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Motivation
• Entanglement entropy is a clear measure of quantum mechanical

correlations in many body systems and field theories.

• It is however a very non-local quantity which very difficult to measure in

macroscopic quantum systems.

• Its behavior near quantum critical points is largely not understood except in

one dimension.

• Recent results show it is a quantity of interest in topological phases.
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Entanglement Entropy in Quantum Mechanics
• Consider a quantum mechanical system with two sets of degrees of freedom,{ϕA}

and{ϕB}. Given the pure stateΨ[ϕA, ϕB] and the trivial density matrix for the

combined systemA ∪ B,

〈ϕA, ϕB|ρA∪B |ϕ′
A, ϕ′

B〉 = Ψ[ϕA, ϕB]Ψ∗[ϕ′
A, ϕ′

B]

• The reduced density matrix forA is constructed by tracing over the degrees of

freedom inB:

〈ϕA|ρA|ϕ′
A〉 = trB ρA∪B

• The von Neumann entanglement entropy is

SA = −trA (ρA ln ρA) = −trB (ρB ln ρB) = SB

• The von Neumann entropy gives a measurement of how entangled(or correlated) the

degrees of freedom ofA are with those ofB.

4



Quantum Phase Transitions and Quantum Criticality

M

ggc

order disorder

• Phase transitions at zero temperaturetuned by a parameterg of a quantum

Hamiltonian

• Scale Invariance at Quantum Critical Points: Correlation functions of local operators

exhibit scaling.

• As the transition there is adiverging correlation lengthξ ∼ |g − gc|−ν

• The energy gap∆ closes with a power law∆ ∼ |g − gc|νz, wherez is the dynamic

critical exponent

• For systems which exhibit an effectiveLorentz invarianceat criticalityz = 1; in

generalz 6= 1.
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D = 1 Quantum Criticality: Conformal Invariance
• Quantum critical systems withz = 1 in one dimension are special

• In their1 + 1-dimensional space-time they exhibit an infinite conformalinvariance:

Conformal Field Theory

• The critical exponents arequantum numbersthat label the representations of the

(infinite-dimensional) group of conformal transformations

• (Almost) Completeclassification of quantum phase transitions of unitary relativistic

(z = 1) systems in1 + 1 dimensionsin terms ofConformal Field Theory(CFT)

• Thecentral chargec (or conformal anomaly) and the coefficients of theoperator

product expansion (OPE)of theprimary fieldsdefine the universal properties of the

CFT.

• Universal form of the low temperature specific heatC/L and of theground state

energy densityE/L
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Entanglement and Conformal Invariance
• Calculations on a number ofspin chainsled to the suggestion that thevon Neumann

entropy inD = 1 quantum critical systems has a universal term which scales as

log L (Rico, Latorre, Vidal, and Kitaev)

• Calbrese and Cardy (2004) (and Holzhey, Larson and Wilczek (1994)) used

conformal invarianceto show that, for alarge region of linear sizeL, embedded in

an infinitely long1 + 1-dimensional conformally invariant system, the von Neumann

entanglement entropy has the asymptotic behavior

S =
π

3
c log

„

L

a

«

+ finite terms

wheres0 is non-universal, a is a short-distance cutoff, andc is the central charge

• Away from criticality: there is a finite correlation lengthξ.

S =
π

3
c log

„

ξ

a

«

+ finite terms, for ξ ≫ a

• 1 + 1 dimensional disordered quantum systemsat random fixed pointsalso obey a

logarithmic scaling law(even though they are scale but not conformal invariant!)

(Refael and Moore, 2004).
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Issues on Scaling Behavior of Quantum Entanglement
• Behavior of quantum entanglement near quantum critical points in general and in

higher dimensions.

• Dependence on the dynamic quantum critical exponentz which determines the

nature of quantum criticality for local operators.

• Massive relativistic (z = 1) (free) field theories obey an “area law”S = ALd−1

(Srednicki, 1993) (whereA is non-universal).

• Calabrese and Cardy (2004) have used a heuristic scaling argument to argue that the

area law is generic to quantum critical points in all dimensions.

• We will see however that, for conformal quantum critical points in2 + 1-dimensions

(with z = 2) there is in fact a universal logarithmic term.

• Universalfinite terms appear intopological phasesand depend on the quantum

dimensions.
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Spin Liquids and Topological States of Matter
• Liquid phases of electron fluids and spin systemswithout long range order,

with or without time reversal symmetry breaking

• Quasiparticles: vortices withfractional chargeandfractional statistics

(Abelian and non-Abelian)

• HiddenTopological OrderandTopological Vacuum Degeneracy

• Finite-dimensional quasiparticle Hilbert spaces⇒ universal topological

quantum computer
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“Known” Topological Quantum Liquids
• 2DEGFractional Quantum Hall Liquids

– Abelian FQH states(Laughlin and Jain): fractional charge andAbelian

fractional statistics

– Non-Abelian FQH states: Is ν = 5/2 a Pfaffian (Moore-Read) FQH

state? (firm candidate) Is the plateau atν = 12/5 a parafermion state?

(good possibility)

• Rapidly rotating Bose gases: possible non-Abelian (Pfaffian) FQH state of

bosons atν = 1

• Time-Reversal Breaking Superconductors: Sr2RuO4 is apx + ipy

superconductor
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Challenges
• To develop aconsistent theoryof topological phases (i.e. beyond FQH

states) and to understand the underlying mechanisms

• What are thegeneric phasesof models of topological liquids

• Is the gap necessary? Can a topological liquid be gapless?

• Concrete examples oflattice modelswith local interactions with topological

phases

• Fractional Statistics: Abelian and non-Abelian

• There has beensome progressin constructingmodelswith Abelian statistics

• To find experimentally realizable models (looks promising,not quite there

yet)
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Time Reversal Invariant Spin Liquids: Quantum Dimer
Models

• Simple local models describingstrongly frustrated and ring exchange
quantum spin systemswith a large spin gap and no long range spin order

• They typically exhibit spin gap phases with different typesof valence bond
crystal orders

• QDM have special solvable points, the Rokhsar-Kivelson (RK) point, where
theexact ground state wave functionhas the short range RVB form

|ΨRVB〉 =
∑

{C}

|C〉, {C} = all dimer coverings of the lattice

• – Bipartite lattices: the RK points arequantum (multi) critical points,
described by an effective field theory withz = 2 and massless
deconfined spinons, or first order transitions

– Non-bipartite lattices: QDMs havetopologicalZ2 deconfined phases
with massive spinons and a topological4-fold ground state degeneracy
on a torus (Moessner and Sondhi, 1998)
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The Quantum Dimer Model

HRK =
∑

i

(vVi − tFi), Rokhsar and Kivelson (1988)

Vi =
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∣

〉〈 ∣

∣

Here each bar represents aspin singlet bond.

For t = v ⇒ HRK =
P

i
Q†

i Qi, with Qi =
`

1 −1
−1 1

´

.

• The ground state wave function|Ψ0〉 hasE = 0

|Ψ0〉 =
1√
Zcl

X

C

|C〉 ,

whereZcl is the sum over all dimer configurations

• Equal-timecorrelators in thequantum dimer modelat the RK point are given by

correlators of theclassical dimer model.

• This is actually aloop model: loops are the dimer moves from a reference state. This

is the simplest loop model: theSU(2)1 fully packed loop model.
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Dimers, heights and effective field theory
Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

• The QDM can be mapped to aheight model

• Plaquette flipchanges the height of that plaquette by±4, and the average height of

the surrounding sites by±1.

• Equivalent configurations: h ∼= h + 4.

• Continuum limit: h ∼= 4ϕ(x)

Compactification Radius: ϕ(x) ∼= ϕ(x) + 1.

• The Quantum Lifshitz model

Hamiltonian:

H =

Z

d2x

»

1

2
Π2 +

κ2

2

`

∇2ϕ
´2

–

This is theQuantum Lifshitz Model. (Henley; Moessner, Sondhi and Fradkin)

• Action in imaginary timeτ ⇔ smectic layersin 3D classical statistical mechanics at

the Lifshitz transition.

S =

Z

d2x

Z

dτ

»

1

2
(∂τϕ)2 +

κ2

2

`

∇2ϕ
´2

–
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Scale Invariant Ground State Wave Functions and 2D
Classical Critical Phenomena

•
Z

d2~x

»

−1

2

“ δ

δϕ

”2

+
κ2

2
(∇2ϕ)2

–

Ψ[ϕ] = EΨ[ϕ]

Q(x) ≡ 1√
2

„

δ

δϕ
+ κ∇2ϕ

«

Q†(x) ≡ 1√
2

„

− δ

δϕ
+ κ∇2ϕ

«

• Ground state wave-function, Ψ0[ϕ]

Q(~x)Ψ0[ϕ] = 0 ⇒ Ψ0[ϕ] ∝ e
−κ

2

Z

d2x (∇ϕ(x))2

‖Ψ0‖2 =

Z

Dϕ e
−κ

Z

d2x (∇ϕ(x))2

• Theground state wave functionis conformally invariant
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Mapping to a 2Dc = 1 Euclidean CFT
• The probability for a configuration|ϕ〉 is theGibbs weightof a 2D classical

Gaussian model, a Euclidean 2D free massless scalar field.

• At these quantum critical points theground state wave functionis scale invariant

• The equal-time expectation values of the observables are correlators in thisc = 1

conformal field theory.

• Theequal-time expectation valuefor operators in the quantum Lifshitz model are

given bycorrelators of the massless free boson conformal field theory with central

chargec = 1. Time-dependent correlatorsexhibit power-law behavior with

dynamical exponentz = 2.

• Matching the correlation functions of the RK and Lifshitz models, one finds

κ = 1/2π.

• This is a multicritical point with many relevant perturbations: e.g diagonal dimers

drive the system into aZ2 topological phase
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Phase diagram for a quantum eight vertex model
Ardonne, Fendley and Fradkin
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Strategy for a Generalization
with Paul Fendley

• Each basis state in the Hilbert space is aloop configurationin 2D

• Start with the statistics we wish to have, and work backward

• Algebraic characterization of braiding forSU(2)k andSO(3)k Chern-Simons

• Braid matrix of a 2+1-dimensional theory as a limit of theS-matrix of an associated

relativistic 1+1 dimensional model

• We construct quantum 2D models with these braid relations byutilizing the structure

of the factorizableS-matrices of integrable 1D models.

• We embed the 1D model in 2D Euclidean space, and find an RK Hamiltonian

• Loop gases:

– SU(2)k case:O(n) loop lattice modelwith n = 2 cos(π/(k + 2))

(self-avoiding and mutually-avoiding loops)

– SO(3)k case:domain walls of aQ-state Potts model with

Q = 4 cos2(π/(k + 2)) (loops intersect and branch: nets)

SO(3)3: Chromatic Polynomial “Loop” gas wave function and Fibonacci

anyons.
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Entanglement Entropy of 2D Quantum Critical States
with Joel Moore

• Kitaev and Preskill (2006), and Levin and Wen (2006) showed that theentanglement

(von Neumann) entropyS of a region of linear sizeL in 2D topological phaseshas

the behavior

S = αL − γ + O(1/L)

α is anon-universalcoefficient andγ = lnD is a finiteuniversalconstant,

D =
p

P

i d2
i , determined by the quantum dimensionsdi of the excitations of the

topological phase.

• This topological entropy plays a crucial role insingle point contacts in non-Abelian

FQH states(Fendley, Fisher and Nayak, 2006) and gives new meaning to the

boundary entropy of quantum impurity problems and 1D boundary CFTs(Affleck

and Ludwig)

• The proximity of the2D conformal quantum critical pointswe discussed here to2D

topological phasessuggest that they may hold clues on this behavior.

• Is there auniversal signaturein the von Neumann entropy of quantum critical

systems?
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Can you hear the shape of Schrödinger’s Cat?
• Forconformal quantum critical points, the Hilbert space has an orthonormal basis of

states|{φ}〉 indexed by classical configurations{φ}, and the ground state|Ψ0〉 of

the bipartite system is determined by a CFT actionS:

|Ψ0〉 =
1√
Zc

∫

(dφ) e−S({φ})/2|{φ}〉.

Zc =
R

(dφ) e−S({φ}), andexpectation values are CFT correlators.

• Entanglement Entropy

S = −Tr ρA log ρA = −∂Tr ρn
A

∂n

∣

∣

∣

n=1
.
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•

〈{φA
1 }|ρA|{φA

2 }〉 = TrφB (〈{φA
1 }| ⊗ 〈{φB}|ψ0〉〈ψ0(|{φA

2 }〉 ⊗ |{φB}〉

=
1

Zc

∫

(dφB)e−(SA(φA

1
)/2+SA(φA

2
)/2+S∂(φA

1
,φB)/2+S∂(φA

2
,φB)/2+SB(φB)).

Here the action has been divided into regionsA, B, and the boundary∂, where the

last takes into account contributions mixing theA andB degrees of freedom

• Higher powers of the density matrix need not trace to unity:Tr ρn
A is now a sum

overn configurations defined inA andn configurations defined inB. The key is to

keep track of how these different configurations are stitched together at the boundary

by the termsS∂ that linkA andB: {φA
i } is linked to{φB

i } as well as{φB
i+1} for

i = 1, . . . , n − 1, and{φA
n} is linked to{φB

n } and{φB
1 }. This is normalized

through division by(Zc)
n, which can be thought of again asn copies ofA andB

configurations, but with{φA
i } linked only to{φB

i }.
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ΩA ΩB
Γ

φ1,B = φ′
1,B

φ2,B = φ′
2,B

φ1,A = φ′
2,A

φ2,A = φ′
1,A
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• The boundary terms impose continuity of the fields in the CFT because strong local

fluctuations are penalized in the action. A key feature of thereplicas in the

numerator is that each replica onA is connected symmetrically to two different

replicas onB and vice versa. The symmetry, which forN replicas is the Schoenflies

groupCNv (the cyclic group plus vertical mirror plane), prevents a unique

idenfitication of replicas onA with replicas onB except forN = 1, so the

numerator cannot be equivalent to the denominator (N free fields onA∪B). Instead

the fields from different replicas are forced to agree on the boundary: schematically

Tr ρn
A =

Z(n configurations agreeing on the boundary)

Z(n independent configurations)
= Tr ρn

B

• Tr ρn
A can be put in a form that simplifies taking the derivative asn → 1: for an

explicit realization, consider the case of a free scalar field. Then the condition thatn

scalar fieldsφi agree with each other on the boundary can be satisfied by forming

n − 1 linear combinations1√
2
(φi − φi+1), which vanish at the boundary i.e., satisfy

Dirichlet boundary conditions, plus one linear combination1√
n

P

i=1,...,n φi that

has no boundary condition (i.e., is a free field onA ∪ B).

23



• For any CFT there exists a conformal boundary condition thatgeneralizes the notion

of the Dirichlet boundary condition in the free case. In terms of the partition

functionsZD, for a field in the whole systemA ∪ B that vanishes at the boundary,

andZF , for a field that is free at the boundary,

Tr ρn
A =

Zn−1
D ZF

ZF
n =

(

ZD

ZF

)n−1

S = − log
ZD

ZF
= − log

ZA
DZ

B
D

ZF
.

• In the last equality, the Dirichlet boundary condition at the boundary was used to

split the partition function into contributions fromA andB, each including the

boundary with Dirichlet boundary conditions.

• The entanglement entropy for a general conformal quantum critical point is just the

dimensionless free energy difference induced by the partition in the associated CFT:

S = FA + FB − FA∪B.
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• For the QCPs we are discussing hereZ is the partition function of a CFT with

Dirichlet BCs. For a bounded region of linear sizeL and smooth boundary, it obeys

the ‘Mark Kac law’ (‘Can you hear the shape of a drum?’)

F = aL2 + bL − c

6
χ log L + O(1) (Cardy and Peschel)

wherea andb are non-universal, andχ is theEuler characteristic of the region

(manifold):

χ = 2 − 2h − b, h = # handles, b = # boundaries

• This result suggests the existence of alog L dependence with anuniversal coefficient

associated with the central chargec of the associated CFT

• This result implies that for a QCP described by a scale (and conformally) invariant

ground state wave function,the entanglement entropy of regionsA andB with a

smooth common boundary has a universal logarithmic termof the form

∆S = − c

6
(χA + χB − χA∪B) log L
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For regionsA ⊆ B the coefficient of the

log L is zerosince in this case

χA + χB = χA∪B ⇒ ∆S = 0

AB

If the regionsA and B are physically

separate and have no common intersec-

tion, χA + χB − χA∪B 6= 0. In this

case, which corresponds to a process

in which the system physically splits in

two disjoint parts, there is a universal

log L term in the entanglement entropy

at quantum criticality, proportional to the

central chargec of the associated CFT!

A

B

A ∪ B
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If the A andB share a common bound-

ary, there is alog L term whose coeffi-

cient is determined by the angles at the

intersections
A

B

Or if the boundary ofA is not smooth,

in which case the coefficient depends on

the anglesαi for both regions

(∆S)i =
c αi

24π

(

1 −
(

π

αi

)2
)

logL

A

B

α1

α2

α3

α4

Finite terms in the entanglement entropy depend on scale-invariant aspect ratios
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Away from Quantum Criticality: Topological Phases
• Topological Phases are proximate to conformal quantum critical points and

can be accessed by relevant perturbations

• Topological Phases have a finite correlation lengthξ.

S =
c′

3
log

ξ

a
+ . . . for ξ ≫ a

• Fora < ξ <∞, the entropy is defined by a crossover scaling function

whose behavior is controlled by the correlation lengthξ

• At the stable fixed point,ξ → a

S = s0
L

a
− γ

γ is universal(Kitaev and Preskill (2006); Levin and Wen (2006).)
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Conclusions
• We examined the behavior of theVon Neumann entanglement entropyfor a class of

quantum critical points in2 + 1 dimensionswith conformally invariantwave

functions

• These quantum critical points areproximateto topological phasesand can be used to

access them

• The entanglement entropy at these conformal quantum critical pointsalso has

universal logarithmic termswhich become manifest intopology changing processes

• This result suggests that theentanglement entropy is sensitive to global properties

not only in topological phases but also at quantum criticality.
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