Majorana Fermions in a Superconductor

C. Chamon, R. Jackiw, Y. Nishida, S.Y. Pi, L. Santos

Model : Superconducting Proximity effect at the surface of a Topological Insulator

$$
\begin{aligned}
& \text { L. Fu and C. Kane (2008) } \\
& \text { R. Jackiw and P. Rossi (1981) }
\end{aligned}
$$

A Dirac type matrix equation governs surface excitations of a topological insulator in contact with an s-wave superconductor.

A vortex configuration in the superconductor leads to a static, isolated zero energy solution. Its mode function is real and has been called Majorana.

- will show that the Majorana feature is not confined to the zero energy mode, but characterizes the full quantum theory.
- will discuss the quantization procedure examining the Fock space realization of the zero mode algebra for the Dirac-type systems.

Majorana Fermions

Central to recent research in
particle physics - neutrino physics, supersymmetry
cosmology - dark matter
condensed matter physics - exotic superconducting states
What is Majorana fermion ?
electrically charged particles - particle is different from its anti-particle which has opposite charge
electrically neutral particles - particle can be its own anti-particle
examples: neutral pions $(S=0)$, photons $(S=1)$, gravitons $(S=2)$
they are all bosons! - they are created by fields that obey
$\Phi=\Phi^{*}$ (reality condition)
fermions ($S=\frac{1}{2}$)
Dirac equation - complex numbers seem unavoidable successful theory for understanding spin and prediction of anti-matter

$$
\begin{aligned}
& \left(i \gamma^{\mu} \partial_{\mu}-\mathrm{m}\right) \Phi=0 \quad \Phi: \text { four-component spinor } \\
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \quad \text { (Clifford algebra) } \\
& \gamma^{0 \dagger}=\gamma^{0} ; \gamma^{i \dagger}=-\gamma^{i} \quad \text { (Hermitian Hamiltonian) }
\end{aligned}
$$

Majorana's work (1937)

question: are equations for spin $\frac{1}{2}$ fields necessarily complex?
answer: there is a simple modification of Dirac equation that involve only real numbers.
\Rightarrow profound implication that spin $\frac{1}{2}$ particles can be its own antiparticles!

Majorana field and its equation of motion

$$
\left(i \tilde{\gamma}^{\mu} \partial_{\mu}-m\right) \quad \Psi=0 \quad \Psi: \text { four-component spinor }
$$

$\tilde{\gamma}^{\mu}$: purely imaginary, satisfying Clifford algebra
$\Rightarrow \quad \Psi$ can be real! $\Psi=\Psi^{*}$ reality condition
N.B. purely imaginary $\tilde{\gamma}^{\mu}$: Majorana representation of γ-matrices

To describe Majorana fermions one does not need to use purely imaginary $\tilde{\gamma}^{\mu}$, but impose

$$
\Psi^{C} \equiv C \Psi^{*}=\Psi \quad \text { pseudo-reality condition }
$$

where C is charge conjugation matrix.

$$
C=\left(\begin{array}{cc}
0 & -i \sigma^{2} \\
i \sigma^{2} & 0
\end{array}\right)
$$

Consider a four component spinor $\Phi=\binom{\psi}{\varphi}$
imposing $\quad C \Psi^{*}=\psi \quad \Rightarrow \quad \varphi=i \sigma^{2} \psi^{*} \quad\left(\psi=-i \sigma^{2} \varphi^{*}\right)$

$$
\psi=\binom{\psi}{i \sigma^{2} \psi^{*}} \quad \text { two component theory }
$$

Dirac:

$$
\begin{array}{cc}
& \mathcal{L}_{D}=\bar{\Phi} i \gamma^{\mu} \partial_{\mu} \Phi-\frac{1}{2} \mathrm{~m} \bar{\Phi} \Phi \\
\Rightarrow \quad & \left(i \gamma^{\mu} \partial_{\mu}-\mathrm{m}\right) \Phi=0
\end{array}
$$

Majorana: imposing $\quad C \Psi^{*}=\Psi$

$$
\begin{gathered}
\mathcal{L}_{M}=\psi^{* T} i\left(\partial_{t}-\sigma \cdot \partial\right) \psi-\frac{1}{2} \mathrm{~m}\left(\psi^{* T} i \sigma^{2} \psi^{*}+h . c .\right) \\
\Rightarrow \quad i\left(\partial_{t}-\sigma \cdot \partial\right) \psi-\mathrm{m} i \sigma^{2} \psi^{*}=0
\end{gathered}
$$

N.B. Compare the mass terms:

Dirac: $\mathrm{m} \bar{\Phi} \Phi$ - preserves all quantum numbers
Majorana: m ($\left.\psi^{* T} \sigma^{2} \psi^{*}+h . c.\right)$

- does not conserve any quantum numbers!
\Rightarrow No distinction between particle and anti-particle since there are no conserved quantum numbers to tell them apart; particle is its own anti-particle

Are there Majorana fermions in nature?

neutrinos?

- recent development in neutrino physics
experimental observation of neutrino oscillations \Rightarrow
- neutrinos have mass ($<0.1 \mathrm{eV}$)
- lepton number is not conserved separately!
\Rightarrow they could be Majorana fermions
Hypothetical Majorana fermions:
- supersymmetry - supersymmetric partners of photon, neutral Higgs boson, etc. are necessarily Majorana fermions
- cosmology - dark matter candidates

Majorana fermions in superconductor in contact with a topological insulator

Superconductor

$$
\text { proximity effects } \Rightarrow \text { Cooper pairs }
$$

tunnel through to the surface of TI
topological insulator

Hamiltonian density for the model:

$$
H=\psi^{* T}(i \sigma \cdot \partial-\mu) \psi+\frac{1}{2}\left(\triangle \psi^{* T} i \sigma^{2} \psi^{*}+h . c .\right)
$$

$\psi=\binom{\psi_{\uparrow}}{\psi_{\downarrow}}, \sigma=\left(\sigma^{1}, \sigma^{2}\right), \mu$ is chemical potential and \triangle is the order parameter that may be constant or takes vortex profile, $\triangle(r)=v(r) e^{i \theta}$.

Equation of motion: $\quad i \partial_{t} \psi=(\sigma \cdot \partial-\mu) \psi+\triangle i \sigma^{2} \psi^{*}$
In the absence of μ, and \triangle constant, the above system is a ($2+1$)-dimensional version of (3+1)-dimensional, two component Majorana equation! - governs chargeless spin $\frac{1}{2}$ fermions with Majorana mass $|\triangle|$.

Quantum Structure of the model / Quantization:

ψ mixes with its complex conjugates in the equation of motion.
\Rightarrow cannot construct energy eigenvalue problem
quantization is carried out both in particle physics and in superconductor by promoting the two component description to a constrained four component description:

$$
\psi=\left(\begin{array}{c}
\psi_{\uparrow} \\
\psi_{\downarrow} \\
\psi_{\downarrow}^{*} \\
-\psi_{\uparrow}^{*}
\end{array}\right)=\binom{\psi}{i \sigma^{2} \psi^{*}} .
$$

An extended Hamiltonian density \mathcal{H} leads to equations for ψ, which are just two copies of \mathcal{H} :

$$
\mathcal{H}=\frac{1}{2} \psi^{* T}\left(\begin{array}{ccc}
\sigma \cdot p-\mu & , & \triangle \\
\triangle^{*} & , & -\boldsymbol{\sigma} \cdot \boldsymbol{p}+\mu
\end{array}\right) \psi \equiv \frac{1}{2} \Psi^{* T} h \psi
$$

Bogoliubov-de Gennes equations for superconductor: Solve energy eigenvalue problem for unconstrained four component spinor $\Phi=\binom{\psi}{\varphi}$

$$
\begin{gathered}
h \Phi=i \partial_{t} \Phi, \Phi=e^{-i E t} \Phi_{E} \\
h \Phi_{E}=E \Phi_{E}
\end{gathered}
$$

\Rightarrow construct Dirac field operator

$$
\begin{aligned}
\Phi & =\sum_{E>0} a_{E} e^{-i E t} \Phi_{E}+\sum_{E<0} b_{-E}^{\dagger} e^{-i E t} \Phi_{E} \\
& =\sum_{E>0}\left\{a_{E} e^{-i E t} \Phi_{E}+b_{E}^{\dagger} e^{i E t} C \Phi_{E}^{*}\right\}
\end{aligned}
$$

charge conjugation symmetry of h has been used, $C \Phi_{+E}^{*}=\Phi_{-E}$

Quantum field for superconductor:

$\bar{\Phi} \rightarrow \widehat{\psi}$ satisfying constraint $C \widehat{\Psi}^{\dagger}=\widehat{\Psi}$

$$
\widehat{\Psi}=\sum_{E>0}\left(a_{E} e^{-i E t} \Phi_{E}+a_{E}^{\dagger} e^{i E t} C \Phi_{E}^{*}\right)
$$

- $\widehat{\Psi}$ retains Majorana feature of describing excitations that carry no charge: current density for ψ vanishes due to pseudo-reality constraint
N.B. The Majorana/reality properties are obscured by the representation of the Dirac matrices employed in presenting the Hamiltonian h. One may pass to the Majorana representation by a unitary transformation in which Hamiltonian is purely imaginary and $C=I$ so that pseudo reality condition becomes reality condition.

Topological structure

Case of homogeneous order parameter:
energy eigenvalue $E= \pm \sqrt{(k \pm \mu)^{2}+m^{2}}$; no zero energy
($\Delta e^{-i \omega}=m$; constant phase is removed and m is real constant of indefinite sign.)

At $\mu=0$ energy is doubly degenerate; degeneracy occurs because h commutes with

$$
\begin{aligned}
S=\left(\begin{array}{cc}
0 & e^{i \omega} \sigma^{3} \\
e^{-i \omega} \sigma^{3} & 0
\end{array}\right) \Rightarrow & h^{\prime} \equiv S h=\Sigma_{a} n^{a} \\
& (a=1,2,3) \\
& n^{i}=k^{i}(i=1,2) \text { and } n^{3}=m
\end{aligned}
$$

A further unitary transformation shows that Σ satisfies SU (2) algebra.

$$
U^{-1} \Sigma_{a} U=\left(\begin{array}{cc}
\sigma^{a} & 0 \\
0 & \sigma^{a}
\end{array}\right)
$$

Topological current in momentum space:

$$
\begin{aligned}
& K^{\mu}=\frac{1}{8 \pi} \varepsilon^{\mu \alpha \beta} \varepsilon_{a b c} \widehat{n}^{a} \partial_{\alpha} \hat{n}^{b} \partial_{\beta} \hat{n}^{c} \quad(\hat{n} \equiv \mathbf{n} /|\mathbf{n}|), \\
& \mathcal{N}=\int d^{2} k K^{0}(\mathbf{k})=\frac{1}{8 \pi} \int d^{2} k \frac{m}{\left(k^{2}+m^{2}\right)^{3 / 2}}=\frac{m}{2|m|}
\end{aligned}
$$

\sim mapping of $R^{(2)}$ to $S^{(2)}: \hat{n}^{a}=(k \cos \varphi, k \sin \varphi, m) / \sqrt{k^{2}+m^{2}}$
When k begins at $k=0, \hat{n}^{a}$ is at the north or south pole, as k ranges to ∞, \hat{n}^{a} covers a hemisphere (upper or lower) and ends at the equator of $S^{(2)}$. Thus only one half of $S^{(2)}$ is covered.

- evidence that the model belongs to a topologically non-trivial class.
\Rightarrow topologically protected zero modes exist in the presence of a vortex.

In the presence of a Single Vortex Order Parameter:

$$
\triangle(\mathbf{r})=v(r) e^{i \theta}
$$

Energy eigenvalue equation possesses an isolated zero energy mode:

$$
\begin{gathered}
\psi_{0}^{v}=N\binom{J_{0}(\mu r) \exp \{-i \pi / 4-V(r)\}}{J_{1}(\mu r) \exp \{i(\theta+\pi / 4)-V(r)\}} \begin{array}{l}
N: \text { real constant } \\
V^{\prime}(r)=v(r)
\end{array} \\
\Psi_{0}^{v}=\binom{\psi_{0}^{v}}{i \sigma^{2} \psi_{0}^{v *}} \quad C \Psi_{0}^{v *}=\Psi_{0}^{v}
\end{gathered}
$$

There are also continuum modes.

$$
\widehat{\Psi} \equiv \sum_{E>0}\left(a_{E} e^{-i E t} \Phi_{E}+a_{E}^{\dagger} e^{i E t} C \Phi_{E}^{*}\right)+A \sqrt{2} \Psi_{0}^{v}
$$

A is the operator for the zero mode and is Hermitian $A=A^{\dagger}$, anticommutes with (a_{E}, a_{E}^{\dagger}) and obeys $\{A, A\}=2 A^{2}=1$.

How is A realized on states ?

Two possibilities:

1) two one-dimensional realization : take the ground state to be an eigenstate of A; two eigenvalues $\pm \frac{1}{\sqrt{2}} \Rightarrow$ two ground states $\left|0_{+}\right\rangle$and $\left|0_{-}\right\rangle$

- Two towers of states built upon them; no local operator connects them.

$$
a_{E}^{\dagger} a_{E \prime}^{\dagger} a_{E \prime \prime}^{\dagger} \ldots|0 \pm\rangle
$$

- Fermion parity is lost since A is a fermionic operator with

$$
\left\langle 0_{+}\right| A\left|0_{+}\right\rangle=\frac{1}{\sqrt{2}} \quad\left(\text { similarly for }\left|0_{-}\right\rangle\right)
$$

2) two-dimensional realization: vacuum is doubly degenerate - call one bosonic state $|b\rangle$, the other fermionic $|f\rangle$ and A connects the two:

$$
A|b\rangle=\frac{1}{\sqrt{2}}|f\rangle \quad A|f\rangle=\frac{1}{\sqrt{2}}|b\rangle
$$

- two towers of states built on $|b\rangle$ and $|f\rangle$ are connected by A !
observe: $\left|0_{+}\right\rangle=\frac{1}{\sqrt{2}}(|b\rangle+|f\rangle) \quad\left|0_{-}\right\rangle=\frac{1}{\sqrt{2}}(|b\rangle-|f\rangle)$
These states violate fermion parity.

Which realization to choose?

To establish fermion parity preserving realization in the presence of a vortex we next consider vortex/anti-vortex background.

- There is no zero mid-gap mode - it splits into two low lying states with opposite energy; when vortex and anti-vortex are separated by a large distance $R, \varepsilon \approx \pm e^{-m R}$, where m is the asymptotic value of $v(r)$ as $r \rightarrow \infty$.
- Quantum field

$$
\widehat{\Psi}=\widehat{\Psi}_{\text {cont }}+a_{\varepsilon} e^{-i \varepsilon t} \Psi_{\varepsilon}^{v \bar{v}}+a_{\varepsilon}^{\dagger} e^{i \varepsilon t} C \Psi_{\varepsilon}^{v \bar{v}}
$$

Fock space spectrm
low-lying state:

$$
\begin{array}{lr}
a_{\varepsilon}|\Omega\rangle=0 & a_{\varepsilon}^{\dagger}|\Omega\rangle=|f\rangle \\
a_{\varepsilon}|f\rangle=|\Omega\rangle & a_{\varepsilon}^{\dagger}|f\rangle=0
\end{array}
$$

Remaining states:

$$
\begin{aligned}
& a_{E}^{\dagger} a_{E^{\prime}}^{\dagger} \cdots|\Omega\rangle \\
& a_{E}^{\dagger} a_{E^{\prime}}^{\dagger} \cdots|f\rangle
\end{aligned}
$$

Limit $R \rightarrow \infty: \psi \psi_{ \pm \varepsilon \hat{v}}^{\varepsilon \rightarrow 0} \psi_{0}^{v}$

$$
\begin{gathered}
\begin{array}{c}
\widehat{\Psi}=\widehat{\Psi}_{\text {cont }}+\frac{\left(a_{\varepsilon}+a_{\varepsilon}^{\dagger}\right)}{\sqrt{2}} \sqrt{2} \psi_{0}^{v} \\
= \\
\begin{cases}A=A^{\dagger} & \{A, A\}=1 \\
|\Omega\rangle \equiv|b\rangle\end{cases} \\
\Rightarrow A|b\rangle=\frac{1}{\sqrt{2}}|f\rangle
\end{array} \quad A|f\rangle=\frac{1}{\sqrt{2}}|b\rangle
\end{gathered}
$$

Note:
Above discussion is somewhat qualitative since no explicit solutions are available in the background of vortex/anti-vortex. However, in 1-d, with Majorana fermions in the presence of kink/anti-kink background, one may solve equations explicitly and verify above statement. [See G. W. Semenoff and P. Sodano (2006) - these authors do not definitely select between the one- and two-dimensional representations of the zero mode algebra.]

Remaining Question : Who will discover Majorana fermions first, condensed matter physicists or particle physicists ?

