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Motivation

Entanglement entropy is a clear measure of quantum megianic
correlations in many body systems and field theories.

It is however a very non-local quantity which very difficult tneasure in
macroscopic quantum systems.

Its behavior near quantum critical points is largely notenstbod except in
one dimension.

Recent results show it is a quantity of interest in topolapphases.



Entanglement Entropy in Quantum Mechanics

Consider a quantum mechanical system with two sets of degifdecedom{y 4 }
and{yp}. Given the pure stat®¥[p 4, ]| and the trivial density matrix for the
combined system U B,

(pa,pBlpaus|Pa, ¢B) = Vpa, pB]¥ [V, ¢B]

The reduced density matrix fof is constructed by tracing over the degrees of
freedom inB:

(palpalps) =t paus

The von Neumann entanglement entropy is
Sa=—tra (palnpa) =—trg(pslnpr) =Sk

The von Neumann entropy gives a measurement of how enta(mledrrelated) the
degrees of freedom ot are with those of5.



Quantum Phase Transitions and Quantum Criticality

M

order disorder
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e Phase transitions at zero temperatuged by a parametegrof a quantum
Hamiltonian

e Scale Invariance at Quantum Critical Poin®orrelation functions of local operators
exhibit scaling.

e As the transition there is@verging correlation length ~ |g — g.|™"

e The energy gap\ closes with a power lavh ~ |g — g.|”#, wherez is the dynamic
critical exponent

e For systems which exhibit an effecti®rentz invarianceat criticality z = 1; in
generalz # 1.



D =1 Quantum Criticality: Conformal Invariance

Quantum critical systems with= 1 in one dimension are special

In their 1 4+ 1-dimensional space-time they exhibit an infinite conformeriance:
Conformal Field Theory

The critical exponents aguantum numberthat label the representations of the
(infinite-dimensional) group of conformal transformaton

(Almost) Completeclassification of quantum phase transitions of unitarytnetdic
(z = 1) systems inl + 1 dimensionsn terms ofConformal Field TheoryCFT)

Thecentral charge (or conformal anomaly) and the coefficients of th@erator
product expansion (OPBf the primary fieldsdefine the universal properties of the
CFT.

Universal form of the low temperature specific héatl, and of theground state
energy density /L
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Entanglement and Conformal Invariance

e Calculations on a number gpin chainded to the suggestion that tken Neumann
entropy inD = 1 quantum critical systems has a universal term which scales a
log L (Rico, Latorre, Vidal, and Kitaev)

e Calbrese and Cardy (2004) (and Holzhey, Larson and Wilc¥@84)) used
conformal invariancéo show that, for darge region of linear sizé, embedded in
an infinitely longl 4 1-dimensional conformally invariant systethe von Neumann
entanglement entropy has the asymptotic behavior
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wheresg IS non-universala is a short-distance cutoff, ands the central charge

L .
S="c log (—) + finite terms
a

e Away from criticality: there is a finite correlation length

S = gc log <§> + finite terms for& > a
a

e 1+ 1 dimensional disordered quantum systeatimandom fixed pointalso obey a
logarithmic scaling laweven though they are scale but not conformal invariant!)
(Refael and Moore, 2004).



Issues on Scaling Behavior of Quantum Entanglement

Behavior of quantum entanglement near quantum criticadtpan general and in
higher dimensions.

Dependence on the dynamic quantum critical exponewiiich determines the
nature of quantum criticality for local operators.

Massive relativistic £ = 1) (free) field theories obey an “area law’= ALY ™!
(Srednicki, 1993) (wherél is non-universal).

Calabrese and Cardy (2004) have used a heuristic scalingharg to argue that the
area law is generic to quantum critical points in all dimensi

We will see however that, for conformal quantum criticalgsiin2 + 1-dimensions
(with z = 2) there is in fact a universal logarithmic term.

Universalfinite terms appear itopological phaseand depend on the quantum
dimensions.



Spin Liquids and Topological States of Matter

e Liquid phases of electron fluids and spin systemtsiout long range order
with or without time reversal symmetry breaking

e Quasiparticlesvortices withfractional chargandfractional statistics
(Abelian and non-Abelian)

e HiddenTopological OrdeandTopological Vacuum Degeneracy

e Finite-dimensional quasiparticle Hilbert spaeesiniversal topological
guantum computer



“*Known” Topological Quantum Liquids

e 2DEGFractional Quantum Hall Liquids

— Abelian FQH stategLaughlin and Jain): fractional charge aAdelian
fractional statistics

— Non-Abelian FQH stateds v = 5/2 a Pfaffian (Moore-Read) FQH
state? (firm candidate) Is the plateawat 12/5 a parafermion state?
(good possibility)

e Rapidly rotating Bose gasepossible non-Abelian (Pfaffian) FQH state of
bosonsat =1

o Time-Reversal Breaking SuperconductdssRuO, is ap, + ip,
superconductor
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Challenges

To develop aconsistent theorgf topological phases (i.e. beyond FOQH
states) and to understand the underlying mechanisms

What are thgyeneric phasesf models of topological liquids
Is the gap necessary? Can a topological liquid be gapless?

Concrete examples ddittice modelswith local interactions with topological
phases

Fractional StatisticsAbelian and non-Abelian
There has beesome progressm constructingnodelswith Abelian statistics

To find experimentally realizable models (looks promisimgt, quite there
yet)

11



Time Reversal Invariant Spin Liquids: Quantum Dimer
Models

e Simple local models describirgirongly frustrated and ring exchange
guantum spin systemith alarge spin gap and no long range spin order

e They typically exhibit spin gap phases with different tyjpésalence bond
crystal orders

e QDM have special solvable points, the Rokhsar-Kivelson)B#int, where
theexact ground state wave functibas the short range RVB form

Wrve) = » |C),  {C} = alldimer coverings of the lattice
{C}
e — Bipatrtite lattices the RK points arguantum (multi) critical points

described by an effective field theory with= 2 and massless
deconfined spinons, or first order transitions

— Non-bipartite latticesQDMs havetopologicalZ,; deconfined phases
with massive spinons and a topologidafiold ground state degeneracy
on a torus (Moessner and Sondhi, 1998)

12



The Quantum Dimer Model

Hpx = Z(UV; — tF}), Rokhsar and Kivelson (1988)

)

Vi= ] OC I+ EDCHT F= X0+ T DO

Here each bar representsgn singlet bond
Fort = v = Hrx = >, QIQ,,withQ; = (1, 71').

e The ground state wave functiow,) hask = 0

[Wo) =

whereZ., is the sum over all dimer configurations

e Equaltimecorrelators in thejuantum dimer modedt the RK point are given by
correlators of thelassical dimer model

e This is actually doop model loops are the dimer moves from a reference state. This
is the simplest loop model: thelU/ (2), fully packed loop model.

13



Dimers, heights and effective field theory

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

The QDM can be mapped toheeight model

Plaquette flipchanges the height of that plaquette-by, and the average height of
the surrounding sites by 1.

Equivalent configurationsh = h + 4.

Continuum limit A = 4¢(x)
Compactification Radiusp(z) = o(x) + 1.

The Quantum Lifshitz model
Hamiltonian:

o 2 1 2 /€2 2 2
H_/da:LH + 3 (Vgo)]
This is theQuantum Lifshitz Model (Henley; Moessner, Sondhi and Fradkin)

Action in imaginary timer < smectic layersn 3D classical statistical mechanics at
the Lifshitz transition.

S = /da:/dT[ +;(v¢)]
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Scale Invariant Ground State Wave Functions and 2D
Classical Critical Phenomena

e Ground state wave-functio¥[¢]

Q(Z)Wolp] =0 = x e 2/

%ol :/Dso e_R/d2x (Ve(x))?

e Theground state wave functiaa conformally invariant
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Mapping to a 2D- = 1 Euclidean CFT

The probability for a configuratiofy) is theGibbs weightof a 2D classical
Gaussian model, a Euclidean 2D free massless scalar field.

At these quantum critical points tligound state wave functids scale invariant

The equal-time expectation values of the observables arelators in thiss = 1
conformal field theory.

Theequal-time expectation valder operators in the quantum Lifshitz model are
given bycorrelators of the massless free boson conformal field yneh central
chargec = 1. Time-dependent correlatoexhibit power-law behavior with
dynamical exponent = 2.

Matching the correlation functions of the RK and Lifshitz deds, one finds
k=1/2m.

This is a multicritical point with many relevant perturlmats: e.g diagonal dimers
drive the system into @, topological phase
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Phase diagram for a quantum eight vertex model

Ardonne, Fendley and Fradkin
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Strategy for a Generalization
with Paul Fendley

Each basis state in the Hilbert space Ie@p configurationn 2D
Start with the statistics we wish to have, and work backward
Algebraic characterization of braiding f8i/ (2), andSO(3), Chern-Simons

Braid matrix of a 2+1-dimensional theory as a limit of thematrix of an associated
relativistic 1+1 dimensional model

We construct quantum 2D models with these braid relationgtiiying the structure
of the factorizableS-matrices of integrable 1D models.

We embed the 1D model in 2D Euclidean space, and find an RK ktamah

Loop gases

— SU(2), case:O(n) loop lattice modeWwith n = 2 cos(w/(k + 2))
(self-avoiding and mutually-avoiding loops)

— SO(3), case:domain walls of a)-state Potts model with
Q = 4cos®*(m/(k + 2)) (loops intersect and branch: nets)
SO(3)3: Chromatic Polynomial “Loop” gas wave function and Fibociac
anyons.
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Entanglement Entropy of 2D Quantum Critical States

with Joel Moore

e Kitaev and Preskill (2006), and Levin and Wen (2006) shovirad theentanglement
(von Neumann) entropy of a region of linear sizé. in 2D topological phasesas
the behavior

S=al—-v+0(1/L)
« IS anon-universatoefficient andy = In D is a finiteuniversalconstant,
D = />, d?, determined by the quantum dimensiehf the excitations of the
topological phase.

e This topological entropy plays a crucial rolesmgle point contacts in non-Abelian
FQH stategFendley, Fisher and Nayak, 2006) and gives new meaninggto th
boundary entropy of quantum impurity problems and 1D boun@dTs(Affleck
and Ludwig)

e The proximity of the2D conformal quantum critical pointge discussed here &D
topological phasesuggest that they may hold clues on this behavior.

e [s there auniversal signatura the von Neumann entropy of quantum critical
systems?
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Can you hear the shape of Schrodinger’s Cat?

e Forconformal quantum critical point$he Hilbert space has an orthonormal basis of
states{¢}) indexed by classical configuratiof®}, and the ground stat&,) of
the bipartite system is determined by a CFT act$on

) = jj / (dg) e SUPD/2 (o)),

Z. = [ (dp) e~ *1?})  andexpectation values are CFT correlators.

e Entanglement Entropy

OTr p'
S = —Trpalogpa = — 14
on

n=1
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({1} pal{ez }) = Trgs ({61 H @ ({67 Heo) (vo({#5 }) @ [{¢7})
B Zi / (dpB)e= (57 (61)/2+5%(#3)/24+57(61,67) /245%(93.67) /2457 (#7)).

Here the action has been divided into regiehsB, and the boundarg, where the
last takes into account contributions mixing tHAeand B degrees of freedom

Higher powers of the density matrix need not trace to unityp’; is now a sum
overn configurations defined id andn configurations defined i. The key is to
keep track of how these different configurations are stddbgether at the boundary
by the termsS® that link A and B: {¢:'} is linked to{¢” } as well as{¢?, , } for
i=1,...,n—1,and{¢:} is linked to{¢Z } and{4+}. This is normalized
through division by(Z.)™, which can be thought of again ascopies ofA and B
configurations, but witf{¢;'} linked only to{¢?}.
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¢2,A — Qb/1,A

\ G2,B = ¢/2,B
¢1,4 = ¢'2,A/

\ ?bl,B — ¢I1,B
QA I QB
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e The boundary terms impose continuity of the fields in the CEGause strong local
fluctuations are penalized in the action. A key feature ofrémicas in the
numerator is that each replica ahis connected symmetrically to two different
replicas onB and vice versa. The symmetry, which fdrreplicas is the Schoenflies
groupC'n, (the cyclic group plus vertical mirror plane), prevents a&ue
idenfitication of replicas ol with replicas onB except forV = 1, so the
numerator cannot be equivalent to the denominatofrge fields onA U B). Instead
the fields from different replicas are forced to agree on thanldary: schematically

. Z(n configurations agreeing on the boundary ”
Trpy = . . . = 1r pp
Z(n independent configurations

e Tr p’) can be put in a form that simplifies taking the derivativeras:> 1: for an
explicit realization, consider the case of a free scalad fi€Ehen the condition that
scalar fieldsp; agree with each other on the boundary can be satisfied byrigrmi
n — 1 linear combinations\}—ﬁ(gbi — ¢i+1), Which vanish at the boundary i.e., satisfy
Dirichlet boundary conditionlus one linear combinatio% > iy
has no boundary condition (i.e., is a free field A B).

.....
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e For any CFT there exists a conformal boundary conditiondleatralizes the notion
of the Dirichlet boundary condition in the free cas®terms of the partition
functionsZp, for a field in the whole system U B that vanishes at the boundary,

andZr, for afield that is free at the boundary,

T —
70 ZAzZB
S =—log == = —1 DZD.

e In the last equality, the Dirichlet boundary condition at ttoundary was used to
split the partition function into contributions frosh and B, each including the

boundary with Dirichlet boundary conditions.

e The entanglement entropy for a general conformal quantitroadmpoint is just the
dimensionless free energy difference induced by the partib the associated CET

S=Fs+ Fp— Faupb.
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e For the QCPs we are discussing heres the partition function of a CFT with
Dirichlet BCs. For a bounded region of linear size&nd smooth boundary, it obeys
the ‘Mark Kac law’ (‘Can you hear the shape of a drum?’)

F =al’+bL — %xlogL + O(1) (Cardy and Peschgl

wherea andb are non-universal, angd is theEuler characteristic of the region
(manifold).

X =2—2h—0, h = # handles, b = # boundaries

e This result suggests the existence db@ L dependence with amiversal coefficient
associated with the central chargef the associated CFT

e This result implies that for a QCP described by a scale (anfbcanally) invariant
ground state wave functiothe entanglement entropy of regioAsand B with a
smooth common boundary has a universal logarithmic terthe form

C

AS = o (xa +xB — xauB) log L
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For regionsA C B the coefficient of the
log L is zerosince in this case

XA+ XxB =XauB = AS =0

If the regions A and B are physically
separate and have no common intersec-
tion, xa + x5 — xaus # 0. In this
case, which corresponds to a procé
in which the system physically splits

two disjoint parts there is a universa
log L term in the entanglement entropy
at quantum criticality, proportional to the
central charge of the associated CFT!
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If the A and B share a common bound-
ary, there is dog L term whose coeffi-
cient is determined by the angles at the
intersections

Or if the boundary ofA is not smooth,
iIn which case the coefficient depends on
the anglesy; for both regions

2
xe% T
(AS); = Y <1 - (a—z> > log L

Finite terms in the entanglement entropy depend on scaégtant aspect ratios

27



Away from Quantum Ciriticality: Topological Phases

e Topological Phases are proximate to conformal quantuncarpoints and
can be accessed by relevant perturbations

e Topological Phases have a finite correlation lergth

c’ £
S=—log=+... foré&>a
3 a

e Fora < £ < oo, the entropy is defined by a crossover scaling function
whose behavior is controlled by the correlation length

e Atthe stable fixed pointy — a

L
S=s0——7
a

~ is universal(Kitaev and Preskill (2006); Levin and Wen (2006).)
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Conclusions

We examined the behavior of theen Neumann entanglement entrdioy a class of
guantum critical points i + 1 dimensionswvith conformally invarianivave
functions

These quantum critical points gpeoximateto topological phaseand can be used to
access them

The entanglement entropy at these conformal quantumalrgmintsalso has
universal logarithmic term@hich become manifest topology changing processes

This result suggests that tkatanglement entropy is sensitive to global properties
not only in topological phases but also at quantum critigali
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