

Spectroscopy and New Particles in BaBar

Brian Aagaard Petersen Stanford University For the BaBar Collaboration

Introduction

In recent years, spectroscopy has become exciting again Many new states have been found,

not all easily incorporated in standard $q\overline{q}/qqq$ model

- New D_s charm meson states
- New $c\overline{c}$ and $c\overline{c}$ -like states such as X(3872), Y(3940)
- Candidates for pentaquark states have been reported by many experiments; still controversial since not seen by many other high statistics experiments

I will cover the BaBar studies of the last two subjects

The BaBar Experiment at PEP-II

e^+e^- experiment running at $\Upsilon(4S)$ resonance

BaBar Data Set

2005/06/10 10.36

The X(3872)^o State

Discovered by Belle in B[±] \rightarrow J/ $\psi \pi^{+}\pi^{-}$ K[±] decays

Confirmed by BaBar,CDF and D0 Mass: 3871.4±1.4 MeV/c²

Several interpretations of the state:

- Ordinary charmonium state
 - Mass disagrees with most potential models
- Weakly bound DD* molecule state
 - Mass very close to D⁰D⁰* threshold
 - Highly suppressed $B^0 \rightarrow X(3872)^0 K^0$ rate predicted
- Diquark-antidiquark state
 - Different mass eigenstates predicted in B⁰ and B⁺ decays with |∆m|>5 MeV/c²

Exclusive $B^+ \rightarrow X(3872)^{\circ}K^+$ Reconstruction

Exclusive $B^0 \rightarrow X(3872)^{\circ}K^{\circ}$ Reconstruction

 $m(X(3872)^{0}) = 3868.6\pm1.2\pm0.2 \text{ MeV/c}^{2}$ BF(B⁰ \rightarrow X⁰K⁰, X⁰ \rightarrow J/ $\psi\pi^{+}\pi^{-}$) = (5.1±2.8±0.7)x10⁻⁶

 $\Delta m=2.7\pm1.3 \text{ MeV/c}^2$ 0.15<BF(B⁰ \rightarrow X⁰K⁰)/BF(B⁺ \rightarrow X⁰K⁺)<1.34 @ 90% CL

Brian Petersen

Need more statistics to discriminate among models...

Search for X(3872)[±]

Data suggest X(3872)^o decays through $J/\psi\rho^o$

- If so, $I_{X(3872)}$ = 1 and we expect to find X(3872) \rightarrow J/ $\psi\rho^-$
- Predict BF(B \rightarrow X⁻K) ~ 2 BF(B \rightarrow X⁰K) if isospin conserved in B decays Search for B⁰ \rightarrow X⁻K⁺ and B⁻ \rightarrow X⁻K_s with X⁻ \rightarrow J/ $\psi\rho^{-}$

No evidence for a X(3872)[±], isovector hypothesis excluded Brian Petersen 8

Inclusive $B \rightarrow XK$ Reconstruction

Kaon Momentum Spectrum

BF(X(3872)⁰ \rightarrow J/ $\psi\pi^{+}\pi^{-}$)>4.3% at 90% CL

Branching Fractions from $B \rightarrow XK$ Study

	BaBar inclusive measurements		BaBar exclusive measurements	
Particle	BF (10^{-4})	BF(PDG2004)	BF(BABAR)	
η_c	$8.9{\pm}1.5$	$9.0{\pm}2.7$	$13.4{\pm}4.4$	
J/ψ	$8.1{\pm}1.6$	$10.0 {\pm} 0.4$	$10.6{\pm}0.5$	
χ_{c0}	<1.8	$6{\pm}2.4{\pm}2.1$	$2.7{\pm}0.7$	
χ_{c1}	$7.0{\pm}1.6$	$6.8 {\pm} 1.2$	$5.8{\pm}0.7$	
χ_{c2}	<2	No entry	< 0.3	
$\eta_c(2S)$	$3.1{\pm}1.5$	No entry		
$\psi(2S)$	$4.2{\pm}1.4$	$6.8 {\pm} 0.4$	$6.2{\pm}0.5$	
ψ(3770)	$3.2{\pm}2.3$	No entry		
X(3872)	<3.2	No entry		

Preliminary upper limits given at 90%CL

Double Charmonium Production

Can study $c\bar{c}$ states in $e^+e^- \rightarrow J/\psi c\bar{c}$ events

Only observe states with even C-parity: $\eta_c(1S), \chi_{c0}, \eta_c(2S)$ \Rightarrow Production mechanism is $e^+e^- \rightarrow \gamma^* \rightarrow J/\psi c\overline{c}$ not $e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow J/\psi c\overline{c}$

Double Charmonium Production

Extract production cross section for $e^+e^- \rightarrow J/\psi c \overline{c}$:

$J/\psi + c\bar{c} (\rightarrow > 2 charged)$	η_c	χ_{c0}	$\eta_c(2S)$
N(signals)	127 ± 20	81 ± 16	121 ± 20
Efficiency (%)	29.5 ± 0.7	32.2 ± 0.7	30.2 ± 0.8
Born Cross-section (fb)	$17.6\pm2.8^{+1.5}_{-2.1}$	$10.3\pm2.5^{+1.4}_{-1.8}$	$16.4\pm3.7^{+2.4}_{-3.0}$
Mass (MeV/c^2)	$2984.8 \pm 4.0^{+4.5}_{-5.0}$	$3420.5 \pm 4.8^{+11.5}_{-9.5}$	$3645.0 \pm 5.5^{+4.9}_{-7.8}$

Theoretical predictions are based on Nonrelativistic QCD:

	η _c	χс0	ղ _c (2Տ)
Braaten and Lee	2.31±1.09	2.28±1.03	0.96±0.45
Liu, He and Chao	5.5	6.9	3.7

Cross sections significantly larger than NRQCD prediction Possibly because relativistic corrections not included?

Search for X(3872)° in ISR Events

Pentaguark Controversy?

Since first reported by LEPS, many experiments have reported evidence of possible pentaguark states

Experiment	State	Production	Decay	Significance	
LEPS		γ C ₁₂	K⁺n	4.6 σ	Contradicted by high
CLAS		γd	K⁺n	5.2σ	\checkmark statistics (1 Δ S
CLAS		γρ	K⁺n	7.8σ	
SAPHIR		γρ	K⁺n	4.8σ	measurement
COSY		рр	K ^o sp	3.7σ	
JINR	Θ_5^+	p(C ₃ H ₈)	K ^o sp	5.5σ] [
SVD		рА	K ^o sp	5.6 σ	$\int \Theta (1540)^+ [uudds]$
DIANA		K⁺Xe	K⁰₅p	4.4σ	
nBC		νA	K ^o _s p	6.7σ	
NOMAD		νA	K ^o sp	4.3σ	
HERMES	-	ed	K ^o _s p	5.8σ	
ZEUS		ер	K ^o _s p	4.6 σ	
NA49	Z ₅ -	рр	Ξπ	5.8 σ	← Ξ ₅ (1860) [ddssu]
H1	$\Theta_{\rm 5c}$	ер	D*p	5.4σ	← ⊖ _{5c} (3100)º[uuddc]

Many other high statistics experiments report no evidence for pentaguark states - existence is still being debated Brian Petersen

Pentaguark Searches in BaBar

BaBar has searched for pentaquarks in several places:

- In inclusive production in e⁺e⁻ interactions:
 - Searched for: $\Theta_5(1540)^+ \rightarrow pK_s$, $\Xi_5(1860)^- \rightarrow \Xi^- \pi^-$
 - Also searched for other pentaquark states
- In electro- and hadro-production
 - Use inner detector as target for off-momentum beam electrons and hadrons from e⁺e⁻ interactions
 - Searched for $\Theta_5(1540)^+ \rightarrow pK_s$

Inclusive e^+e^- Production

Large signals for $\Lambda_{c} \rightarrow pK_{s}$, $\Xi(1530)^{0} \rightarrow \Xi^{-}\pi^{+}$ and $\Xi_{c}^{0} \rightarrow \Xi^{-}\pi^{+}$

No pentaquark signals seen

Production Cross Section

Non-observation converted to production cross section limits Assume $BF(\Theta_5(1540)^+ \rightarrow pK_s)=25\%$ and $BF(\Xi_5(1860)^- \rightarrow \Xi^-\pi^-)=50\%$

Pentaquark Cross Sections Comparison

Compare rate limits to "normal baryons"

Limits are well below rate observed for "normal" baryons

What rate to expect for pentaquarks?

Electro- and Hadro-Production of pKs

Hadroproduction:

 Secondary interactions in detector material of hadrons produced in e⁺e⁻ annihilations

Electroproduction:

 Off-beam e⁻ and e⁺ bent into Be beam pipe in horizontal plane by final focusing magnets

Detector Tomography

Search in Hadro-Production

Protons and kaons are cleanly selected

Searching in all events (mainly hadro-production) no pentaquark signal is observed

Brian Petersen

22

Search in Electro-Production

Brian Petersen

23

Summary

X(3872) state

Clear X(3872)⁰ signal observed in B⁺→XK⁺ decays Measured m(X(3872)⁰) = 3871.3±0.6±0.1 MeV/c²

- No charged state X(3872)⁺ has been found
- No signal is observed in ISR events
- Recoil B analysis puts lower limit on X(3872)⁰ BF
- More statistics needed to definitively discriminate among X(3872) models

Pentaquarks

- No signal in e⁺e⁻ production limits are well below normal baryon production cross sections
- No signal for $\Theta_5(1540)^+$ in electro- and hadro-production in detector material