

$\Delta\Gamma_{\!\! {\rm s}}/\Gamma_{\!\! {\rm s}}$ at Tevatron

Alberto Sánchez-Hernández CINVESTAV (CDF and DØ collaborations)

10th International Conference on B-Physics at Hadron Machines

Assisi, Italy June 20-24 2005

Schroedinger Equation:

$$i\frac{d}{dt} \binom{\mid \mathbf{B}_{s}(t) \rangle}{\mid \overline{\mathbf{B}}_{s}(t) \rangle} = \left(\mathbf{M} - i\frac{\Gamma}{2} \right) \binom{\mid \mathbf{B}_{s}(t) \rangle}{\mid \overline{\mathbf{B}}_{s}(t) \rangle}$$

Most general eigenstates :

$$\begin{split} &\mathsf{B}_{\mathsf{L}} {=} p |\mathsf{B}_{\mathsf{s}}\rangle {+} q |\overline{\mathsf{B}}_{\mathsf{s}}\rangle \\ &\mathsf{B}_{\mathsf{H}} {=} p |\mathsf{B}_{\mathsf{s}}\rangle {-} q |\overline{\mathsf{B}}_{\mathsf{s}}\rangle, \ p^{2} {+} q^{2} {=} 1 \end{split}$$

Heavy and light B_s eigenstates are expected to have different widths

- M₁₂ stems from the real part of the box diagram, dominated by top (off-shell)
- Γ₁₂ stems from the imaginary part, dominated by charm (on-shell)

• Relation of matrix elements to decay and oscillation parameters:

 $\Delta m = M_H - M_L \approx 2|M_{12}|$

$$\Delta \Gamma_{\rm s} = \Gamma_{\rm L} - \Gamma_{\rm H} \approx 2 |\Gamma_{\rm 12}| \cos \phi$$

$$\phi = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \qquad \overline{\Gamma}_{s} = \frac{\Gamma_{L} + \Gamma_{H}}{2}$$

In the Standard Model:

- The CP violating phase, φ is expected to be small
- Mass eigenstates are ~ CP eigenstates with definite lifetimes
- $\Delta\Gamma_d$ for B_d is expected to be pretty small
- Assuming no CP violation in the B_s system, measure two B_s lifetimes, $\tau_{\rm L}$ and $\tau_{\rm H}$, (or $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$ and τ) by simultaneously fitting time evolution and angular distribution in not flavor tagged B_s \rightarrow J/ $\psi\phi$ decays

$$B_{s} \rightarrow J/\psi \varphi \\ B_{d} \rightarrow J/\psi K^{*0} \begin{cases} J/\psi \rightarrow \mu^{+} \mu^{-} \\ \varphi \rightarrow K^{+} K^{-} \\ K^{*0} \rightarrow K^{-} \pi^{+} \end{cases}$$

• Angular momenta: $P \rightarrow VV$

- Total J of final state = 0
- Two spin-1 ⇒ J = 0, 1, 2
 Orbital L = 0, 1, 2 (S, P, D wave) \Rightarrow Need 3 amplitudes (partial wave, helicity or transversity)
- S, D wave = Parity Even, (CP Even for $J/\psi\phi$)
- P wave = Parity Odd, (CP Odd for J/ψφ)
 B is unknown mixture of CP states

$$B_{s}^{H} = \frac{1}{\sqrt{2}} (|B_{s}\rangle + |\overline{B}_{s}\rangle) = CP - odd$$
$$B_{s}^{L} = \frac{1}{\sqrt{2}} (|B_{s}\rangle - |\overline{B}_{s}\rangle) = CP - even$$

Disentangle different L- components of decay amplitudes \Rightarrow isolate two B states

Angle definitions

KK plane defines (x,y) plane $K^{+}(K)$ defines +y direction θ, ϕ polar and azimuthal angles of μ^{+} Ψ helicity angle of $\phi(K^{*})$

$$\begin{aligned} \frac{d^4\mathcal{P}}{d\vec{\rho}\,dt} &\propto |A_0|^2 \cdot g_1(t) \cdot f_1(\vec{\rho}) + \\ &|A_{\parallel}|^2 \cdot g_2(t) \cdot f_2(\vec{\rho}) + \\ &|A_{\perp}|^2 \cdot g_3(t) \cdot f_3(\vec{\rho}) \pm \\ ℑ(A_{\parallel}^*A_{\perp}) \cdot g_4(t) \cdot f_4(\vec{\rho}) + \\ ℜ(A_0^*A_{\parallel}) \cdot g_5(t) \cdot f_5(\vec{\rho}) \pm \\ ℑ(A_0^*A_{\perp}) \cdot g_6(t) \cdot f_6(\vec{\rho}) \equiv \\ &\sum_{i=1}^6 \mathcal{A}_i \cdot g_i(t) \cdot f_i(\vec{\rho}) \end{aligned}$$

 $\begin{array}{rcl} f_1(\vec{\rho}) = & 2\cos^2\psi(1-\sin^2\theta\cos^2\phi)\\ f_2(\vec{\rho}) = & \sin^2\psi(1-\sin^2\theta\sin^2\phi)\\ f_3(\vec{\rho}) = & \sin^2\psi\sin^2\theta\\ f_4(\vec{\rho}) = & -\sin^2\psi\sin2\theta\sin\phi\\ f_5(\vec{\rho}) = & \frac{1}{\sqrt{2}}\sin2\psi\sin^2\theta\sin2\phi\\ f_6(\vec{\rho}) = & \frac{1}{\sqrt{2}}\sin2\psi\sin2\theta\cos\phi \end{array}$

A. Dighe et al., Eur. Phys. J. C6, 647

 $A_o =$ longitudinal polarization amplitude $A_{\parallel}, A_{\perp} =$ transversity polarization amplitudes

Tevatron detectors

- Tracking System: $|\eta| < 3$
- Robust Muon Triggers
- High Yields

CDF: Fit Distributions

B_s:

$$\begin{split} \frac{d^{4}\mathcal{P}}{d\vec{\rho}\,dt} &\propto |A_{0}|^{2} \cdot e^{-\Gamma_{L}t} \cdot f_{1}(\vec{\rho}) + \\ &|A_{\parallel}|^{2} \cdot e^{-\Gamma_{L}t} \cdot f_{2}(\vec{\rho}) + \\ &|A_{\perp}|^{2} \cdot e^{-\Gamma_{H}t} \cdot f_{3}(\vec{\rho}) + \\ &Re(A_{0}^{*}A_{\parallel}) \cdot e^{-\Gamma_{L}t} \cdot f_{5}(\vec{\rho}) \end{split}$$

- flavor blind decay
- $\delta \phi_{\text{CPV}} \approx 0.03$

$$\begin{split} \mathbf{B}_{d} \vdots \\ \frac{d^{4}\mathcal{P}}{d\vec{\rho}\,dt} &\propto \Big\{ |A_{0}|^{2} \cdot f_{1}(\vec{\rho}) + \\ &\quad |A_{\parallel}|^{2} \cdot f_{2}(\vec{\rho}) + \\ &\quad |A_{\perp}|^{2} \cdot f_{3}(\vec{\rho}) \pm \\ &\quad Im(A_{\parallel}^{*}A_{\perp}) \cdot f_{4}(\vec{\rho}) + \\ &\quad Re(A_{0}^{*}A_{\parallel}) \cdot f_{5}(\vec{\rho}) \pm \\ &\quad Im(A_{0}^{*}A_{\perp}) \cdot f_{6}(\vec{\rho}) \Big\} \cdot e^{-\Gamma_{d}t} \end{split}$$

Detector efficiency is taken into account as global terms (no correlations)

CDF: Detector Acceptance

- 40M decays generated with flat angular distributions
- These shapes shown the effect of the cuts and detector sculpting

DØ: Three Angles to One Angle

Simultaneous fit to mass, proper decay length and angular distributions using an un-binned maximum log-likelihood method

 $\mathscr{L} = \prod_{i=1}^{N} \left[f_{sig} F_{sig}^{i} + \left(1 - f_{sig} \right) F_{bkd}^{i} \right]$

DØ:

 $\begin{array}{ll} f_{sig} & signal \ fraction \\ \tau = 1/\Gamma \ , & \Gamma = (\Gamma_L + \Gamma_H)/2 \\ R_\perp & CP \text{-odd } fraction \ at \ t=0 \\ \Delta \Gamma \ / \ \overline{\Gamma} & \\ M_B & mass \ of \ B \end{array}$

CDF:

Plus resolution, background parameters (mass,PDL,angular): ~14

CDF: Fit results

οosψ

In addition the fit provide angular information of the system

Distributions are normalized, background subtracted and acceptance corrected.

Alberto Sánchez-Hernández - Beauty 2005

DØ: Fit results

Information for the angle studies: Transversity = $\cos(\theta)$

1σ contour for fitted parameters

CDF: Systematic Errors

Source	cτ _s (μm)	$\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$	A ₀	A	A	$\delta_{_{\parallel}}$
Bkg Model	3.70	0.007	0.007	0.013	0.003	0.03
B _a Cross feed	5.00	0.008	-	0.030	0.001	-
Lifetime	2.40	-	-	-	-	-
Total	6.70	0.011	0.007	0.013	0.003	0.03

PRL 94, 10180, (2005)

DØ: Systematic Errors

Source	cτ _s (μm)	$\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$	$R_{\!\scriptscriptstyle \perp}$	Comment
Signal ε vs cos(θ)	0.6	0.001	0.005	MC
Signal ϵ vs ϕ , ψ angles including: ($ A_0 ^2 - A_{\parallel} ^2$)	0.2	0.001	0.020	MC + CDF
Signal mass model	0.4	0.016	0.006	DATA
Procedure bias	2	0.025	0.010	MC
Detector alignment	2	-	-	DATA
Bkg lifetime model	0.5	0.016	0.005	DATA

DØ preliminary

Constraining $\tau_s = 2 \tau_L \tau_H / (\tau_L + \tau_H) = \tau_d = 460.8 \pm 4.2 \text{ (stat)} \pm 4.6 \text{ (syst)} \ \mu\text{m}$

$$\begin{split} \tau_{L} &= 1.13^{+0.13}_{-0.09} \pm 0.02 \text{ ps} \\ \tau_{H} &= 2.38^{+0.56}_{-0.43} \pm 0.03 \text{ ps} \\ \Gamma_{s} &= 0.46 \pm 0.18 \pm 0.01 \text{ ps}^{-1} \\ \Delta\Gamma_{s}/\Gamma_{s} &= 0.71^{+0.24}_{-0.28} \pm 0.01 \end{split}$$

Only small change in result after constraint

DØ: Additional constraint

B_{s} Lifetime from flavor specific decay (e.g. B_{s} or B_{s})

- $B_s \rightarrow D_s \mu \nu X$
- Lårge data sample from muon triggers ~ 400 pb⁻¹
 Take K distribution from several semi-leptonic
- modes
- Include charm and bottom backgrounds in the fit

DØ pre.: $\tau(B_s) = 1.420 \pm 0.043$ (stat) ± 0.057 (syst) ps WA: $\tau(B_s) = 1.434 \pm 0.050$ ps

Alberto Sánchez-Hernández - Beauty 2005

Comparisons

Experiment	R_{\perp}	$\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$	$\overline{oldsymbol{ au}}(ps)$	$ au_{\sf L}({\sf ps})$	$ au_{H}(ps)$
Aleph				1.27 ± 0.34	
CDF Runll	$0.125 {\pm} 0.08$	$0.65^{+0.25}_{-0.33}$	$1.40^{+0.15}_{-0.13}$	1.05 ^{+0.16}	$2.07^{+0.58}_{-0.46}$
DO Runll	$0.17 {\pm} 0.10$	$0.21^{+0.33}_{-0.45}$	1.39 ^{+0.15} _{-0.16}	1.23 ^{+0.16}	$1.52^{+0.39}_{-0.43}$

Cross checks

CDF: B_d consistent with BELLE and BaBar

CDF ensemble test: 1/325 could be $\Delta\Gamma_s/\Gamma_s = 0$ 1/84 could be $\Delta\Gamma_s/\Gamma_s = 0.12$

DØ ensemble test: ~70% "experiments" give $\Delta\Gamma_s/\Gamma_s$ and c τ within 1 RMS ~5% "experiments" give $\Delta\Gamma_s/\Gamma_s > 0.65$ (CDF value)

Averages from HFAG

At the Tevatron, studying $B_s \rightarrow J/\psi(\rightarrow \mu^+\mu^-) \phi(\rightarrow K^+ K^-)$:

	Experiment	$\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$	$\overline{oldsymbol{ au}}(ps)$	$ au_{L}(ps)$	$ au_{H}(ps)$
	CDF Runll	$0.65^{+0.25}_{-0.33}$	$1.40^{+0.15}_{-0.13}$	1.05 ^{+0.16} -0.13	2.07 ^{+0.58} -0.46
\rightarrow	DO Runll	$0.21^{+0.33}_{-0.45}$	1.39 ^{+0.15} -0.16	1.23 ^{+0.16} -0.13	1.52 ^{+0.39} -0.43

$$\bar{\tau} = \frac{1}{\Gamma_{s}} = 1.405^{+0.043}_{-0.047} \text{ ps}$$

 $\Delta \Gamma_{s} / \Gamma_{s} = 0.33^{+0.09}_{-0.11}$

HFAG average (using preliminary input)

- Currently measurements are dominated by statistics and the systematics are small
 - DØ: three angles analysis soon
 - CDF: update analysis, $\phi\phi$, ϕK^* , KK (difficult) D_sD_s (tiny)
- Since flavor specific provide an excellent constraint, having a precise lifetime measurement (of semileptonic, for instance) is very important
- Of course in a not clean environment like p-pbar the big problem is the trigger
 - DØ: Layer 0 inside current silicon improve σ(cτ), silicon track trigger, and DAQ – improve bandwidth
 - CDF: upgrade track trigger, and DAQ

