




•   Form Factor theory 

•  Thermal and finite density average (LM formalism) 

•   Wave function and S-matrix 

•   Bird-eye view on Lieb-Liniger model 

•   Correlation functions in the LL model  

•   Sh-Gordon model and mapping to the LL model  



Experimental setup (I) 
Magnetic harmonic potential:  

€ 

V (x,y,z) =
1
2
m ωx

2 x 2 +ωy
2 y 2 +ωz

2 z2( )

1D condition: frozen 
transverse degrees  
of freedom  



Experimental setup (II) 
Using optical lattices: 

€ 

V =V0 cos
2 kx( ) + cos2 ky( )[ ]

Other configurations (like  
ladders or coupled cigars)  
are as well possible: 





        Low-dimensional Bose gases 

  1D Hamiltonian of interacting bosons (Lieb-Liniger 
model) called for the development of non-perturbative, 
numerical and analytical, techniques and used as 
benchmark for approximate methods 

  In the last 10 years: Experimentally realized (with 
tunable parameters) with ultracold atoms 

  Failure of mean-field approaches 



Lieb-Liniger Hamiltonian  
N interacting bosons in 1D: 

One non-trivial coupling constant: 

density 

Temperature in units of the degeneracy temperature: 

Coupling controllable from the 3D setup: 



Lieb-Liniger Hamiltonian (II) 



Newton cradle of cold atoms 
Kinoshita et al., Nature (2006) 



Correlation functions 

Despite the exact solution of the thermodynamics of the 
model (Lieb-Liniger, Yang-Yang), the computation of its  
correlation functions turns out to be a hard problem 

Bosonisation, quantum MC, BA solution, weak 
and strong coupling expansions, . . . 



Unified approach 

•  Start from a relativistic integrable QFT and consider  
the LL model as a suitable non-relativistic limit thereof  

•  An integrable relativistic integrable QFT has all the  
equations needed to pin down the exact matrix elements 

•  The correlation functions are then expressed in terms of 
spectral representation at finite density and temperature 

(Kormos, GM, Trombettoni) 



LL  
model 

€ 

< (Ψ+)kΨk >n,T

Sh-G  
model 

€ 

< 0 |Φ2k |θ1...θm >

€ 

<Φ2k >n,T = Tr(Φ2ke−β (H−µN ))



LL model  Sh-Gordon model 



1D Lieb-Liniger and Non-linear Schrodinger  

  

€ 

HNLS = dx 
2

2m
∂Ψ+

∂x
∂Ψ
∂x

+ λ |Ψ+Ψ |2
 

 
 

 

 
 ∫

€ 

The density  

€ 

ρ(x, t) = Ψ+(x, t)Ψ(x,t) is conserved  

Hence, we can work at fixed number of particles 

- 

- 

€ 

|Υ(x1,...,xn ) >

= da1...danΧ(x1...xn | a1...an )Ψ
+(a1)...Ψ

+(an ) | 0 >∫



Bethe Wave Function 

€ 

Χ(x1,...,xn ) = a(P)e
i P (k j )x j
j=1

N

∑

P
∑

  

€ 

a(Q) =
k − l − i 2m


2 λ

k − l + i 2m

2 λ

a(P)



S

Elastic process

  

€ 

SLL (p1, p2,λ) =
p1 − p2 − i

2m

2 λ

p1 − p2 + i 2m

2 λ



€ 

L =
1
2
∂Φ
c∂t
 

 
 

 

 
 
2

−
1
2
∇Φ( )2 − µ2

g2
cosh(gΦ) −1[ ]

This is the only QFT Z2 symmetric that is 
integrable 







E 

p 

€ 

E 2 − c 2P 2 = M 2c 4

€ 

E = Mc 2 coshθ

€ 

P = Mc sinhθ

€ 

≈ Mc 2(1+ θ 2 /2)

€ 

≈ Mcθ

Rapidity variable 

€ 

= Mc 2 cosh(θ + 2πi)

€ 

= Mc sinh(θ + 2πi)



B(g) = g*
2

1+ g*
2 g*

2 ≡
g2

8π

πB

π (1− B)

€ 

SSh (θ1,θ2,g) =
tanh 1

2
θ1 −θ2 − iπB(g)( )

tanh 1
2
θ1 −θ2 + iπB(g)( )



€ 

(a) ≡ fa (β) =
sinh 1

2
β + iπa( )

sinh 1
2
β − iπa( )

cosh 1
2
β − iπa( )

cosh 1
2
β + iπa( )

≡ [a][1− a]

sinh z = z 1+ z2

k2π 2






k=1

∞

∏ = z 1+ z
ikπ





k=1

∞

∏ 1− z
ikπ







€ 

[a] =
sinh 1

2
(β − iπa)

sinh 1
2
(β + iπa)

=
β − iπa + 2kπi
β + iπa + 2kπik=−∞

+∞

∏

Euler’s formula 



Mapping between the Sh-G and LL models 

In the double limits  

  

€ 

c→∞ , g→ 0

gc→ 4 λ


= fixed

the S-matrices of the two models coincide! 

  

€ 

SSh (θ,g) =
tanh 1

2
θ1 −θ2 − iπB(g)( )

tanh 1
2
θ1 −θ2 + iπB(g)( )

→
p1 − p2 − i

2m

λ

p1 − p2 + i 2m

λ

= SLL (p,λ)



The coincidence of the S-matrices induces an 

                       EXACT mapping 

between the operator content of the two theories 



Next steps 
•  Establish the exact mapping between the operators 

•  Exact expressions of matrix elements (Form Factors)  
   in Sh-G model and their expression in the double limit 

•  LeClair-Mussardo formalism to express correlation functions 
  at finite density and finite temperature  

€ 

Φ

€ 

Ψ

€ 

F Λ (β1,β2,...,βn ) ≡< 0 |Λ(0) |β1,β2,...,βn >



Field and Lagrangian 

  

€ 

Φ(x, t) =

2

2m
Ψ(x,t)e

−i mc
2


t
+ Ψ+(x,t)e

+i mc
2


t 

 
  

 

 
  

  

€ 

LShG → LNLS = −

2

2m
∂Ψ+

∂x
∂Ψ
∂x

+ i 
2
Ψ+ ∂Ψ

∂t
−Ψ

∂Ψ+

∂t
 

 
 

 

 
 − λ |Ψ |4

Rule of thumb: neglect all highly time oscillating terms when  
integrate densities 



What do we want to compute? 
Local correlators in LL model 

€ 

< (Ψ+)kΨk >n,T = nkgk (γ,τ)

€ 

τ =
T
TD

  

€ 

TD =

2n2

2mkB

  

€ 

γ =
2m

2
λ
n

g3 rules the recombination rate of the gas (i.e. its stability) 



β1

β2

βn

⋅ ⋅ ⋅

€ 

Λ
€ 

F Λ (β1,β2,...,βn ) ≡< 0 |Λ(0) |β1,β2,...,βn >



| β1 ⋅ ⋅ ⋅ βm >out out< β1 ⋅ ⋅ ⋅ βm |
m=0

∞

∑ = 1

< 0 |Φ(0) | β1 ⋅ ⋅ ⋅ βn >in = < 0 |Φ(0) | β1 ⋅ ⋅ ⋅ βm >out out< β1 ⋅ ⋅ ⋅ βm | β1 ⋅ ⋅ ⋅ βn >in
m=0

∞

∑

= < 0 |Φ(0) | β1 ⋅ ⋅ ⋅ βm >out Sn→m
m=0

∞

∑

But, in integrable theory the scattering is elastic ! 

= < 0 |Φ(0) | β1 ⋅ ⋅ ⋅ βn >out Sn→n

The computation reduces to solve a Riemann-Hilbert problem ! 

Φ SΦ =



S s

s-cut t-cut 

Fab (s + iε) = < 0 |Φ(0) | Aa (β1)Ab (β2 ) >in

Fab (s − iε) = < 0 |Φ(0) | Aa (β1)Ab (β2 ) >out

€ 

F(s+ iε) = S(s+ iε)F(s− iε)



Fab (β1 − β2 ) = Sab
cd (β1 − β2 ) Fcd (β2 − β1)

=

€ 

Λ

€ 

Λ



S

s-cut t-cut 

out< A
b
__ (p2 ) |Φ | Aa (p1) >in = < 0 |Φ(0) | Aa (p1)Ab (− p2 ) >in

= Fab (2ma
2 + 2mb

2 − s − iε)

in< A
b
__ (p2 ) |Φ | Aa (p1) >out = < 0 |Φ(0) | Aa (p1)Ab (− p2 ) >out

= Fab (2ma
2 + 2mb

2 − s + iε)

€ 

F(2ma
2 + 2mb

2 − s+ iε) = F(2ma
2 + 2mb

2 − s− iε)



Fab (β1 + 2πi;β2 ) = Fab (β2;β1)

Φ = Φ

Fab (iπ − β) = Fab (iπ + β)



Sab (β)

0

I

iπ

Fab (β) = Sab
cd (β) Fcd (−β)

Fab (iπ + β) = Fab (iπ − β)

β−β



Monodromy properties 

ϕ ϕ

...),(...)()...,,...( 11,11 iiiinii FSF ββββββββ +++ −=

= 

)...,...()...,,...2( 112,11 βββββββπβ iinii FiF ++ =+



Recursive equations 

ϕ ϕ
S 

2+→ nn FF

Γ 
ϕ

1−→ nn FF



The Form Factors of scalar operators satisfy a set of functional  

given the number n of asymptotic states  

n = 0
n = 1

n = 2

n = 3

n = 4

n = 5

An operator is associated to 
a path in this lattice space 



)...()...(1
1...1.. 11 nkaakaa nkk

FF ββββ +
ΨΩ

+>Φ<

Cluster property 

cba Φ×Φ>−Φ
Self-clustering operators 

lim
|Λ |−>∞

Fa1 ..ak ..an
Φ (β1 + Λ / 2,..,βk + Λ / 2,βk+1 − Λ / 2,..,βn − Λ / 2) =

Φ = Ω × Ψϒ = ϒ × ϒ

€ 

Υ→Υ×Υ





Fn
Φ(β1,...,βn ) = Kn

Φ(β1,...,βn ) Fmin (βi − β j )
i< j

n

∏

We can use the factorization for writing the solution as  

Fab
min (β) = Sab (β) Fab

min (−β)

Fab
min (iπ + β) = Fab

min (iπ − β)

Fab
min (β) does not have any pole or  

zeros in the physical strip 

Kn
Φ(.,βi ,..,β j , ,..) = Kn

Φ(.,β j ,..,βi, ,..)

Kn
Φ(..,βi + 2πi,..,β j , ,..) = Kn

Φ(.,βi ,..,β j , ,..)

Kn
Φ βk{ }( ) has the proper set of poles 

for solving the recursive eqs. 



Fmin (β) = N exp 4 dt
t

sinh tB
2
sinh t(1− B)

2
sinh t cosh t

2
0

∞

∫ sin2 (iπ − β)t
2π
























Fmin (β + iπ )Fmin (β) =
sinhβ

sinhβ + sinπB



dt
t
e−β t sin2 at = 1

4
log 1+ 2a

β








2









0

∞

∫

gα (β) = exp 2
dt
t0

∞

∫
cosh t(1− 2α )

2
cosh t

2
sinh t

sin2 β
^
t





















=

1+ β
^

k +1− a / 2
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1+ β
^

k +1+ a / 2













2













1+ β
^

k +1 / 2 + a / 2













2













1+ β
^

k + 3 / 2 − a / 2













2





































k=0

∞

∏

k+1



0 1 2 3 4 5 6−1−2−3−4−5−6−7

pole 

zero 

ga (β)

along the immaginary axes, none of them in the physical strip 



0 1 2 3 4 5 6−1−2−3−4−5−6−7

pole 
zero 

ga (β + iπ ) ga (β) = −i
ga (0)
sinπa

sinhβ + i sinπa( )



Fn
Φ(β1,...,βn ) = Hn

ΦQn
Φ(x1,..., xn )

Fmin (βij )
xi + x j

       ;   xi
i< j

n

∏ = eβi

This symmetric polynomial contains all kinematical poles 

dt (Qn
Φ ) = n(n −1)

2

This is also a symmetric polynomial, that contains the information  
on the operators Φ

Its total degree is fixed by Lorentz invariance 

€ 

βk = β j + iπ



(x + xi ) = xn− k
k=0

n

∑ σ k
(n) (x1,..., xn )

i=1

n

∏

σ 0
(n) (x1,..., xx ) = 1

σ1
(n) (x1,..., xx ) = x1 + x2 + ⋅ ⋅ ⋅+ xn

σ 2
(n) (x1,..., xx ) = x1x2 + x1x3 + ⋅ ⋅ ⋅

σ n
(n) (x1,..., xx ) = x1x2x3 ⋅ ⋅ ⋅ xn

⋅ ⋅ ⋅

σ k
(n)•  The total degree of is k and its partial degree is 1 



 
n

ϒ[k] = detM (k)

M(k) is an (n-1) x (n-1) matrix with entries 

Mij (k) = σ 2 j− i
(n) [k + j − i]

Mij =

[k]σ1 [k +1]σ 3 [k + 2]σ 5 ⋅ ⋅ ⋅

[k −1] [k]σ 2 [k +1]σ 4 ⋅ ⋅ ⋅

0 [k −1]σ1 [k]σ 3 ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅



















(Koubek, GM) 

€ 

[k] ≡
sin kπB( )
sin(πB)



ϒ = ϒ × ϒ

lim
Δ→∞

Fn
ϒ (β1 + Δ,β2 + Δ,...,βm + Δ;βm+1,...,βn ) = Fm

ϒ (β1,...,βm )Fn−m
ϒ (βm+1,...,βn )

ϒ k ekgϕ



ϕ = ++

ϕ
 
Qn

ϕ = n[k = 0]

Θ  
Qn

Θ = n[k = 1]+n[k = −1]

This is consistent with the identification 

 
Θ  coshgϕ  egϕ + e−gϕ

and with the c-theorem sum rule 



Exact matrix elements of all other operators, such as  

€ 

Φm

are obtained by expanding O(m) the form factors  
of exponential operators  



ShG LL 



Finite T and finite density correlators 

€ 

< A >T ,n=
tr e−β (H−µN )A( )
tr e−β (H−µN )( )

In integrable theories there is a very efficient way of  
computing such quantity (LeClair-Mussardo formula) 

€ 

< A >T ,n=
1
k!

dβ1
2π

...dβk

2π
1

1+ eε (β j )
j=1

k

∏
 

 
  

 

 
  

−∞

∞

∫
k= 0

∞

∑

< βk,...,β1 | A(0,0) |β1,...,βk >conn

where ε(β) is solution of the Thermodynamic Bethe Ansatz eqs  



Thermodynamics Bethe Ansatz 

€ 

ε(β) =
mc 2

kT
coshβ − µ

kT
−

dβ '
2π−∞

∞

∫ ϕ(β −β ') log(1+ e−ε (β ' ))

€ 

ϕ(β) = −i ∂
∂β
logS(β)

ε(β) is the energy of quasi-particle excitation above 
 the thermal ensemble 

  

€ 

F /L = −
kT
2π

dβmc
−∞

∞

∫ coshβ log(1+ e−ε (β ' )) + µN



  

€ 

< (Ψ+Ψ)k >T ,n=

2

2m
 

 
 

 

 
 

−k
1
n!

dβ1
2π
...dβn

2π
1

1+ eε (β j )
j=1

n

∏
 

 
  

 

 
  

−∞

∞

∫
m= 0

∞

∑

< βn ,...,β1 |:Φ
2k : (0,0) |β1,...,βn >conn≡ n

kgk (γ,τ )

Final expression of local correlators 

•  g1=1 

•  g2: Hellman-Feynman theorem  

•  g3 known only at T=0 (Cheianov et al.) 

The series is fastly convergent! 



  

€ 

ψ +ψ =
dp1

2π
f p1( ) 1


+

dp1

2π
f p1( )

−∞

∞

∫
−∞

∞

∫ dp2

2π
f p2( ) 1


˜ ϕ p1 − p2( )

−∞

∞

∫ +

+
dp1

2π
f p1( )

−∞

∞

∫ dp2

2π
f p2( )

−∞

∞

∫ dp2

2π
f p3( ) 1


˜ ϕ p1 − p2( )

−∞

∞

∫ ˜ ϕ p2 − p3( ) +...

Check. g1=1 

This can be resummed by the TBA equations 



g1 and g2 at T = 0 using form factors up to n = 4, 6 and 8 
particles, respectively with green dot-dashed, blue dashed 
and red dotted lines.     

g1 and g2 at T=0 



g3 at T=0 

g3 at T = 0 with form factors up to n = 6 and 8 particles. The 
exact value is given by the solid line whereas the purple dot-
dashed line above corresponds to the leading order expression 



Strong coupling, γ>>1, T=0 

€ 

gk (γ) =
k!
2k

π
γ

 

 
 

 

 
 

k(k−1)

Ik + ...

€ 

Ik = dx1
−1

1

∫ ... dxk (xi − x j )
2

i< j

k

∏
−1

1

∫

in agreement with Gangardt at al.  

Leading term 

But we can also compute next leading terms  

€ 

g2 =
4π 2

3γ 2
1− 6

γ
− (24 − 8π

2

5
) 1
γ 2

 

 
 

 

 
 +O(γ−5)

€ 

g3 =
16π 6

15γ 6
1− 16

γ

 

 
 

 

 
 +O(γ−8)

€ 

•

€ 

•



Asymptotic results for T>0 

€ 

gk (γ,τ ) =
τ
γ 2
 

 
 

 

 
 

k(k−1)/ 2

Jk

€ 

Jk =
k!
π k / 2 dx1

−1

1

∫ ... dxk (xi − x j )
2

i< j

k

∏
−1

1

∫ e
− x 2

i=1

k

∑
=

Bk

2k(k−1)/ 2

once again, in agreement with Gangardt at al.  

For γ2 >> τ >>1 



g2 at T>0 from Hellman-Feynman theorem 

€ 

< Ψ+Ψ( )
2

>n,T =
d
dλ

F
L
 

 
 

 

 
 

€ 

g2(γ,τ ) = τ
d
dλ

µ
kT

− γ
dq
2π
log(1+ e−ε (q )

−∞

∞

∫
 

 
 

 

 
 



g2 at  τ = 1 and τ = 10 using form factors up to n = 4, 6 and 8 
particles. The solid lines show the exact result, while the purple 
dot-dot-dashed line is the leading order expression. 



g3 vs γ at  τ= 1 and τ = 10 g3 vs τ at  γ= 7 and γ = 15 

The blue dashed and the red dotted lines refer to n = 6 and 8 
particles, respectively. The purple lines show the asymptotic 
results. 

g3 at T>0 



Conclusions 

•  Unified approach to compute correlation functions in LL model 

•  The method can be generalized also to compute correlators in  
   highly excited states (Super-Tonks gases) 

•  By product: long standing problem of computing matrix elements 
through Algebraic Bethe Ansatz can be drastically simplified 

•  The relative small value of g3 explains the thermodynamic  
   stability of the LL gas  






