LHCb Trigger System

Frederic Teubert CERN, PH Department on behalf of the LHCb collaboration

20-24 June 2005

Outline

> Overview

First Level Trigger: LO L0 Subsystems **L0 Decision and Performance** Second Level Trigger: L1 L1 Event Reconstruction L1 Decision and Performance > High Level Trigger: HLT **Generic HLT Inclusive HLT and Output Rate Exclusive HLT** > Outlook

Trigger overview

40 MHz crossing rate **10 MHz** 30 MHz with bunches from both directions Luminosity: 2 · 10³² cm⁻² s⁻¹ 10 to 50 times lower than @ ATLAS, CMS **L0:** hight p_{T} + not too busy Fully synchr. (40 MHz), 4µs latency LHC rates: (for visible events = at least 2 tracks in acceptance) On custom boards Total rate (minimum bias): 10 MHz 1 MHz bb: ~100KHz • Whole decay of one B in acceptance: 15KHz cc: ~600KHz **L1:** IP + high p_T y 1 // T3 RICH2 PD/PS HCAL ECAL M1 M3 M4 M5 M5 M1 Ave. latency: 1 ms (max 50 ms) Pileup Magnet Buffer: 58254 events system NTT K **40 KHz HLT + reconstruction** VELO + Full detector: ~ 40 kb / evt Trigger tracker \leq 2 KHz 5m 15m 10m Single PC farm Calorimeters + ~1600 CPUs Muon system

Trigger Overview

20-24 June 2005

DAQ Architecture

20-24 June 2005

Real Time Trigger Challenge

Aim

- Operate one (few) subfarms of the DAQ under realistic conditions

- Full-speed Data Input/Output including data to storage
- Long-term operation (hours)
- Exercise realistic Level-1/HLT code
- Exercise/evaluate realistic overheads
- Somehow assert performance progress of CPUs
 - 'modern' CPUs compared to (today's) standard CERN
- Exercise controls part, such as Monitoring, Farm Control, etc.
- · Infrastructure
 - One (two) racks of 44 dual-CPUs
 - 2-4 Sub-Farm Controlers
 - One disk server to hold events
 - 10⁷ Level-0 YES, 400k Level-1 YES events
 - Event fragments organized in MEP (Multi-Event Packets)
 - One disk server for data recording
 - 20k HLT yes
- Timescale: June 2005

Level-0: Muon Trigger

- The LHCb muon system:
 - 5 stations

٠

- Variable segmentation
- Projective geometry
- Trigger strategy:
 - Straight line search in M2-M5
 - Look for compatible hits in M1
 - Momentum measurement $(\Delta p/p \sim 20\% \text{ for b-decays})$

- Sent to LO decision unit: 2 highest
 p_T candidates per quadrant
- Typical Performance: **~88% efficiency on B->J/ψ(μμ)X.** Algorithm latency ~1 μs.

Level-0: Calorimeter Trigger

- The LHCb calorimeter:
 - ECAL: ~6000 cells, 4x4 to 12x12 cm²
 - HCAL: ~1500 cells, 13x13 to 26x26 cm^2
- Trigger strategy: look for high E_{T} candidates,
 - In regions of 2x2 cells
 - Particle identification from
 - ECAL / HCAL energy
 - PS and SPD information
 - E_{T} threshold ~ 3 GeV
 - Sent to LO decision unit:
 - Highest E_{T} candidate of each type
 - Global variables:
 - Total calorimeter energy
 - SPD multiplicity

Typical Performance: 30-50% efficiency on hadronic channels for

about 700 kHz bandwidth .

Algorithm latency ~1 μ s.

Level-0: Pileup System

- Trigger strategy: identify multi-PV evts
 - From hits on two planes \rightarrow produce a histogram of z on beam axis
 - Identify largest peak and remove all hits contributing \rightarrow masking scheme.
 - Look for second peak above threshold.
- Pileup system:
 - 2 silicon planes upstream
 - Measure R coordinate (-4.2< η <-2.9)
 - Algorithm fits in 4 large FPGAs
- Sent to LO Decision Unit: # of tracks in the second peak + hits multiplicity.
- Typical performance: 60% efficiency identifying double interactions with 95% purity.
 Algorithm latency ~1 μs.

Level-0: Decision and Bandwidth

• LO c - C - A	decisior DR of hig Applies c	n unit gh E _T uts or	: candidates n global pro	s opertie	S	Ο ππ Κπ ΚΚ	Level-0 20 40	efficiency Z 8 8 8 1 1 10-HCAL 5
Туре	Thresh (GeV)	Rate (kHz		lobal	Cut	D _s κ D'π		L0-ECAL
Hadron	3.6	705				DK*		L.
Electron	2.8	103	l rac	iracks in 2 ^{na} vertex		500		_
Photon	2.6	126	Pi	le-Up	112	- 11e¥		
π^{o} local	4.5	110	mult	multiplicity				
π^{o} global	4.0	145		SPD		$\sqrt{\psi(\mu\mu)}$		
Muon	1.1	110	mult	riplicity	hits	$J/\psi(\mu\mu)\psi$		
Di-muon $\Sigma \mathbf{p}_{T}^{\mu}$	1.3	145	, To	Total E _T		$\int \sqrt{\psi(\mu\mu)} \nabla \nabla \psi(\mu\mu) \psi(\mu\mu) \psi(\mu\mu) \nabla \psi(\mu\mu) \psi(\mu\mu)$		
 Composition: bb (After L0 		bb (kHz) 30	cc (kł 10	łz) 6	μμΚ* J/ψ(ee)K _s πππ ^ο			
						κγ		

Level-1 Overview

- Trigger strategy:
 - find high IP tracks (tracking in VELO)
 - Confirm track / Estimate $p_{\rm T}$ from TT
 - Link VELO tracks to LO-objects.
- The LHCb VELO:
 - 21 stations (~ 100 cm)
 - Alternated $R-\phi$ sensors
 - 40 μm to 100 μm pitch
- Environment:
 - ~ 70 tracks/event after L0
 - but low occupancy in VELO (~0.5%)

Level-1: Event Reconstruction

- Fast-tracking strategy:
 - First in R-Z view (only R sensors)
 - Primary vertex $\sigma_z \sim 60 \ \mu m$, $\sigma_{x,y} \sim 20 \ \mu m$
 - Select 2D tracks with IP in (0.15, 3) mm
 - about 8.5 / event
 - 3D tracking for selected tracks
- p_{T} measurement using TT
 - Silicon, 2 layers, 200 μ m pitch
 - Only 0.15 T.m between VELO and TT $\Delta p_{T} / p_{T} \sim 20-40\%$
 - Rejects most low momentum tracks, which can fake high IP
- p_{T} and ID measurements using LO-objects
 - matched $LO-\mu$ have

∆p_⊤/p_⊤ ~ 5%

-0.5

0.5

 $\Delta P/P$

20-24 June 2005

Level-1 Decision

- L1-Variable: log(pt1)+log(pt2)
- 2. Muon lines:
 - Single muon: PT>2.4 GeV, IP >0.15 mm
 - Dimuons: $m_{\mu\mu}$ >2.5 GeV OR ($m_{\mu\mu}$ >500 MeV and IP>0.05mm)
- 3. Photon, electron lines:
 - L1-Variable (relaxed) + Ecal>3.1 GeV

Level-1 Performance

Bandwidth	Adjusted		
(kHz)	for overlap		
29.2 (75.0%)	29.2 (75.0%)		
6.5 (16.8%)	3.2 (8.2%)		
1.7(4.5%)	1.4 (3.6%)		
1.5 (3.9%)	0.6 (1.5%)		
3.9 (9.9%)	2.3 (5.8%)		
3.7 (9.5%)	2.3 (6.0%)		
	Bandwidth (kHz) 29.2 (75.0%) 6.5 (16.8%) 1.7 (4.5%) 1.5 (3.9%) 3.9 (9.9%) 3.7 (9.5%)		

channel	generic	single μ	dimuon	J/ψ	electron	photon	total	TDR
$ \begin{array}{c} B^0_d \rightarrow \pi^+\pi^- \\ B^0_s \rightarrow D^s K^+ \\ B^0_d \rightarrow \overline{D}^0 (K^+\pi^-) K^* \end{array} \end{array} $	81.80% 79.78% 83.51%	$1.55\%\ 4.04\%\ 2.01\%$	$\begin{array}{c} 0.15\% \\ 0.74\% \\ 0.42\% \end{array}$	$\begin{array}{c} 0.13\% \\ 0.79\% \\ 0.08\% \end{array}$	4.27% 4.42% 5.02%	2.73% 2.88% 3.26%	82.63% 80.89% 85.36%	$\begin{array}{c} 62.7\% \\ 62.6\% \\ 66.7\% \end{array}$
$ \begin{array}{c} B^0_s \rightarrow J/\psi(\mu^+\mu^-)\phi \\ B^{\bar 0}_d \rightarrow K^*\gamma \end{array} $	74.33% 54.94%	42.79% 2.35%	24.99% 0.39%	$\begin{array}{c} 45.45\% \\ 0.34\% \end{array}$	1.90% 17.25%	1.73% 30.94%	87.24% 67.20%	71.4% 51.9%
minimum bias	2.94%	0.68%	0.15%	0.18%	0.37%	0.43%	4.00%	4.00%

20-24 June 2005

BEAUTY05 - Frederic Teubert

Level-1 Performance

20-24 June 2005

Trigger Robustness

Several scenarios considered:

- Event multiplicity
- Noise, Missalignment, Resolution
- Increased material
- LHC beam position
- LHC background
- Size of the CPU farm

Efficiency L0+L1 (normalized offline)

- The performance of LO is stable within 10% while L1 is within 20%.
- The execution time and L1 event size is within 30%.
- The dependence with the size of the CPU farm is reasonable.

20-24 June 2005

HLT Overview

HLT: Generic Algorithm

of reconstructed (long) tracks candidates vs ip cut [ip:3.] mm tracks 30 HLT generic: ٠ Average number of long tracks Redo "L1" (L1-confirmation) 25 vs impact parameter cut - Same branches with improved: 20 # tracks candidates momentum resolution 15 muon matching 10 5 PT1, $\mu\mu$ μ е PT2 0 0 0.05 0.1 0.15 02 0.25 03 ip cut [mm] mm Time performance: PT1. PT1, - HLT generic takes ~ 4 ms PT2' PT2 - $\sim 1/3$ event is reconstructed by the generic algorithm. Time remaining for the rest of HLTalgorithms: HLT = OR (lines) **(a)12** kHz after the HLT generic, • t ~ 20 ms for specific HLT selections

•

HLT: Generic Algorithm

20-24 June 2005

BEAUTY05 - Frederic Teubert

2.7

3.8

Inclusive samples and calibrations

- Inclusive dimuon sample (~600 Hz):
 - Clean J/ ψ (1S), ψ (2S), Y(4S), ... Z (?) mass peaks for alignment, momentum (B field) calibration, etc ...
 - Proper time resolution of prompt J/ψ events
 - High statistics may allow study as a function of kinematics
- Inclusive $b \rightarrow \mu$ (~900 Hz):
 - Extract tagging performance ?
 - Trigger On Signal: reconstruct very large sample of $B \rightarrow D\mu\nu$
 - Trigger Independent of Signal: reconstruct many exclusive modes "opposite" to muon
- Inclusive D* sample (~300 Hz):
 - Very high statistics and clean signal of $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$
 - Measure PID performance as a function of momentum

HLT: Data Flow

20-24 June 2005

HLT: Inclusive Stream

20-24 June 2005

HLT: D* stream

- $D^0 \rightarrow \pi\pi$ with no mass cut
 - χ**2 < 5**0
 - $P_T > 2 GeV$
 - Flight significance > 5

- $D^* \rightarrow D^0 \pi$
 - χ**2 < 60**
 - $\Delta m < 10 \text{ MeV}$
 - P_T>2 GeV

All plots from $B{\rightarrow}\,D^{*}\pi$ events, with $D^{0}{\rightarrow}\,K\pi$

HLT: Exclusive Stream

20-24 June 2005

HLT: Performance

	Nominal	Rate	b-events	c-events	Correlations
Input	40 kHz	40 kHz	6.4 kHz	7.2 kHz	
Generic HLT	10 kHz	13 kHz	3.8 kHz	2.7 kHz	
Exclusive B	200 Hz	260 Hz	81 Hz	68 Hz	9% in D*
D*	300 Hz	250 Hz	90 Hz	57 Hz	
Dimuon	600 Hz	660 Hz	119 Hz	211 Hz	10% in Incl. B
Inclusive B	900 Hz	850 Hz	603 Hz	162 Hz	8% in μμ
Total HLT	2.0 kHz	1.9 kHz	0.8 kHz	0.5 kHz	

	1 GHz Pentium III				
	No RICH	With RICH			
VeLo Tracking	7 ms	7 ms			
Generic HLT	19 ms	19 ms			
Rest of Forward Tracking	5 ms	5 ms			
PID (mainly RICH)	4 ms	12 ms			
Shared Resonances	4 ms	3 ms			
D* stream	<1 ms	< 1 ms			
Exclusive stream	5 ms	3 ms			
Total	44 ms	50 ms			

Rates are within specifications and timing is well in 60 ms budget

20-24 June 2005

HLT: Performance

Channel	Efficiencies w.r.t. Offline and L0xL1 selected signal							
	Generic	Tracking	Total Efficiencies					
			Excl. B	μμ	Incl. B	D*	Total	
$B_s \rightarrow \mu^+ \mu^-$	99%	93%	91%	90%	94%	0	98%	
$B_d \rightarrow K^{\star}\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$	98%	82%	73%	62%	58%	Orde	91%	
$B_{d,s} \rightarrow h^+h^-$	94%	95%	88%	00	Or	0.05	88%	
$B_s \rightarrow \phi \gamma$	71%	93%	61%	0.5%	2%	f 1%	62%	
$B_s \rightarrow D_sh$	93%	82%	60%	of	of	6	62%	

20-24 June 2005

HLT: Work in progress

- Strategies to overcome current limitations:
 - Improve tracking.
 - Allow less hits in TT, for VELO-TT-T tracks
 - Improve speed of VELO-T tracks "a la offline".
 - Reduce the number of tracks to consider.
 - Select only VELO tracks compatible:
 - with secondary vertices in the generic.
 - under some specific hypothesis using RICH info (Bs -> DsK)
 - Inclusive Triggers: do not depend on having all tracks found.
 - Improve generic to achieve lower output rate
 - 3 track vertex for 4 prong.
 - 4-5 track vertex for 6 prong (DD, $\eta_c \phi$)
 - 3 prong with K identified by RICH

Outlook

- The design of the LO trigger is finalized and production started. Its performance is very good for leptonic and photonic channels and adequate for hadronic channels.
- The software triggers L1/HLT work within the time budget: 1/10 ms.
- The design of the software triggers continues to evolve as our understanding of the LHCb physics potential evolves. An example of this is the change of the output rate from 200 Hz to 2 kHz.