text{ decay strong phase unknown.}$

Scan over all values.

• Count B candidates with opposite sign kaons!

2 observables
VS
3 unknowns:

$$\Gamma_{Br} \gamma, \delta_{B}$$

$$R_{ADS} = \frac{\Gamma\left(B^{-} \rightarrow \left[K^{+}\pi^{-}\right]K^{-}\right) - \Gamma\left(B^{+} \rightarrow \left[K^{-}\pi^{+}\right]K^{+}\right)}{\Gamma\left(B^{-} \rightarrow \left[K^{+}\pi^{-}\right]K^{-}\right) + \Gamma\left(B^{+} \rightarrow \left[K^{-}\pi^{+}\right]K^{+}\right)} = \frac{2r_{B}r_{D}\sin\gamma\sin\left(\delta_{B}-\delta_{D}\right)}{R_{ADS}}$$

$$R_{ADS} = \frac{\Gamma\left(B^{-} \rightarrow \left[K^{+}\pi^{-}\right]K^{-}\right) + \Gamma\left(B^{+} \rightarrow \left[K^{-}\pi^{+}\right]K^{+}\right)}{\Gamma\left(B^{-} \rightarrow \left[K^{-}\pi^{+}\right]K^{-}\right) + \Gamma\left(B^{+} \rightarrow \left[K^{-}\pi^{+}\right]K^{+}\right)} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos\gamma\cos\left(\delta_{B}+\delta_{D}\right)$$

Max Baak

Beauty 2005, Assisi

BABAR: 227M BB ADS Method Results $B^+ \rightarrow$

 $D^0_{K\pi} h^+$

ADS Method Results

 $D^0_{\kappa_\pi} h^+$

 $B^+ \rightarrow$

GGSZ Method

Phys. Rev. D68, 054018 (2003)

> Reconstruct D in final state: $K_{s} \pi^{+} \pi^{-}$ (not a CP-eigenstate)

> Employs K- \overline{K} mixing ("cheap" decay-mode: high BF ~2.2x10⁻⁵)

Final state accessible through many intermediate non-CP states. Need Dalitz analysis to separate resonance interferences!

GGSZ Method

C

π

 $m_{+}^{2} = m_{K_{S}\pi^{+}}^{2}$ $m_{-}^{2} = m_{K_{S}\pi^{-}}^{2}$

- D decay amplitude *f* consists of sum of many resonances (more on next slide).
- Amplitude f parameterized in terms of Dalitz variables m_{+}^2 and m_{-}^2

 π

ī

 D^0

Simultaneous fit to D \rightarrow K_S $\pi^+\pi^-$ Dalitz planes of B⁺ and B⁻ to extract r_B, γ , and δ

 $D^0 \rightarrow K_S \pi^+ \pi^-$ Dalitz Model

 $\stackrel{B^+}{\overleftarrow{D}^0}$

 $D^{(*)0}K^{(*)+}$

 $\rightarrow K_{s}\pi^{+}\pi^{-}$

 $m_{\pi+\pi-}^{2}$ (GeV²/c⁴)

 m_{1}^{2} (GeV²/c⁴)

- To extract r_B and γ need high-precision D decay model $f(m_+^2, m_-^2)$
- Obtain $f(m_+^2, m_-^2)$ using fit to "tagged" D⁰ sample:
- \Rightarrow Use large D^{*+} \rightarrow D⁰ π^+ sample. Charge of the pion gives flavor of D.

$D^0 \rightarrow K_s \pi^+ \pi^-$ Dalitz Model

- Belle: indentical approach
- Include two more DCS resonances: $K^{*+}(1410) \pi^{-}$, $K^{*+}(1680)\pi^{-}$
- 13 resonances

1 non-resonant component

Max Baak

BELLE

Beauty 2005, Assisi

Dalitz sensitivity scan to γ

 $\begin{array}{c} B^{+} \rightarrow D^{(*)0} K^{(*)+} \\ \overline{D}^{0} \rightarrow K_{S} \pi^{+} \pi^{-} \end{array}$

GGSZ Method Results

The two plots would be the same without CP violation. Are they?

BaBar GGSZ Method Results $B^+ \rightarrow D^{(*)0}K^{(*)+}$ $D^0 \rightarrow K_s \pi^+ \pi^-$

hep-ex/0504039

Max Baak

Beauty 2005, Assisi

Belle GGSZ Method Results

 $D^{(*)0}K^{(*)+}$

 $\rightarrow K_{s}\pi^{+}\pi^{-}$

 $\stackrel{B^+}{\overleftarrow{D}^0}$

BaBar GGSZ Method Results $B^+ \rightarrow D^{(*)0}K^{(*)+}$ $D^0 \rightarrow K_s \pi^+ \pi^-$

B	ABAR : 227M BB	
hep-ex/05040 Frequentist CLs)39	preliminary
$DK: r_B$ δ_B $D^*K: r_B^*$	$= 0.118 \pm 0.07$ $= (104 \pm 45^{+1}_{-2})$ $= 0.169 \pm 0.09$	$9 \pm 0.034 ^{+0.036}_{-0.034}$ $7^{+16}_{1 -24})^{\circ}$ $6^{+0.030}_{-0.028} ^{+0.029}_{-0.026}$
δ_{B}^{*} $\gamma = (70)$	$= (296 \pm 41 + 1)^{+12} \pm 31 + 12 + 14 + 14 + 14 + 14 + 14 + 14 + 1$	$\frac{14}{12} \pm 15$)°

Belle GGSZ Method Results

 $\stackrel{B^+}{\overleftarrow{D}^0}$

 $D^{(*)0}K^{(*)-}$

 $\rightarrow K_{s}\pi^{+}\pi^{-}$

CP violation in $B^0 \rightarrow D^{(*)} \pi / \rho$

> CP violation through $B^{0}-\overline{B}^{0}$ mixing and interference of amplitudes:

sin(2 β + γ) from B⁰ \rightarrow D^(*) π/ρ

• Time evolution for B⁰ decays and \overline{B}^0 decays (R_{mix}) to D^(*) π/ρ :

 $f(B^{0}(\Delta t) \to D^{(*)-}\pi^{+}) = N \exp^{-\Gamma|\Delta t|} \{1 + C \cos(\Delta m \Delta t) - (-)^{L} S_{-} \sin(\Delta m \Delta t)\}$ $f(B^{0}(\Delta t) \to D^{(*)+}\pi^{-}) = N \exp^{-\Gamma|\Delta t|} \{1 - C \cos(\Delta m \Delta t) - (-)^{L} S_{+} \sin(\Delta m \Delta t)\}$

 $f(\overline{B}^{0}(\Delta t) \to D^{(*)+}\pi^{-}) = N \exp^{-\Gamma|\Delta t|} \{1 + C \cos(\Delta m \Delta t) + (-)^{L} S_{+} \sin(\Delta m \Delta t)\}$ $f(\overline{B}^{0}(\Delta t) \to D^{(*)-}\pi^{+}) = N \exp^{-\Gamma|\Delta t|} \{1 - C \cos(\Delta m \Delta t) + (-)^{L} S_{-} \sin(\Delta m \Delta t)\}$

$$C = \frac{1 - r_{(*)}^2}{1 + r_{(*)}^2} \approx 1 \qquad \qquad S_{\pm} = \frac{2r_{(*)}}{1 + r_{(*)}^2} \sin(2\beta + \gamma \pm \delta_{(*)}) \approx [-0.04, 0.04]$$
SMALL sine

- CP asymmetry: small sine terms
- \Rightarrow Need S₊ and S₋ together to give (2 β + γ) and δ
- From $D^{(*)}\pi/\rho$ sine coefficients, 4 ambiguities in $(2\beta+\gamma)$ \Rightarrow Express result as $|\sin(2\beta+\gamma)|$
- SM: $sin(2\beta+\gamma) \sim 1$ Max Baak
- Factorization theory: δ is small

terms

sin(2 β + γ) Caveat: determination of r_(*)

• Simultaneous determination of $sin(2\beta+\gamma)$ and $r_{(*)}$ from time-evolution not possible with current statistics \Rightarrow need $r_{(*)}$ as external inputs !

^[1] I. Dunietz, Phys. Lett. B 427, 179 (1998)

• Estimate $r_{(*)}$ from $B^0 \rightarrow D_s^{(*)+}\pi^-/\rho^-$ using SU(3) symmetry ^[1]

• Using:
$$r_{(*)} \approx \sqrt{\frac{\mathcal{B}(B^0 \to D_s^{(*)+}\pi^-)}{\mathcal{B}(B^0 \to D^{(*)-}\pi^+)}} \left| \frac{V_{cd}}{V_{cs}} \right| \frac{f_{D^{(*)}}}{f_{D_s^{(*)}}}$$

We add 30% theoretical errors to account for:

- Unknown SU(3) breaking uncertainty
- Missing W-exchange diagrams in calculation
- Missing rescattering diagrams (Can be estimated with $B^0 \rightarrow D_s^{(*)+}K^-$)

Inputs used in CKMFitter/ UTFit : $r(D\pi) = 0.019 \pm 0.004$ $r(D^*\pi) = 0.015 \pm 0.006$ $r(D\rho) = 0.003 \pm 0.006$ In theoretical errors included

25

Beauty 2005, Assisi

BaBar: Inclusive $B^0 \rightarrow D^* \pi$

Max Baak

Beauty 2005, Assisi

Belle: Inclusive $B^0 \rightarrow D^* \pi$

BaBar: Exclusive $B^0 \rightarrow D^{(*)} \pi/\rho$

BABAR: 110M BB

- Exclusive reconstruction of channels:
 - $B \rightarrow D^{\pm} \pi^{\mp}$
 - $B \rightarrow D^{*_{\pm}} \pi^{\mp}$
 - $B \rightarrow D^{\pm} \rho^{\mp}$
 - Full reco.: ~10x less efficient; far lower backgrounds
 - Same sensitivity to $sin(2\beta+\gamma)$ as inclusive approach

Sample	Yields	Purity
Fully Reconstructed	(110 M $B\overline{B}$)	
$D^{\pm}\pi^{\mp}$ (all tag)	7611 ± 97	91%
$D^{*\pm}\pi^{\mp}$ (all tag)	7068 ± 89	95%
$D^{\pm} ho^{\mp}$ (all tag)	4400 ± 79	88%
hep-ex/0408059	р	reliminary
$2r^{D\pi}\sin(2\beta+\gamma)\cos\delta^{D\pi}$	$= -0.032 \pm 0.03$	31 ± 0.020
$2r^{D\pi}\cos(2\beta+\gamma)\sin\delta^{D\pi}$	$= -0.059 \pm 0.05$	55 ± 0.055
$2r^{D^*\pi}\sin(2\beta+\gamma)\cos\delta^{D^*\pi}$	$= -0.049 \pm 0.03$	0.020
$2r^{D^*\pi}\cos(2\beta+\gamma)\sin\delta^{D^*\pi}$	$= +0.044 \pm 0.05$	4 ± 0.033
$2r^{D\rho}\sin(2\beta+\gamma)\cos\delta^{D\rho}$	$= -0.005 \pm 0.04$	4 ± 0.021

=

Max Baak

 $2r^{D\rho}\cos(2\beta+\gamma)\sin\delta^{D\rho}$

 $-0.147 \pm 0.074 \pm 0.035$

Belle: Exclusive $B^0 \rightarrow D^{(*)} \pi$

- Exclusive reconstruction of channels:
 B → D[±] π[∓]
 - $B \rightarrow D^{*_{\pm}} \pi^{\mp}$
- Uses $B \rightarrow D^* I_V$ as control sample for tag-side interference

Decay mode	Candidates	Selected(*)	Purity
$B ightarrow D\pi$	9711	9351	91%
$B ightarrow D^* \pi$	8140	7763	96%

$$2r^{D\pi} \sin(2\beta + \gamma) \cos \delta^{D\pi} = -0.062 \pm 0.037 \pm 0.018$$

$$2r^{D\pi} \cos(2\beta + \gamma) \sin \delta^{D\pi} = -0.025 \pm 0.037 \pm 0.018$$

$$2r^{D^*\pi} \sin(2\beta + \gamma) \cos \delta^{D^*\pi} = +0.060 \pm 0.040 \pm 0.019$$

$$2r^{D^*\pi} \cos(2\beta + \gamma) \sin \delta^{D^*\pi} = +0.049 \pm 0.040 \pm 0.019$$

Max Baak

^(*) After tagging and vertexing

Beauty 2005, As

HFAG on $|sin(2\beta+\gamma)|$

Max Baak

Beauty 2005, Assisi

Combined Limit on $|sin(2\beta+\gamma)|$

Max Baak

Beauty 2005

Outlook

– CL

Many approaches to measure γ have been investigated by BaBar and Belle.

GLW and ADS methods don't provide strong constraints on γ when considered alone. Current experimental results favour small values of r_B . GGSZ results are promising!

<u>GLW+ADS+GGSZ</u>:

CKMFitter: $\gamma = [63 + 15]^{\circ} + n\pi$ UTFit: $\gamma = [64 \pm 18]^{\circ} + n\pi$

sin(2 β + γ) from D^(*) π/ρ :

CKMFitter: $|sin(2\beta+\gamma)| > 0.53 @ 68\%$ C.L.UTFit: $|sin(2\beta+\gamma)| > 0.74 @ 68\%$ C.L.

 $\frac{\text{GLW} + \text{ADS} + \text{GGSZ} + \sin(2\beta + \gamma)}{\text{CKMFitter:}} = \begin{bmatrix} 70 & +12 \\ -14 \end{bmatrix}^{\circ} + n\pi$

All results are in good agreement with the global CKM fit ($\gamma = [60 \pm 6]^{\circ}$)

All decay modes can use lots more statistics! High statistics expected in next years may allow BaBar and Belle to measure γ to < 10°.

BACKUP slides...

BaBar: Removing the Imaginary (?) σ

collaboration $B \rightarrow J/\Psi \omega \pi \pi$

Belle GGSZ: Systematic Errors $B^+ \rightarrow D^{(*)0}K^{(*)+}$ $\overline{D}^0 \rightarrow K_s \pi^+ \pi^-$

Experimental

	DK^{\pm}		D^*K^{\pm}		$DK^{*\pm}$				
Source	Δr	$\Delta \phi_3$ (°)	$\Delta\delta$ (°)	Δr	$\Delta \phi_3$ (°)	$\Delta\delta$ (°)	Δr	$\Delta \phi_3$ (°)	$\Delta\delta$ (°)
Background shape	0.027	5.7	4.1	0.014	3.1	5.3	0.093	4.4	3.5
Background fraction	0.006	0.2	1.0	0.005	0.7	1.4	0.006	0.6	1.5
Efficiency shape	0.012	4.9	2.4	0.002	3.5	1.0	0.002	4.8	2.3
Momentum resolution	0.002	0.3	0.3	0.002	1.7	1.4	0.001	0.2	0.1
Control sample bias	0.004	10.2	10.2	0.004	9.9	9.9	0.003	6.8	6.8
Total	0.03	13	11	0.02	11	11	0.093	9.4	8.1

 $ar{D^0} o K_{S} \pi \pi$ Model

Fit model	Δr	$\Delta \phi_3$ (°)	$\Delta\delta$ (°)
$F_r = F_D = 1$	0.01	3.1	3.3
$\Gamma(q^2) = \mathrm{const}$	0.02	4.7	9.0
Narrow resonances plus non-resonance term	0.04	11	21
Total	0.04	11	21

Estimated at r = 0.13For larger r, errors get smaller Narrow resonances: $K^*(892)^{\pm}$, ρ , $f^0(980)$

Non-resonant $DK_{\!S}\pi$ (only for $DK^{*\pm}$)

	Δr	$\Delta \phi_3$ (°)	$\Delta\delta$ (°)
non-resonant $DK_{S}\pi$	0.08	8	49

Non-resonant $DK_{S}\pi$ can contribute to ϕ_{3} but with different r and δ in general

$B \rightarrow D^{*}\pi^{+}$ time-dependent evolution

- a) $f_{unmixed}(D^{*-}\pi^{+},\Delta t) = \frac{\Gamma}{4}e^{-\Gamma|\Delta t|} [1 + C\cos(\Delta m_{d}\Delta t) + S\sin(\Delta m_{d}\Delta t)]$
- b) $f_{mixed}(D^{*-}\pi^+, \Delta t) = \frac{\Gamma}{4}e^{-\Gamma|\Delta t|} [1 C\cos(\Delta m_d \Delta t) S\sin(\Delta m_d \Delta t)]$

- CP asymmetry: small additional sine term
- Smallness of amplitude ratio r greatly reduces sensitivity to $sin(2\beta+\gamma)$

$\sigma(\gamma)$ Dependency on r_B

- \succ BaBar and Belle show quite different sensitivities to γ
- > Both find quite different values for r_B (BaBar: ~0.12, Belle: ~0.21)

> Different sensitivity to γ caused by dependency on r_B .