

b-quark and Υ production at the Tevatron

Daniela Bauer

Indiana University

Beauty 2005, June 20-24, Assisi, Italy

Outline

- J/ ψ and *b*-hadron production cross sections (CDF)
- Differential cross sections for $\Upsilon(1S)$ production (DØ)
- Inclusive *b*-jet cross section (CDF)
- High p_{τ} cross section for μ -tagged jets (DØ)

b-production at the Tevatron

* To probe pertubative QCD: Full calculations are available for NLO and beyond: Fixed order calculation with resummation of next-to-leading logs (FONLL)

J/ψ and *b*-hadron production (CDF)

Measurement of the J/\psi meson and b-hadron production cross sections in $p\bar{p}$ collisions at $\sqrt{s} = 1960$ GeV, PRD 71, 032001 (2005)

- * First measurement of the J/ ψ and *b*-hadron production cross section at $\sqrt{s} = 1.96$ TeV
- ★ Dataset of ~40 pb⁻¹
- * Central rapidity region: |y| < 0.6
- ★ Full transverse momentum range: 0-20 GeV/c

J/ψ production (CDF)

J/ψ cross section (CDF)

 $\sigma_{J/\psi} \times Br \equiv \sigma(pp \to J/\psi X, |y(J/\psi)| < 0.6) \times Br(J/\psi \to \mu\mu)$

Run I and Run II agree within errors.

102 × Data with total uncertainties Run II, $\sqrt{s} = 1.96 \text{ TeV}, p_{T}(J/\psi) > 0.0$ dơ/dp_T(J/ψ)*Br(J/ψ→μμ) nb/(GeV/c) $\sigma_{J/\Psi} \times Br = 240 \pm 1 \text{ (stat)}_{-19}^{+21} \text{ (syst) nb}$ 10¹ Run II, $\sqrt{s} = 1.96$ TeV, $p_{T}(J/\psi) > 5.0$ $\sigma_{J/\psi} \times Br = 16.3 \pm 0.1 \text{ (stat)}_{-1.3}^{+1.4} \text{ (syst) nb}$ Run I, $\sqrt{s} = 1.8$ TeV, $p_{T}(J/\psi) > 5.0$ 10⁻¹ $\sigma_{J/\psi} \times Br = 17.4 \pm 0.1 \text{ (stat)}_{-2.8}^{+2.6} \text{(syst) nb}$ ≖ 10-2 $\sim 10\%$ increase in cross section due 15 5 10 20 $p_{\tau}(J/\psi)$ GeV/c to increased \sqrt{s} expected.

b-fraction (CDF)

Projection of the J/ ψ flight distance on its transverse momentum L CDF Run II Preliminary $10.0 < Pt(J/\psi) < 12.0 \text{ GeV/c}$ XV Use pseudo proper decay time Total Fit Total J/w Contribution $x = L_{xy}(J/\psi) * m(J/\psi)/pT(J/\psi)$ 10^{3} ---- b-J/w X Contribution Background to separate prompt J/ψ from Events/50μm *b*-hadron decays. 102 Monte Carlo templates model $x(J/\psi)_{h}$ 10^{1} A maximum likelihood fit to x is used to extract the 1000 -2000 -1000 0 2000 b-fraction. $L_{xv}(J/\psi)/p_T(J/\psi).M(J/\psi) \ \mu m$

3000

b-fraction in J/ ψ events (CDF)

Systematic uncertainties on *b*-fraction: \pm (3-13) % p_T dependent systematic uncertainties decrease with increasing p_T errors in high (> 9 GeV) p_T bins statistics dominated

b-hadron production cross section (CDF)

Comparison with theory

Comparison with Run I results

fragmentation fraction $f(B^+)$ from LEP

b-hadron production cross section (CDF)

 $\sigma(pp \to H_hX, |y^{J/\psi}| < 0.6) \times Br(H_h \to J/\psi X) \times Br(J/\psi \to \mu\mu)$

Run II, $\sqrt{s} = 1.96 \text{ TeV}, p_T(J/\psi) > 1.25$ 19.4 ± 0.3 (stat)^{+2.1}_{-1.9} (syst) nb Run II, $\sqrt{s} = 1.96 \text{ TeV}, p_T(J/\psi) > 5.0$ 2.75 ± 0.04 (stat) ± 0.20 (syst) nb

Run I, $\sqrt{s} = 1.8$ TeV, $p_T(J/\psi) > 5.0$ 3.23 ± 0.05 (stat) $^{+0.28}_{-0.31}$ (syst) nb

$\Upsilon(1S)$ production

* Quarkonium production is a window on the boundary region between perturbative and non-pertubative QCD

* V.A. Khoze , A.D. Martin, M.G. Ryskin, W.J. Stirling, hep-ph/0410020
* E.L. Berger, J.Qiu, Y.Wang, Phys Rev D 71 034007 (2005)

$\Upsilon(1S)$ cross sections (DØ)

Measurement of inclusive differential cross sections for $\Upsilon(1S)$ *production in pp̄ collisions at* $\sqrt{s} = 1.96$ *TeV*, Phys. Rev. Lett. 94, 232001 (2005).

- * Extends CDF Run I measurement from $|y^{\Upsilon}| < 0.4$ to $|y^{\Upsilon}| < 1.8$ * First measurement of $\Upsilon(1S)$ at $\sqrt{s} = 1.96$ TeV
- * Cross section is determined in three rapidity bins: $0 < |y^{\Upsilon}| < 0.6, \ 0.6 < |y^{\Upsilon}| < 1.2 \text{ and } 1.2 < |y^{\Upsilon}| < 1.8$ in the channel $\Upsilon \rightarrow \mu\mu$ using DØ's large muon coverage
- * Larger statistics allow more precise determination of shape of the differential cross section.

Origins of $\Upsilon(1S)$

Bottomonium

- All bottomonium states are produced directly (e.g ≠ J/ψ from B)
- ~50 % of all Υ(1S) are produced directly, the rest are the results of higher mass states decaying.

9.6

10.4

Dimuon mass (GeV/c²)

11.2

8.8

~ 40,000 $\Upsilon(1S)$ in 159 pb⁻¹

Fitting the $\Upsilon(1S)$ signal (DØ)

Signal: 3 double Gaussians: $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ using ratios for width and normalization from fits to J/ψ

 $m(\Upsilon(2/3S)) = m(\Upsilon(1S)) + \Delta m_{PDG}(\Upsilon(2/3S) - \Upsilon(1S))$ $\sigma(\Upsilon(2/3S)) = m(\Upsilon(2/3S)/m(\Upsilon(1S)) * \sigma(\Upsilon(1S))$

→5 free parameters in signal fit: $\mathbf{m}(\Upsilon(1S)), \, \sigma(\Upsilon(1S)), \, \mathbf{n}(\Upsilon(1S)), \, \mathbf{n}(\Upsilon(2S)), \, \mathbf{n}(\Upsilon(3S))$

$\Upsilon(1S)$ differential cross section (DØ)

 ittle variation in the shape of the cross section as a function of rapidity

reasonable agreement
 with calculations by
 Berger *et al*, hep-ph/0411026

$\Upsilon(1S)$ differential cross section (DØ)

$\Upsilon(1S)$ cross section (DØ)

Results: $d\sigma(\Upsilon(1S))/dy \times B(\Upsilon(1S)) \rightarrow \mu^+\mu^-$

$0.0 < y^{\Upsilon} < 0.6$	$732 \pm 19 \text{ (stat)} \pm 73 \text{ (syst)} \pm 48 \text{ (lum) pb}$
$0.6 < y^{\gamma} < 1.2$	$762 \pm 20 \text{ (stat)} \pm 76 \text{ (syst)} \pm 50 \text{ (lum)} \text{ pb}$
$1.2 < y^{\gamma} < 1.8$	$600 \pm 19 \text{ (stat)} \pm 56 \text{ (syst)} \pm 39 \text{ (lum) pb}$
$0.0 < y^{\Upsilon} < 1.8$	$695 \pm 14 \text{ (stat)} \pm 68 \text{ (syst)} \pm 45 \text{ (lum) pb}$

CDF Run I: 680 ± 15 (stat) ± 18 (syst) ± 26 (lum) pb

b-jet cross section (CDF)

Goal: Measure differential *b*-jet cross section $d\sigma/dp_T$ in range 38-400 GeV/c. Motivation: The mass of the *b*-quark is considered large enough to justify pertubative expansions to the strong coupling constant \rightarrow NLO should be sufficient to describe *b*-jet production.

b-tagging efficiency

☆~300 pb⁻¹

*
$$R=0.7$$
 cone jets, $|y^{jet}| < 0.7$

★ use secondary vertex for

b-tagging

* use decay length to reject mistagged jets $(L_{xy} > 0)$ From data (inclusive electron sample – does not depend on secondary vtx) and MC

Fraction of *b*-tagged jets (CDF)

* Extract fraction of b-tagged jets by using the shape of the mass distribution of the secondary vertex as discriminant.

 \star Bins as a function of $p_{T}(jet)$

b-jet cross section (CDF)

High $p_{T} \mu$ -tagged jet cross section (DØ)

first step towards $X \rightarrow bb$ search for deviation from SM 0.45 * well defined experimental quantity: 0.4 ractional Resolution 25.0 8 50.0 200.0 200.00 μ -tagged \equiv jet contains a muon at r = 10 cm around the beam ★ 294 pb⁻¹ R = 0.5 cone jets, $|y^{jet}| < 0.5 + medium \mu$ * 4660 μ -tagged jets in sample 0.1 * additional jet energy scale correction 0.05 for μ -tagged jets * μ -tagged energy resolution (collinear v): use di-jet events with one μ -tagged and one μ -vetoed jet * efficiencies: μ , trigger, primary vtx, jet quality resolution unsmearing

μ -tagged fraction (DØ)

μ -tagged jet cross section (DØ)

unsmeared = corrected for finite detector resolution \rightarrow particle level truth

NLO = NLOJET++, Z. Nagy, Phys. Rev. D 68, 094002

Conclusions

- * *b* and quarkonia production measurements probe perturbative and non-pertubative QCD.
- * The differences between experimental data and theory that had been observed in Run I at the Tevatron are diminishing.
- * J/ ψ and *b*-hadron cross section measurements (CDF) are published. * $\Upsilon(1S)$ cross section measurement is published (DØ).
- Comparison of *b*-jet cross section (CDF) with NLO predictions (Mangano, Frixione) expected within a couple of weeks.
- * DØ is working on *b*-jet cross section and $\Upsilon(1S)$ polarization measurements.