Assisi, 23 June 2005

Leptonic and EW Penguins

BEAUTY 2005 10th International Conference on B-Physics at Hadron Machines

Francesca Di Lodovico Queen Mary, University of London on behalf of the BaBar Collaboration

Outline

Radiative and EW decays

- **b**→sγ
- $\boldsymbol{B} \rightarrow \rho/\omega \gamma$
- $B \rightarrow K^{(*)} ll$
- **Leptonic Decays**
- $B \rightarrow l \nu$
- $B \rightarrow K(\pi) v \overline{v}$
- $B \rightarrow v \overline{v} (\gamma)$

$b \rightarrow s \gamma$ Decays

New physics: additional diagrams with H, χ^{\pm} *...*

- Standard Model
 - $b \rightarrow s \gamma$ not allowed at tree level (FCNC)
 - via a one-loop penguin diagram with t or W

New physics

- new particles may appear in the loop
- modification of SM expectations (both rate and phase)

- In SM, V–A coupling produces an approximately lefthanded photon
- New physics (SUSY, L-R symmetry, etc.) can enter with right-handed couplings

Photon spectrum in b \rightarrow s \gamma

Reflects the dynamics of the b inside B

• Specified by parameters of the

Operator Product Expansion (OPE)

Mass of the b-quark (m_b)

• Fermi-momentum squared of the b-quark (μ^2_{π})

Needed for the measurement of $|V_{ub}|$ from inclusive semileptonic $b \rightarrow u \ l \lor decays$

• OPE parameters determined by moments of the E_{γ} spectrum Smaller theory uncertainties on m_b and μ_{π}^2 at lower E_{γ}

$b \rightarrow s\gamma Experimental Techniques$

Sum of Exclusive Modes

- Sum of 38 modes with K⁽⁰⁾, π⁽⁰⁾, η, KKK
- Kinematic constraints of fullyreconstructed B meson effectively reduces background
- Photon energy measured directly in B rest frame superior resolution
- Primary systematic from missing modes (fragmentation)

<u>Inclusive with tag of recoil B</u>

- Reconstruct high-energy photon (1.8-2.8 GeV)
- Suppress huge background with lepton tagging
- Main systematic from subtraction of BB background
- Subtract $b \rightarrow d\gamma$ (~4%)

$b \rightarrow s\gamma$ Preliminary Results

b→sγ Preliminary Results

Fitting the photon spectrum:

Semi-exclusive

Scheme	$\overline{\Lambda}$ (GeV)	$\mu_{\pi}^{2}(\mathbf{GeV}^{2})$
Kinetic	0.59 +0.05 -0.04	0.30 +0.05 -0.04
Shape Function	0.63 ±0.04	0.19 ^{+0.05} -0.04

Kinetic Scheme: Nucl. Phys. B 710 371 (2005) Shape Function Scheme: Nucl. Phys. B 699, 335 (2004)

Studying separately the B⁰ versus B[±]states:

Semi-exclusive

- No isospin breaking from the dominant penguin diagram
- Isospin breaking effects at order /m $_b$

- In the
$$K^*\gamma$$
 mode: $\Delta_{0\pm} \approx 5 - 10\%$
 $\Delta_{0\pm} \equiv [\Gamma(B^0) - \Gamma(B^{\pm})] / [\Gamma(B^0) + \Gamma(B^{\pm})]$

 $= -0.006 \pm 0.058$ $^{+0.009}_{-0.008} \pm 0.024$ (*)

(*): Errors stat.+syst.+uncertainty on B production ratio

Photon Moments:

Time Dependent CPV in $B^0 \rightarrow K_{s}\pi^{0}\gamma$

As in $B^0 \rightarrow J \psi K_s$, interference between mixed and non-mixed decay to same final state required for CPV(Phys. Rev. Lett. 79, 185 (1997))

In the SM, mixed decay to $K^*\gamma$ requires wrong photon helicity, thus CPV is suppressed:

In SM: $C = -A_{CP} \sim -1\%$ S $\sim -2(m_s/m_b)\sin 2\beta \sim -4\%$

Measuring Δt of $K^*(\rightarrow K_S \pi^0) \gamma$ events requires novel beamconstrained vertexing technique (Phys. Rev. Lett. 93 131805 (2004))

 $\frac{0.8 < m_{K\pi} < 1.0 \text{ GeV/c}^2}{S = -0.21 \pm 0.40 \pm 0.05}$ $C = -0.40 \pm 0.23 \pm 0.04$ $\frac{m_{K\pi} > 1.1 \text{ GeV/c}^2}{S = 0.9 \pm 1.0 \pm 0.2}$ $C = -1.0 \pm 0.5 \pm 0.2$

Β→**Κ**ππγ

Motivations:

method to measure photon polarization in $b \rightarrow s \gamma$ (Phys. Rev. Lett. 88 051802 (2002)).

- requires three-body decay
- requires interference, such as $(K\pi^+)\pi^0\gamma \leftrightarrow (K\pi^0)\pi^+\gamma$
- $B \rightarrow K \pi^+ \pi^0 \gamma$ has not been observed

Analysis Strategy

Select candidates in four modes:

- *K*⁺ π[−] π⁺ γ
- K⁺ π[−] π⁰ γ
- K_Sπ⁺ π[−] γ
- K_{S} π⁺ π⁰ γ
- Main background from other $b \rightarrow s\gamma$ events
- e⁺e⁻→qq̄ reduced using shape variables in a Fisher Discriminant
- To extract signal perform likelihood unbinned fit to ∆E, m_{ES} distributions

Branching fractions and mass spectra of $B \rightarrow K\pi\pi\gamma$

 $\begin{array}{l} \hline Preliminary \\ \hline \mathcal{B}(B^+ \to K^+ \pi^- \pi^+ \gamma) &= (2.95 \pm 0.13 \pm 0.20) \times 10^{-5} \\ \hline \mathcal{B}(B^0 \to K^+ \pi^- \pi^0 \gamma) &= (4.07 \pm 0.22 \pm 0.31) \times 10^{-5} \\ \hline \mathcal{B}(B^0 \to K^0 \pi^+ \pi^- \gamma) &= (1.85 \pm 0.21 \pm 0.12) \times 10^{-5} \\ \hline \mathcal{B}(B^+ \to K^0 \pi^+ \pi^0 \gamma) &= (4.56 \pm 0.42 \pm 0.31) \times 10^{-5} \end{array}$

First measurement

PRL 92, 111801 (2004)

Search for $B \rightarrow \rho/\omega\gamma$

Simplest and most "common" $b \rightarrow d\gamma$ exclusive decays are $\rho\gamma$ and $\omega\gamma$ Ratio of exclusive $b \rightarrow d\gamma$ and $b \rightarrow s\gamma$ decay rates measures $|V_{td}/V_{ts}|$

Simultaneous fit to all three samples with the constraint:

Combined $\mathcal{B}(\rho, \omega \gamma) \equiv$ $\mathcal{B}(\rho^{+}\gamma) =$ $2(\tau_{+}/\tau_{o}) \mathcal{B}(\rho^{o} \gamma) =$ $2(\tau_{+}/\tau_{o}) \mathcal{B}(\omega \gamma)$

 $\mathcal{B} < 1.2 \cdot 10^{-6} 90\% \text{ CL}$

Fitting individual *B*:

B(ρ[±]γ)<1.8•10⁻⁶ 90%CL
B(ρ⁰γ)<0.4•10⁻⁶ 90%CL
B(ωγ)<1.0•10⁻⁶ 90%CL

CKW matrix constraint

SU(3) breaking of form factors $\xi = 1.2 \pm 0.1$

Subleading contribution $\Delta < 0.4$

 $\frac{\mathsf{BR}(B^0 \to \rho^0 \gamma)}{\mathsf{BR}(B^0 \to K^{*0} \gamma)} \propto \frac{1}{2} \left| \frac{V_{td}}{V_{ts}} \right|^2 \xi^{-2} \left(1 + \Delta \right)$

Nucl. Phys. B 621 459 (2002) and later papers

 $B \rightarrow \rho \gamma$ observation should be imminent!

Eur.Phys.J. C23 (2002) 89

Penguins are starting to provide meaningful CKM constraint Reduction of theory errors necessary to be competitive with B_a,B_s mixing

Measurement of $B \rightarrow K^{(*)}l^+l^-$

Suppressed decays in the SM:

- Negligible direct CP asymmetry

•
$$\mathbf{R}_{K} = \mathcal{B}(\mathbf{B} \to \mathbf{K}\mu^{+}\mu^{-}) / \mathcal{B}(\mathbf{B} \to \mathbf{K}\mathbf{e}^{+}\mathbf{e}^{-}) \approx 1$$

•
$$\boldsymbol{R}_{K^*} = \mathcal{B}(\boldsymbol{B} \to \boldsymbol{K}^* \mu^+ \mu^-) / \mathcal{B}(\boldsymbol{B} \to \boldsymbol{K}^* \boldsymbol{e}^+ \boldsymbol{e}^-) \approx (\boldsymbol{0.75})$$

Contribution from a pole in EM penguin for the e⁺e⁻ final state at q²~0

New Physics can change • the Branching Fraction • direct CP violation • forward-backward dilepton asymmetry

$B \rightarrow K^{(*)}l^+l^-$ preliminary results

 $\begin{array}{l} BF(B \to K l^+ l^-) = (0.34 \pm 0.07 \pm 0.03) \bullet 10^{-6} \\ BF(B \to K^* l^+ l^-) = (0.78 \begin{array}{c} +0.19 \\ -0.17 \end{array} \bullet 0.12) \bullet 10^{-6} \end{array}$

 $R_{K} = 1.06 \pm 0.48 \pm 0.05$ $R_{K^{*}} = 0.93 \pm 0.46 \pm 0.12$

 $egin{aligned} &A_{CP}(\ B^+ o K^+ \ l^+l^-\) &= -0.08 \pm 0.22 \pm 0.11 \ &A_{CP}(\ B o K^* \ l^+l^-\) &= 0.03 \pm 0.23 \pm 0.12 \end{aligned}$

14

A total of 229M BB events are used

Rare Leptonic Decays

$B \rightarrow l \nu, B \rightarrow (K/\pi) \nu \overline{\nu}, B \rightarrow \nu \overline{\nu} (\gamma) \dots$

- Proceeding through W-boson annihilation or electroweak penguin and box diagrams in the SM
- Are theoretically clean
- Are suppressed in the SM by CKM matrix elements, helicity suppression or by penguin/loop domination
- Probe for new physics

Event Reconstruction Method

Reconstruct ("tag") one B in either a semileptonic or leptonic final state:

- $B \rightarrow D^{(*)}X$, X is a combination of $K_{(s)}$, π , π^0
- $\boldsymbol{B} \rightarrow \boldsymbol{D}^{(*)} \boldsymbol{l} \boldsymbol{v}$

Statistically independent samples

Constrain the "recoil" to determine its consistency with a signal hypothesis

Search for $B^+ \rightarrow \tau^+ \nu$

- $B^+ \rightarrow \tau^+ \nu$ in the SM
 - Via quark annihilation into a W⁺ boson
 - Decay with μ or e are helicity-suppressed
- New physics in $B^+ \rightarrow \tau^+ \nu$
 - Charged Higgs boson (H) as propagator: SUSY, two-Higgs doublet models
 - ullet Enhancement of the ${\mathcal B}$
 - Up to a factor of 5
- Experimentally challenging due to neutrinos in the final state

$$\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B m_\tau^2}{8\pi} \left[1 - \frac{m_\tau^2}{m_B^2} \right]^2 \tau_B f_B^2 \mid V_{ub} \mid^2$$

Sensitive to $f_B^2 |V_{ub}|^2$ SM expectation $\approx 9 \cdot 10^{-5}$

- Measurement of f_B
 Assuming |V_{ub}| known from semileptonic decays
- Measurement of $|V_{ub}|^2 / |V_{td}|^2$

From $\mathcal{B}(\boldsymbol{B} \to \tau^+ \nu) / \Delta m^{(*)}$

 Gives a constraint on the CKM unitarity triangle

(*) Δm = mass difference between the heavy and light states of the neutral B 1

Search for $B^+ \rightarrow \tau^+ \nu$

 E_{extra} for selected events

- Exclusive reconstruction with a semileptonic B "tag"
- Search for a $B \to \tau^+ \nu$ signal in the rest of the event:
- $\tau^{+} \rightarrow e^{+} \nu \nu, \mu^{+} \nu \nu, \pi^{+} \nu, \pi^{+} \pi^{0} \nu, \pi^{+} \pi^{-} \pi^{+} \nu$

- Main background from hadronic or semileptonic B decays with correcly tagged events

-Key variable: residual energy in the calorimeter (E_{extra}): to peak at very low values for signal

A total of 232M $B\overline{B}$ events are used

$B^+ \rightarrow \tau^+ v$: preliminary results

PRL 94 101801 (2005)

Search for $B \rightarrow K(\pi) \nu \overline{\nu}$

- Flavour Changing neutralcurrent process, allowed via EW box/penguin diagrams.
- SM: $\mathcal{B}(B \rightarrow K_{VV}) \sim 4 \cdot 10^{-6}$
- $b \rightarrow d \lor \overline{\lor} is suppressed over$ $b \rightarrow s \lor \overline{\lor} by |V_{tb}| / |V_{ts}|$

BaBar Analysis strategy

- Use hadronic and semileptonic Btags
- Ask for only a track for signal B
- Event shape variables used to suppress $e^+e^- \rightarrow q\overline{q}, \ \tau^+\tau^-$

	Kvv	πνν
Expected background	3.8 ± 1.1	.24.1 ± 3.6
Observed events	3	21
<i>B</i> < @ 90%CL	5.2 • 10 ^{-5 (*)}	1.0•10-4

89M BB

20

Hadronic and Semileptonic Tags

Search for $B \rightarrow v\bar{v}(\gamma)$

- $B \rightarrow \sqrt{v}$ is strongly helicity m_v^2/m_B^2 suppressed
- .. whereas for such decays with a photon in the final state
- $SM BF(B \rightarrow v \bar{v} \gamma) \sim 10^{-9}$
- Both are below the sensitivity of existing experiments
- Clear observation would be a sign of new physics
- No direct searches so far

 $\mathcal{B}(\mathbf{B}^+ \rightarrow v \overline{v}) < \mathbf{22} \times \mathbf{10}^{-5} \quad @ \mathbf{90\%} \ \mathbf{C.L.}$

 $\mathcal{B}(B^+ \to \nu \bar{\nu} \gamma) < 4.7 \times 10^{-5} @ 90\% C.L.$

BaBar Analysis strategy

- Use Semileptonic tag
- Ask for no tracks in signal B
- Background dominated by B decays with lost or unreconstructed particles

Summary of Leptonic Decays

22

Conclusions

New preliminary results from BaBar on electro-weak penguins and leptonic decays

- Favourite place to search for new physics beyond the SM
- Useful for precise determinations of theoretical parameters m_b^2 , μ_π^2

• Looking forward to more statistics and finding $B \rightarrow \rho/\omega\gamma$ and leptonic decays!

Spare Slides

b->sy Background contributions

Continuum Background

- Neural Network
- **M**_{ES}, ∆**E**
- Lepton tagging
- Event-shape cuts
- Off-peak data subtraction

<u>BB Background</u>

- 80% from π^o, η decays
- explicit π⁰/η vetoes
- Remaining subtracted using MC simulation
- **M**_{ES}, **\(E**)

Time Dependent CPV in $B^0 \rightarrow K_{s}\pi^0 \gamma$

Measuring Δt of $K^*(\rightarrow K_s \pi^0)$ γ events requires novel beam-constrained vertexing techinque:

- Vertex signal B with intersection of K_s trajectory and beam-line
- Usable resolution for K_s decaying inside the silicon tracker
- Validated with $B^{0} \rightarrow J/\psi K_{S}$ events

Analysis strategy for $B \rightarrow K^{(*)}l^+l^-$

Reconstructed modes

- *l* = *e*, μ
- $K = K \text{ or } K_s (\rightarrow \pi^+ \pi^-)$
- $K^* \to K\pi^{\pm}$

Background rejection

- Combinatorial from continuum
 - event shape variables
- Combinatorial from B decays
 - mostly semileptonic
 - missing energy

Final selection

- $\Delta E and m_{ES} variables$
 - 2-dim. fit for $B \to K l^+ l^-$
 - 3-dim. fit for $B \to K^* l^+ l^-$
 - Includes Kπ invariant mass

Efficiency is mode-dependent: From 9% (K^{*+} μ⁺ μ⁻) to 26% (K⁺ e⁺ e⁻)

- Challenge: peaking background in (ΔE , m_{ES})
 - Same final state as signal
 - $\boldsymbol{B} \rightarrow \boldsymbol{K}^{(*)} \boldsymbol{J} / \boldsymbol{\psi}, \, \boldsymbol{B} \rightarrow \boldsymbol{K}^{(*)} \boldsymbol{\psi}(\boldsymbol{2S}), \, \boldsymbol{B} \rightarrow \boldsymbol{D}(\rightarrow \boldsymbol{K} \pi) \, \pi$
 - J/ ψ veto, hadronic D decay veto