

Akimasa Ishikawa

石川明正

Flavor Changing Neutral Current Decays

- Flavor Changing Neutral Current decays, $b \rightarrow s\gamma$, $b \rightarrow sll$
 - Forbidden at tree level
 - o induced through Penguin or Box diagrams at lowest order
 - o sensitive to heavy particles (SUSY, heavy Higgs)
- Observables
 - Decay Width (Branching Fraction)
 - Inclusive decay, theoretically clean, experimentally hard.
 - Exclusive decays, large uncertainty due to form factor
 - →test of QCD in B decays
 - Ratio of Decay Width
 - Some theoretical and experimental uncertainties cancel
 - Good probe also for exclusive decays!
 - CP Asymmetry
 - Isospin Asymmetry
 - Up-Down Asymmetry
 - BF ratio of electron mode to muon mode
 - Forward-Backward Asymmetry

Penguin diagram in the SM

Vts

γ, Z

t

W

Vtb

Beyond the SM diagram

OPE and Wilson Coefficient

 Effective Hamiltonian is expressed in term of Operator Product Expansion.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

- O_{1,2}: current current operator
- O₃₋₆: QCD penguin operator
- O_{7,8}: electro- and chromo-magnetic operator
- O_{9.10}: semileptonic operator
- o C_i: Wilson coefficient
- Wilson coefficient is a strength of corresponding short distance operator.
- Precise measurement of Wilson coefficients is one of the goals for B physics.
- For b→sγ and b→ll case, only O₇, O₉ and O₁₀ appear in the Hamiltonian.

New Physics changes the Wilson Coefficients

$$\begin{aligned} \mathcal{O}_{1} &= (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta})(\overline{c}_{\beta}\gamma^{\mu}Lb_{\alpha}), \\ \mathcal{O}_{2} &= (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\alpha})(\overline{c}_{\beta}\gamma^{\mu}Lb_{\beta}), \\ \mathcal{O}_{3} &= (\overline{s}_{\alpha}\gamma_{\mu}Lb_{\alpha}) \sum_{\substack{q=u,d,s,c,b}} (\overline{q}_{\beta}\gamma^{\mu}Lq_{\beta}), \\ \mathcal{O}_{4} &= (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta}) \sum_{\substack{q=u,d,s,c,b}} (\overline{q}_{\beta}\gamma^{\mu}Rq_{\beta}), \\ \mathcal{O}_{5} &= (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta}) \sum_{\substack{q=u,d,s,c,b}} (\overline{q}_{\beta}\gamma^{\mu}Rq_{\alpha}), \\ \mathcal{O}_{6} &= (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta}) \sum_{\substack{q=u,d,s,c,b}} (\overline{q}_{\beta}\gamma^{\mu}Rq_{\alpha}), \\ \mathcal{O}_{7} &= \frac{e}{16\pi^{2}}\overline{s}_{\alpha}\sigma_{\mu\nu}(m_{s}L + m_{b}R)b_{\alpha}F^{\mu\nu}, \\ \mathcal{O}_{8} &= \frac{g}{16\pi^{2}}\overline{s}_{\alpha}\sigma_{\mu\nu}(m_{s}L + m_{b}R)T^{a}_{\alpha\beta}b_{\beta}G^{a\mu\nu}, \\ \mathcal{O}_{9} &= \frac{e^{2}}{16\pi}\overline{s}_{\alpha}\gamma^{\mu}Lb_{\alpha}\overline{\ell}\gamma_{\mu}\ell, \\ \mathcal{O}_{10} &= \frac{e^{2}}{16\pi}\overline{s}_{\alpha}\gamma^{\mu}Lb_{\alpha}\overline{\ell}\gamma_{\mu}\gamma_{5}\ell, \end{aligned}$$

$b \rightarrow s\gamma$ and $b \rightarrow sII$ decays

Decay widths for $b \rightarrow s\gamma$ and $b \rightarrow sII$ can be described with Wilson coefficients.

• $\Gamma(b \to s\gamma) = \frac{G_F^2 \alpha_{em} m_b^5 |V_{ts}^* V_{tb}|^2}{32\pi^3} |C_7^{\text{eff}}|^2 \rightarrow \text{Absolute value of } C_7^{eff} \text{ can be measured.}$

$$\frac{d\Gamma(b \rightarrow s\ell^+\ell^-)}{d\hat{s}} = \left(\frac{\alpha_{em}}{4\pi}\right)^2 \frac{G_F^2 m_b^5 \left|V_{ts}^* V_{tb}\right|^2}{48\pi^3} (1-\hat{s})^2 \\ \times \left[\left(1+2\hat{s}\right) \left(\left|C_9^{\text{eff}}\right|^2 + \left|C_{10}^{\text{eff}}\right|^2\right) + 4\left(1+\frac{2}{\hat{s}}\right) \left|C_7^{\text{eff}}\right|^2 + 12 \operatorname{Re}\left(C_7^{\text{eff}} C_9^{\text{eff}*}\right) \right] \right] \\ \frac{d}{d\hat{s}} (\Gamma_F^{K*} - \Gamma_B^{K*}) = \frac{G_F^2 \alpha^2 m_B^5}{2^8 \pi^5} |V_{ts}^* V_{tb}|^2 \, \hat{s} \, \hat{u}(\hat{s})^2 \\ \times \left[\operatorname{Re}(C_9^{\text{eff}}) C_{10} V A_1 + \frac{\hat{m}_b}{\hat{s}} C_7^{\text{eff}} C_{10} (VT_2(1-\hat{m}_{K^*}) + A_1 T_1(1+\hat{m}_{K^*}))) \right] .$$

$$\rightarrow \operatorname{Relative signs can be also determined from interference terms!!$$

 C_7^{eff} , C_9^{eff} and C_{10}^{eff} can be extracted from $B(b \rightarrow s\gamma)$, $B(b \rightarrow sI^+I^-)$ and $A_{FB}(b \rightarrow sI^+I^-)$! (sometimes we do not use C_i but A_i which is leading coefficient)

In the SM $A_7 = -0.330$, $A_9 = 4.069$, $A_{10} = -4.213$ at $\mu = 2.5 \text{GeV}$

Branching Fraction of $B \rightarrow K^* \gamma$

- $b \rightarrow s\gamma$ was observed at CLEO in K* γ
- K* is reconstructed from 4 modes
 - ο Κ⁺π⁻, K_sπ⁰, K⁺π⁰, K_sπ⁺
 - \circ $|M_{K^*} M_{K\pi}| < 75 MeV$

B(B⁰ → K^{*0} γ) = (40.9 ± 2.1 ± 1.9) ·10⁻⁶ B(B⁺ → K^{*+} γ) = (44.0 ± 3.3 ± 2.4) ·10⁻⁶

- Better than 10% accurary!
- Theoretical preduction
 - QCD fact. (70 \pm 25) \cdot 10⁻⁶
 - LEET (68 \pm 23) \cdot 10⁻⁶
 - pQCD $(35 \pm 10) \cdot 10^{-6}$
 - Lattice $(35 \pm 16) \cdot 10^{-6}$

Theoretical uncertainties are large

Asymmetry in $B \rightarrow K^* \gamma$

Isospin Asymmetry Δ_{0+} is sensitive to sign of Wilson coefficients C_6/C_7

$$\Lambda_{0+} = \frac{\frac{\tau_{B^+}}{\tau_{B^0}} B(B^0 \to K^{0*} \gamma) - B(B^+ \to K^{+*} \gamma)}{\frac{\tau_{B^+}}{\tau_{B^0}} B(B^0 \to K^{0*} \gamma) + B(B^+ \to K^{+*} \gamma)}$$

■ $\Delta_{0+} = +5 \sim 10\%$ and $C_6/C_7 > 0$ in the SM ■ If $C_6/C_7 < 0$, $\Delta_{0+} < 0$.

$$\Delta_{0+} = (+3.4 \pm 4.4(\text{stat}) \pm 2.6(\text{syst}) \pm 2.5(f_{+-}/f_{00}))\%$$

- Direct CPV is less than 1% in the SM
- 5% CPV is allowed in new physics

 $A_{CP} = (-0.1 \pm 4.4 \pm 0.8)\%$

Time dependent CPV in $B \rightarrow K_s \pi^0 \gamma$

- Not only the K^{*0} γ , but any K_s $\pi^0 \gamma$ can be used for TCPV measurement. $A_{CP} = \frac{\Gamma(\overline{B^0}(t) \to K_s^0 \pi_0 \gamma) - \Gamma(B^0(t) \to K_s^0 \pi^0 \gamma)}{\Gamma(\overline{B^0}(t) \to K_s^0 \pi_0 \gamma) + \Gamma(B^0(t) \to K_s^0 \pi^0 \gamma)} = S \sin \Delta m \Delta t + A \cos \Delta m \Delta t$
- In the SM, S<0.1, A<0.01.
- Right handed currents induce large value of S
 - S corresponds to fraction of C_{7R} to C_{7L}

$$M_{Ks\pi0} < 1.8 \text{GeV}$$

$$S(K_{s}^{0}\pi^{0}\gamma) = -0.58 + 0.46 + 0.46 + 0.11(syst) + 0.038 + 0.038 + 0.038 + 0.011(syst) + 0.038 + 0.034(stat) \pm 0.011(syst)$$

Atwood, Gershon, Hazumi, Soni PRD71 (2005) 076003

Observation of $B \rightarrow K \eta \gamma$

- K_sηγ can be used for time dep. CPV measurement to search for right handed currents.
- B→K⁺ηγ, K_sηγ
 - ο η is reconstructed from $\gamma\gamma$ and $\pi\pi\pi^0$

$$B(B^{+} \to K^{+} \eta \gamma) = \left(8.4 \pm 1.5_{-0.9}^{+1.2}\right) \cdot 10^{-6}$$
$$B(B^{0} \to K_{S}^{0} \eta \gamma) = \left(8.4_{-2.7 - 1.6}^{+3.1 + 1.9}\right) \cdot 10^{-6}$$

$$A_{CP}(B^+ \to K^+ \eta \gamma) = 16 \pm 9 \pm 6\%$$

Observation of $B \rightarrow K_1(1270)\gamma$

M.Gronau et al. PRL88 051802 (2002)

- $B \rightarrow K\pi\pi^0\gamma$ final state via $K_1\gamma$ can be used for up-down Asymmetry to search for right handed currents.
 - $K_1(1270)$ is reconstructed from $K^+\pi^+\pi^-$ and $K_s\pi^+\pi^-$.
 - 0.6< $M_{\pi\pi}$ < 0.9GeV (ρ mass region) to enhance K₁(1270)
 - Resonance components are extracted by fitting to the hadronic mass distribution.
 - $B(B^+ \rightarrow K_1(1270)^+ \gamma) = (4.3 \pm 0.9 \pm 0.9) \cdot 10^{-5}$

$$B(B^0 \to K_1(1270)^0 \gamma) < 5.8 \cdot 10^{-5}$$

$$B(B^+ \to K_1(1400)^+ \gamma) < 1.5 \cdot 10^{-5}$$

Observation of $B \rightarrow p \overline{\Lambda} \gamma$

- Baryon production via weak decay of meson
- Near threshold enhancement of dibaryon system is observed in B→pĀπ (b→s process)

$$B(B^{+} \to p\overline{\Lambda}\gamma) = \left(2.16^{+0.58}_{-0.53} \pm 0.20\right) \cdot 10^{-6}$$

Theoretical prediction ~10⁻⁶

- Near threshold enhancement also observed
 - Fragmentation?

Inclusive $B \rightarrow X_s \gamma$

- Full inclusive $b \rightarrow \gamma$
- Photon with E>1.8GeV
- Veto photons from π^0 and η
- Subtract continuum with off-resonance data
- Moment analysis to extract HQET parameter

$$< E_{\gamma} >$$
 = 2.289 \pm 0.026 \pm 0.035 GeV

 ${<}E_{_{\!Y}}{}^2{>} {-} {<}E_{_{\!Y}}{>}^2 {=} 0.0311 \, \pm \, 0.0073 \, \pm \, 0.0063 \, \text{GeV}$

 \rightarrow HQET parameter $\Lambda = 0.66^{+0.08}_{-0.05} \text{GeV/c}^2$

used to extract V_{cb} and V_{ub}

BF of Inclusive $B \rightarrow X_s \gamma$

Subtract b \rightarrow d γ assuming B(b \rightarrow d γ)/B(b \rightarrow s γ) = 3.8 ± 0.6%

- Measured BF is consistent with theoretical predictions.
 - M_{H+} >200GeV 95%CL (M.Neubert CKM2005)
- Limit on Wilson coefficient A₇
 - \circ -0.36 < A₇ < -0.17 or 0.21 < A₇ < 0.42
 - In the SM $A_7 = -0.33$ at $\mu = 2.5 \text{GeV}$

G.Hiller and F.Krueger

PRD 69 (2004) 074020

Exclusive $B \rightarrow X_{s\gamma}$ / Inclusive $b \rightarrow s$

- 40% of b \rightarrow s γ are measured exclusively.
- Next step : $B^0 \rightarrow K^0 S^0 \gamma$ for TCPV analysis.
 - o Kη', Kf₀, Ka₀.....

Search for $B \rightarrow \rho \gamma \omega \gamma$

- **b** \rightarrow dy process has not been observed
- Simultaneous fit to $B^- \rightarrow \rho^- \gamma$, $B^0 \rightarrow \rho^0 \gamma$ and $B^0 \rightarrow \omega \gamma$
- From isospin relations:

$$\begin{split} \mathsf{B}(\mathsf{B}^{\text{-}} \not\rightarrow \rho^{\text{-}} \gamma) &= 2 \ (\tau(\mathsf{B}^{\text{-}})/\tau(\mathsf{B}^{0})) \cdot \mathsf{B}(\mathsf{B}^{0} \not\rightarrow \rho^{0} \gamma) \\ &= 2 \ (\tau(\mathsf{B}^{\text{-}})/\tau(\mathsf{B}^{0})) \ \mathsf{B}(\mathsf{B}^{0} \not\rightarrow \omega \gamma) \end{split}$$

 $\mathsf{B}(\mathsf{B} \rightarrow (\rho, \omega)\gamma) = \mathsf{B}(\mathsf{B} \rightarrow \rho^{-}\gamma) < 1.4 \cdot 10^{-6}$

SM predictions:

B(B⁻→ρ⁻γ) = (0.90 ± 0.34) · 10⁻⁶ (Ali-Parkhomenko) B(B⁻→ρ⁻γ) = (1.50 ± 0.50) · 10⁻⁶ (Bosch-Buchalla)

Just above the SM prediction!!

constrain |V_{td}/V_{ts}|

$$\frac{\mathrm{B}(B \to (\rho, \omega)\gamma)}{\mathrm{B}(B \to K^*\gamma)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{(1 - m_{(\rho,\omega)}^2 / m_B^2)^3}{(1 - m_{K^2}^2 / m_B^2)^3} \varsigma^2 (1 + \Delta R)$$
$$\frac{\left| \frac{V_{td}}{V_{ts}} \right| < 0.22$$

 ΔR : form factor ratio

 ζ : SU(3) breaking effect

Inclusive $B \rightarrow X_{s} \parallel$

- Semi-inclusive technique
- Electron or muon pair
 - M_{II}>0.2GeV 0
 - Charmonium veto \cap
- Xs is reconstructed from K⁺ or K_s + 0-4 π (at most one π^0 is allowed)

 M_{χ_S} < 2.0 GeV 0

$$B(B \to X_{s}\ell^{+}\ell^{-}) = (4.11 \pm 0.83^{+0.85}_{-0.81}) \cdot 10^{-6}$$

$$B(B \to X_{s}\mu^{+}\mu^{-}) = (4.13 \pm 1.05^{+0.85}_{-0.81}) \cdot 10^{-6}$$

$$B(B \to X_{s}e^{+}e^{-}) = (4.04 \pm 1.30^{+0.87}_{-0.83}) \cdot 10^{-6}$$

Theoretical preduction by Ali et al.

 $B(B \to X_{s}\ell^{+}\ell^{-}) = (4.2 \pm 0.70) \cdot 10^{-6}$

 $M_{xs}^{12} (GeV/c^2)$

Limit on Wilson Coefficients

P.Gambino, U.Haisch and M.Misiak PRL 94 061803 (2005)

- Clean prediction of BF of $B(B \rightarrow X_s II)$ for $1 < q^2 < 6 GeV^2$ is available.
 - Combine Belle and Babar results
 - Sign of C_7 flipped case with SM C_9 and C_{10} value is unlikely.

BF	Belle	Babar	WA	SM	$C_7 = -C_7^{SM}$
$q^2 > (2m_{\mu})^2$	4.11±1.1	5.6±2.0	4.5±1.0	4.4±0.7	8.8±0.7
1 <q<sup>2<6GeV²</q<sup>	1.5±0.6	1.8±0.9	1.60±0.5	1.57±0.16	3.30±0.25

Branching Fraction of $B \rightarrow K^{(*)} II$

 $\mathcal{B}(B \to K\ell^+\ell^-) = (5.50^{+0.75}_{-0.70} \pm 0.27 \pm 0.02) \times 10^{-7}$ $\mathcal{B}(B \to K^*\ell^+\ell^-) = (16.5^{+2.3}_{-2.2} \pm 0.9 \pm 0.4) \times 10^{-7}$

Prediction by Ali et al.

 $\mathcal{B}(B \to K\ell^+\ell^-) = (3.5 \pm 1.2) \times 10^{-7}$ $\mathcal{B}(B \to K^*\ell^+\ell^-) = (11.9 \pm 3.9) \times 10^{-7}$

 A ratio of BF of K^(*)μμ to K^(*)ee is sensitive to neutral heavy Higgs in 2HDM with large tanβ. In the SM, the ratio is 1.00 and ~0.75 for KII and K^{*}II

$$\mathcal{R}_{K} = \frac{\mathcal{B}(B \to K\mu\mu)}{\mathcal{B}(B \to Kee)} = 1.38^{+0.39+0.06}_{-0.41-0.07}$$
$$\mathcal{R}_{K^{*}} = \frac{\mathcal{B}(B \to K^{*}\mu\mu)}{\mathcal{B}(B \to K^{*}ee)} = 0.98^{+0.30}_{-0.31} \pm 0.08$$

250/fb data

G.Hiller and F.Krueger PRD 69 (2004) 074020 Y. Wang and D. Atwood PRD68 (2003) 094016

First look at A_{FB} in K*II

- Sign of C₇C₁₀ can be determined from Forward-Backward Asymmetry in K*II.
- Raw A_{FB} in each q² region is extracted from M_{bc} fit.
- KII has no asymmetry, so it is a good control sample.
- Curves show theoretical distributions including experimental efficiency effect (not fitted lines!).
- Both curves are in agreement with data, so far.

Summary

- Many results for BF are consistent with the SM
 - Precision of BF(b \rightarrow s γ) is 15% level.
 - Negative A₇ solution is consistent with the SM A₇ value
 - Upper limit on $B(B \rightarrow (\rho, \omega)\gamma)$ is just above the predictions
 - Constrain |V_{td}/V_{ts}|
 - Improved measurement of inclusive $B \rightarrow XsII$ decay
 - Sign of C₇ flipped case with SM C₉ and C₁₀ values is unlikely
 - stringent limits on C₉ and C₁₀
- Many measurements of Ratio
 - Precisions of Δ_{0+} (B \rightarrow K* γ) are 5% level
 - Towards sign of (C_6/C_7) .
 - Time dep. CPV in $B \rightarrow K_s \pi^0 \gamma$ is measured for the first time
 - Search for right handed component in C₇
 - First look at Forward-Backward Asymmetry in $B \rightarrow K^*II$
 - Will be used for measurement of A₉ and A₁₀
- New results will be presented at Lepton Photon 05.
- Stay tuned

Backup Slides

A_{FB} at Super Belle

- 1 year running at 5x10³⁵/nb/sec
- \rightarrow 5/ab integrated luminosity, 10 billion B mesons!!
 - We have accumulated ~0.46/ab, about x10
- ▲A₉/A₉~11%, ΔA₁₀/A₁₀~13%
 - A₇ fixed to SM value
 - systematic error is not included

A_{FB} K*II with 5/ab