Prospects of measuring B_s\$ $\mu^+\mu^-$ with CMS

Frank-Peter Schilling (CERN/PH)

For the CMS Collaboration

Assisi (Perugia), Italy 20th-24th June 2005

Contents

- Physics Motivation
- Brief recap of D0 / CDF results
- Introduction to the CMS Tracker
- Offline analysis of B_s \$ $\mu^+ \mu^-$
- Online selection: Experimental Aspects
 - Muon trigger rates at L1 and HLT
 - Tracking at the High Level Trigger
 - CMS Alignment strategy
- High level trigger selection of B_s \$ $\mu^+ \mu^-$
- Conclusions

B physics at CMS

- B production at the LHC:
 - Peak Luminosity: 2x10³³ ... 10³⁴ cm⁻²s⁻¹
 - b cross section: σ (bbar) ~ 500 μ b
 - O(10⁵...10⁶) b pairs/sec
 - •But: High level trigger output <100Hz!
 - •Trigger highly challenging!
- B-Physics program:
 - •Rare decays
 - •CP Violation
 - $\bullet B_{s}^{0}$ mixing

• This talk: focus on rare decay $B_s^0 \ddagger \mu^+ \mu^-$

<mark>Β_s\$ μ⁺μ⁻: The Physics Case</mark>

- B⁰_s highly suppressed in SM: *B*=(3.42 « 0.54)*10⁻⁹*
 - Forbidden at tree level, Effective FCNC
 - Internal quark annihilation, Helicity suppression
 - In SM, only through higher order loop diagrams
 highly sensitive probe for new physics!

- Sensitivity to BSM parameters
 - $tan\beta$ in MSSM and various other models

*) A.J. Buras, PLB566,115

Standard Model Expectation for **Β⁰_s\$ μ⁺μ⁻and Β⁰_d\$ μ⁺μ⁻**

- In SM, B_d^0 $\mu^+\mu^-$ suppressed wrt B_s^0 $\mu^+\mu^-$
 - Suppression $(|V_{td}|/|V_{ts}|)^2$
 - No \mathbf{B}_{s} at B factories
- Helicity suppression favours B_{s(d)}\$ τ⁺τ⁻
 Very challenging mode
- All decay channels beyond current reach of presently running experiments:

Mode	$B_s^0 \to \mu^+ \mu^-$	$B_d^0 \to \mu^+ \mu^-$	$B_d^0 \to e^+ e^-$	$B_d^0 \to e^{\pm} \mu^{\mp}$	Reference
SM Expect.	$3.5 imes 10^{-9}$	$1.0 imes10^{-10}$	$2.4 imes 10^{-15}$	~ 0	PRD68, 111101
CLEO	-	6.1	8.3	15	PRD62, 091102
BELLE	-	1.6	1.9	1.7	PRD68, 111101
CDF	5.8	1.5	-	-	PRL93, 032001
DO	4.1	-	-	-	PRL 94 , 071802
BABAR	-	0.61	0.83	1.8	PRL 94 , 221803

(All experimental results in units of 10^{-7})

CDF Result (best limit so far)

CDF Collaboration, PRL93(2004)032001

NEW Update: CDF-Note 7670 (L=364pb⁻¹)

D0 Result

- D0 Collaboration, PRL94(2005)071802, L=240 pb⁻¹
- NEW: Update Moriond 2005, D0Note-4733-Conf, L=300 pb⁻¹

BSM Expectations

- Significant (~10⁴) enhancement possible in SM extensions
 - Potentially interesting even for first LHC data
- In Minimal Supersymmetric Extension of SM
 - $B(B_s \$ \mu^+\mu^-) \uparrow (\tan \beta)^6$
 - With minimal flavour violation (CKM only): observation of $B_s \$ \ \mu^- \mu^+$ yields upper bound on heaviest mass in MSSM Higgs sector
- MSSM with modified minimal flavour violation at large tan β :
 - Increase B by *10⁴ also for B_d \$ $\mu^+\mu^-$
- M-Sugra at large tanβ: B~O(10⁻⁷) in regions of parameter space consistent with g-2 and CDM
- R-Parity violating SUSY (tree-level sneutrino)
- Possible constraints on
 - tan β , Heaviest mass of (extended) Higgs sector

Introduction to the CMS Tracker

- Active area ~1m²
- 3 barrel layers r~4,7,10cm
- 2 endcap disks: r=6...15cm
- 40*10⁶ channels

Beauty 2005

- Px size: 100 μm (rφ)x150 μm (z)
- Hit Resolution 10μ in $r\phi$

Frank-Peter Schilling

The silicon strip tracker

Strip sensors

- 10cm length
- 80..200 µm pitch
- 512 or 768 strips

Tracker Performance

Using muons with 1,10,100 GeV:

• Efficiency

• Pt resolution

- Full simulation and reconstruction of signal and dominant background (gluon splitting)
- Kinematic selection:

Pt^μ > 4.3 GeV $|η^{\mu}|$ <2.4</th>0.4 < $\Delta R_{\mu\mu}$ < 1.2</td>Pt^{µµ}>12 GeV

- Estimated event numbers for 10fb⁻¹ (1 year @ L=10³³ cm⁻²s⁻¹) (without HLT inefficiency)
 - Signal: N_{signal}=66
 - Dominant background from g\$ bb splitting: N_{bkgd}~3*10⁷
- Most important ingredients for analysis:
 - Good invariant mass resolution
 - Muon Isolation in tracker and calorimeter
 - Precise secondary vertex reconstruction

Dimuon mass window

- 80 MeV mass window around M(B_s)=5.369 GeV
- Background rejection ~1.1%

Secondary Vertex Selection

Cuts on variables provided by SVX reconstruction algorithm

- m2d < 50μm (min transv. dist. between 2μ)
- m2d/σ(m2d) < 2
- d > 820µm (transv. vertex dist.)
- σ_{II} < 80μm

(svx err in transv. plane)

• $\cos(\alpha) > 0.9997$ (2d pointing angle)

Background rejection < 2.3*10⁻⁴ / Signal efficiency ~30%

Isolation in tracker and calorimeter

- Tracker isolation No charged track Pt>0.9 GeV In $\Delta R = 0.5^{*} \Delta R_{uu} + 0.4$
- Calorimeter Isolation (EM+HAD, same ΔR):
- Et < 4GeV (low lumi) Et < 6GeV (high lumi)
 - ε(signal)~0.45 (0.3)
 - Bkg. rej. ~0.013 (0.009)

Rate estimates

Efficiencies and event numbers for 10 (100) fb⁻¹:

	Signal	Background
number of events after trigger and kinematics selections	66	$2.9 imes10^7$
tracker isolation. Low luminosity	0.49	$3.0 imes10^{-2}$
tracker isolation. High luminosity	0.34	$2.0 imes10^{-2}$
tracker+calo isolation. Low luminosity	0.46	$1.3 imes10^{-2}$
tracker+calo isolation. High luminosity	0.31	$0.87 imes10^{-2}$
$2 - \mu$ rec. + sec.vertex selections. Low luminosity	0.32	$\leq 2.3 imes 10^{-4}$
$2 - \mu$ rec. + sec.vertex selections. High luminosity	0.18	$\leq 2.3 imes 10^{-4}$
mass window 80 MeV	0.72	$1.1 imes 10^{-2}$
number of events after cuts. Low luminosity	7.0	≤ 1.0 at 90% C.L.
number of events after cuts. High luminosity	26.0	≤ 6.4 at 90% C.L.

- 4σ observation after 3 years at 10fb⁻¹possible!
- BUT: CMS L1+high level trigger must select the events ...

Muons in the CMS L1 Trigger

Low Luminosity L1 trigger table

Trigger	Threshold (GeV or GeV/c)	Rate (kHz)	Cumulative Rate (kHz)
Inclusive isolated electron/photon	29	3.3	3.3
Di-electrons/di-photons	17	1.3	4.3
Inclusive isolated muon	14	2.7	7.0
Di-muons	3	0.9	7.9
Single tau-jet trigger	86	2.2	10.1
Two tau-jets	59	1.0	10.9
1-jet, 3-jets, 4-jets	177, 86, 70	3.0	12.5
Jet * E _T ^{miss}	88 * 46	2.3	14.3

- B physics triggered at L1 by single/dimuon trigger
- Low thresholds mandatory for B physics

For B_s $\mu^+\mu^-$ can use dimuon trigger!

• Electron channel disfavoured due to higher threshold

Muons in the High Level Trigger

- 30Hz out of total 100 Hz HLT output rate allocated to single/dimuon trigger
- Thresholds:
 - 1(2) muons: P_T>19(7) GeV
- b/c contribution in 1μ only ~25%: ~5Hz
- Insufficient for rare decays<10⁻⁴

For rare B decays efficient online event reconstruction and selection mandatory!

- Limited amount of CPU time available for trigger decision, so need to reduce:
 (a) Number of track seeds
 - (b) Number of operations per seed
- Regional seed generation
 - Limited to regions of interest (ROI) identified by L1 objects (e.g. cone around muon direction
- Partial / conditional tracking: Stop reconstruction if
 - N hits are reconstructed
 - Pt resolution > given threshold
 - Pt value < given threshold

Partial Tracking Performance

- Reconstruction time ~ number of hits
- Good efficiency, ghost rate, resolution with ~5 hits already

Further Important ingredient at HLT already: Alignment ...

A few remarks on CMS Alignment

Requirement:

Misalignments of the silicon and strip trackers must not compromise intrinsic resolution of $10...20\mu m$

Three ingredients

- 1. Mounting precision
- 2. Laser alignment
- 3. Track based alignment

Mounting Precisions:

Sensor vs Module: $10...30 \ \mu m$

Module vs Layer: 50...500 µm

Laser Alignment system

- Layer vs layerBarrel vs endcap
- Link to muon system

Beauty 2005 Frank-Peter Schilling

CMS Alignment Strategy

- CMS Startup ("day 0"): Laser alignment plus placement constraints: alignment to ~100μ
 - efficient pattern recognition possible for $\Delta {<} 100{-}200\mu$
 - BUT: only true if precise pixel seeds available!
- Laser alignment to monitor movements of TIB,TOB,TEC <u>composite structures</u> to ~10μ
- "Fast" track based alignment: monitor Pixel, TID (and other) composite structures
 - Important for HLT performance
- "Full" track based alignment:
 - alignment at sensor level to ${\sim}10\mu$ for full tracker

Track based alignment

- Scale of the problem
 - ~20k Si sensors, i.e. O(100k) parameters
 - Covariance matrix O(100k * 100k)
 - Impossible for standard approaches
- Several Algorithms presently being studied
 - Straightforward LSQ approach (no correlations between sensors)
 - Kalman filter: novel approach, treatment of correlations avoiding large matrix inversions (R. Fruehwirth)
 - "Simulated Annealing"
 - New version of Millepede (V. Blobel)
- Data samples
 - Start-up: Cosmics, Beam-halo μ
 - Physics: W $\ensuremath{\beta}\ \mu\nu$, Z $\ensuremath{\beta}\ \mu^+\mu^-$

Results expected for Physics TDR (end 2005)

B_s\$ μ⁺μ⁻: trigger strategy

- L1 trigger selection
 - Double muon trigger, Pt>3 GeV $|\eta|$ <2.1
- High level trigger (HLT) selection
 - Regional tracking: look for pixel seeds only in cones around the muons, Pt>4 GeV, d₀<1mm, compatible with primary vertex
 - Conditional tracking: reconstruct tracks from good seed
 - Stop reconstruction if Pt<4 @ 5σ
 - Keep only tracks with σ(Pt)/Pt<2%, N-hit>=6
 - If exactly 2 opposite sign tracks found:
 - Calculate M_{µµ}
 - Retain pairs with $|M_{\mu\mu}-M_{Bs}|$ <150 MeV
 - Vertexing: χ^2 <20 and d₀>150µm

L1 Efficiency	HLT Eff.	Global Eff.	Events / 10fb ⁻¹	Trigger Rate
15.2%	33.5%	5.1%	47	<1.7Hz

B_s mass resolution

High level trigger

Offline reconstruction

• N.B.: Invariant mass and vertex reconstruction assume perfectly aligned Pixel and strip tracker already online!

Conclusions

- CMS@LHC well suited for B physics (and rare B decays)
 - High Luminosity L=10³⁴cm⁻²s⁻¹
 - Precise all-Silicon tracking,
 - Powerful Muon system, also providing L1 trigger
- Cruical ingredients: Trigger and Alignment
 - Low Pt L1 muon treshold
 - Efficient online (HLT) reconstruction/selection of final states needed!
 - SVX and inv.Mass reconstruction rely on Alignment @ 10 μ m level!
- $B(B_s \$ \mu^+\mu^-)$ can place severe constraints on BSM models
 - In reach for LHC experiments
 - Observation with CMS possible