The $B_{\ensuremath{\scriptscriptstyle Q}} \to J/\Psi\Phi \to \mu\mu KK$ channel with CMS

Th.Speer, <u>K.Prokofiev</u> Physik-Institut Universität Zürich, Switzerland

V.Ciulli, N.Magini, Dipartimento di Fisica, Università degli Studi di Firenze, Italy

> T.Ilicheva^{1,2}, S.Shulga^{1,2} ¹LPP JINR Dubna, Russia ²Gomel State University, Belarus

Outline

- The $B_{\gamma} \rightarrow J/\Psi \Phi$ decay channel
- Extraction of physical observables
- Introduction to CMS detector at LHC
- High Level Trigger Selection
- Offline Selection and Analysis
- Results

The $B_s \rightarrow J/\Psi \Phi \rightarrow \mu \mu KK$ decay channel (1)

- The $B_s \rightarrow J/\Psi \Phi \rightarrow \mu \mu KK$ decay
 - A "gold-plated" mode to extract the CP-violating weak phase $\phi_s \sim -2\lambda^2 \eta$ (λ and η are Wolfenstein parameters)
 - Allows a measurement of parameters of the particle-antiparticle mixing in the B⁰ system:
 - Difference of widths of "heavy" and "light" mass eigenstates $\Delta \Gamma_s = \Gamma_H \Gamma_L$
 - Difference of masses of "heavy" and "light" mass eigenstates Δm
 - Average width of mass eigenstates: $\overline{\Gamma} = \frac{\Gamma_H + \Gamma_L}{2}$
- Extraction of physical observables
 - Flavour-untagged sample:
 - Extraction of Γ_H and Γ_L is possible from the proper lifetime distribution using Max Likelihood method
 - Extraction of η , $\Delta \Gamma$, $\overline{\Gamma}$ is possible from the angular distributions of final state components using method of weight functions or Max. Likelihood method.
 - Flavour-tagged sample (same as for untagged sample +...):
 - Extraction of Δm_{s} is possible from angular distributions
 - Extraction of η is also possible from the time-dependent asymmetry of decay rates.

Extraction of physical observables (1)

- Angular analysis
 - The final state of the $B_{t} \rightarrow J/\Psi \Phi$ decay is an admixture of CP eigenstates.
 - The J/ψ and φ are massive neutral vector mesons (J^{PC}=1⁻⁻). Their zero-angular-momentum spectrum consists of states with orbital angular momentum L=0,1,2 (even, odd, even)
 - The decay amplitude can be decomposed into independent components, corresponding to linear polarizations of the final state vector mesons.
 - The angular dependencies of different of CP-odd and CP-even components are different and can be separated through the angular analysis
 - The angular distributions of the final state can be described with 3 angles
 - For example in the so-called helicity frame: Θ_{I+}, Θ_{K+}, χ:

Extraction of physical observables (2)

In general, the angular distributions can be expressed in the following form:

$$f_{0}(\Theta_{l},\Theta_{K},X,t) = \frac{d^{4}\Gamma}{d\cos\Theta_{l}d\cos\Theta_{K}dXdt} \sim \sum_{i=1}^{6} b_{i}(t)g_{i}(\Theta_{l},\Theta_{K},X)$$

• $g_i(\Theta_i, \Theta_K, \chi)$ Are the angular distributions, depending on the kinematics of the final state

- *b_i*(*t*) are the time evolutions of physical observables (bilinear combinations of transversity amplitudes, corresponding to the linear polarizations of the final state): |A₀(t)|², |A₁(t)|², |A₁(t)|², Re(A₀^{*}(t)A₁(t)), Im(A₀^{*}(t)A₁(t)).
 - Include ϕ_s , Γ_L , Γ_H , Δm_s , two strong CP-conserving phases etc.

$$\begin{split} |A_{0}(t)|^{2} &= |A_{0}(0)|^{2} \Big[e^{-\Gamma_{L}t} - e^{-\bar{\Gamma}t} \sin(\Delta mt) \delta \phi \Big] \\ |A_{\parallel}(t)|^{2} &= |A_{\parallel}(0)|^{2} \Big[e^{-\Gamma_{L}t} - e^{-\bar{\Gamma}t} \sin(\Delta mt) \delta \phi \Big] \\ |A_{\perp}(t)|^{2} &= |A_{\perp}(0)|^{2} \Big[e^{-\Gamma_{H}t} + e^{-\bar{\Gamma}t} \sin(\Delta mt) \delta \phi \Big] \\ \Re(A_{0}^{*}(t)A_{\parallel}(t)) &= |A_{0}(0)||A_{\parallel}(0)|\cos(\delta_{2} - \delta_{1}) \Big[e^{-\Gamma_{L}t} - e^{-\bar{\Gamma}t} \sin(\Delta mt) \delta \phi \Big] \\ \Im(A_{\parallel}^{*}(t)A_{\perp}(t)) &= |A_{\parallel}(0)||A_{\perp}(0)| \Big[e^{-\bar{\Gamma}t} \sin(\delta_{1} - \Delta mt) + \frac{1}{2} (e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t}) \cos(\delta_{1}) \delta \phi \\ \Im(A_{0}^{*}(t)A_{\perp}(t)) &= |A_{0}(0)||A_{\perp}(0)| \Big[e^{-\bar{\Gamma}t} \sin(\delta_{2} - \Delta mt) + \frac{1}{2} (e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t}) \cos(\delta_{2}) \delta \phi \\ \end{split}$$

Extraction of physical observables (3)

- Extraction of observables
 - Likelihood fit of the angular distributions of the final state
 - Method of weight functions:
 - Finding a set of functions $w_i(\Theta_l, \Theta_K, X)$ such that:

$$\int d\cos\Theta_l d\cos\Theta_K dX w_i (\Theta_l, \Theta_K, X) g_j (\Theta_l, \Theta_K, X) \sim \delta_{ij}$$

Projecting out the physical observables:

 $b_{i}(t) = \int d\cos\Theta_{l} d\cos\Theta_{K} dX f_{0}(\Theta_{l},\Theta_{K},X,t) w_{i}(\Theta_{l},\Theta_{K},X)$

CMS Detector at LHC (1)

- LHC environment
 - 14 Tev pp collisions
 - 40 Mhz bunch crossing (every 25 ns)
- Design luminosity
 - Low luminosity run (first several years) L= 2.10³³ cm⁻²s⁻¹ (~10 fb⁻¹ per year)
 - ~3.5 Pile-Up events per bunch crossing
 - High luminosity run L= 10³⁴ cm⁻²s⁻¹ (~100 fb⁻¹ per year)
 ~20 Pile-Up events per bunch crossing

Resistive Plate chambers are used for the L1 muon trigger ($\sigma_{T} \sim 1$ ns). Muons are reconstructed using a pattern comparator logic; the parameters (p_{t}, η, φ) are assigned via look up tables

The High Level Trigger Selection (1)

- Based on the Level 1 dimuon trigger:
 - Hardware-based trigger (combined partial DT, CSC, RPC information is used)
 - Returning up to 4 best muon candidates per pileUp event.
 - The P_t, η, φ of the candidate are assigned through the Look-Up Table mechanism, only muon candidates with P_t>3GeV are reconstructed
 - Opposite charge muon pairs are selected for further analysis

٠

٠

٠

only.

The High Level Trigger Selection (3)

- Regional track reconstruction in rectangular (η , Φ) region:
 - The region is centered in the Primary Vertex
 - Direction is defined by the momentum of Level 1 muon candidate
 - Partial track reconstruction (up to 6 hits) with pixel and inner layers of tracker.

Tracker resolution as function of number of hits used in reconstruction

The High Level Trigger Selection (4)

Suppression of combinatorial background

Correct µµ combinations

- Vertex reconstruction, candidates with $\chi^2 < 10$ are selected
- Transverse decay length significance cut $L_{T}/\sigma_{T} > 3$
- Muon mass is assigned to the candidate tracks, an invariant mass of J/Ψ is reconstructed
- Candidates with $|\Delta M(J/\Psi)| < 100 \text{MeV}$, $P_{\downarrow}(\mu) > 2.0 \text{GeV}$ are selected

The High Level Trigger Selection (5)

- HLT Level 3: The $B_{\gamma} \rightarrow J/\Psi \Phi \rightarrow \mu \mu KK$ reconstruction
 - Partial track reconstruction (Pixel + inner tracker layers) in the narrow cone around J/Ψ direction
 - Suppression of combinatorial background
 - Reconstruction of 4-track secondary vertex candidate
 - Candidates with $\chi^2 < 10$ are selected
 - Transverse decay length
- The kaon mass is assigned to the tracks, masses of Φ candidates are calculated
 - Opposite charge pairs with $|\Delta M(\Phi)| < 10$ MeV are selected

The High Level Trigger Selection (6)

CONStructure over produced

- Overall signal efficiency after L3 is 8.7%
- Generator level kinematic cuts:
 - Signal muons P₁>2.0GeV
 - Hadrons P₁>0.5 GeV
- Expected cross section 97.10³ fb
- A yield of some ~83'800 events is expected with 10 fb⁻¹ (one year of the low luminosity run L =2.10³³ cm⁻²s⁻¹)
- Level 3 background rate are <1.7 Hz

Offline Selection (1)

- Based on muon reconstruction using combined information Tracker+Muon chambers
- Two reconstruction strategies are available:
 - L3 Muon reconstructor Uses the L1 hardware trigger to produce muon seeds, combines the information from muon chambers with the tracker response
 - Global Muon Reconstructor Uses "internal" seeds: look for hit multiplets in muon chambers (Flexible P, threshold), combines the information from muon chambers with the tracker response
- A combination of two strategies with cleaning (50% of shared hits):
- Combinatorial J/Ψ reconstruction:
 - Muons with P₂Sev are selected.
 - Opposite charge muon pairs are created, their invariant mass is calculated

Offline Selection (2)

- Φ candidates selection
- All tracks, having the angular difference to J/ Ψ direction of $\Delta R = \sqrt{\Delta \eta} + \Delta \Phi < 2$ at their transverse impact point state are fully reconstructed with tracker.
- The kaon mass is assigned, invariant mass of all the opposite charge pairs is calculated.
- Tracks with P₁>0.5 GeV are selected for analysis
- Candidates with |ΔM(Φ)|<12 MeV are selected
- Kinematic fitting and B⁰ reconstruction
 - For every candidate the joint 4-track vertex is fitted, the dimuon mass is constrained to be equal to the mass of the J/Ψ meson. The χ² probability of the fit is calculated
 - The χ^2 probability threshold of 5.10⁻⁴ is applied
 - B candidates with |ΔM(B)|<67 MeV are selected

Offline Selection (4)

- Combined HLT+offline efficiency is ~5%
- A yield of some ~145'000 events is expected with 30 fb⁻¹ (two to three years of the low luminosity run L =2.10³³ cm⁻²s⁻¹)
- The background is <10%, dominated by:
 - $B_d \rightarrow J/\Psi K^*$, $b \rightarrow J/\Psi X^*$
- Expectations with time-dependent angular analysis (Max. Likelihood method):

• CMS expects a relative uncertainty on $\Delta \Gamma \sim 16$ % for $\Delta \Gamma / \Gamma = 0.15$

Provide now before

- An expected statistical uncertainty for ϕ_s is ~0.028 for $x_s = 20$.
- The result is obtained with the angular analysis using Max. Likelihood fit

Conclusion

- High level trigger, offline selection and analysis strategies for the B_s→J/ΨΦ→μμKK decay channel were developed in CMS
- CMS expects to select several hundreds of thousands of $B_s \rightarrow J/\Psi \Phi \rightarrow \mu \mu KK$ events during first years of the LHC run.
- The background level is expected to be <10%
- An relative uncertainty on $\Delta\Gamma$ is expected to be ~16%
- The statistical error on the CP-violating weak phase ϕ_s is expected to be ~0.028 for $x_s = 20$