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These days mathematical physicists are closely investigating scale and
conformal transformations. Familiarity with theories that are invariant
against these transformations — at least on the classical, prequantized
level — extends for over a hundred year. Nevertheless there remain
features, not unknown to some, that generally have fallen into obscurity.
Therefore we take this occasion of a birthday meeting for Pasquale
Sodano to bring into light some of these forgotten topics.

We shall describe the relation between scale and conformal transforma-
tions, and state conditions that must be satisfied by invariant theories.
Thereby we expose dimensional peculiarities and universalities of scale
and conformal transformations



Conformal Group of Transformations
(on a multi-component field ®)

translations : 67 P(z) = 7P (x)
Lorentz rotations : 67 ®(z) = (20" —279° + X77) P(x)
dilation : s ®P(x) = ("0 + d) P(x)
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special conformal (primary field) : 6% ®(z) = (22° 2™ — g7 2°) 9, ()
+22, (g7°d —X77) P(x)

d (free bosons in D dimensions)

= dxt = — fH¥(x)
M) = a", W'z, (W'Y = —w™** cxh, 2cq 1t xt — ctx?
fH(x) : : :
conformal Killing vector

2
aﬂfl/ ‘|‘auf,u — 5 g;waa fa

Lorentz: SO(D —1,1) @ Poincaré: I1SO(D —1,1),
@Scale & Conformal : SO(D, 2)



Relation between Scale and Conformal Symmetries

Conformal @ Translation = Lorentz @ Dilation

[6F,60] = —2¢77 6s + 2677
Conditions for conformal symmetry:

1) Group theoretic: need scale symmetry

2) Dynamical: £ (0,%,d)
oL
ve = (g"*d — =Zr) &
00, P

“Field virial” V® must be total derivative: V& = 950/

= energy momentum tenor 6*¥ can be improved so that it is traceless
pv pv pyo__
0" = 0ccs; > Guwbocs =0

(Bessel-Hagen) Jy =0pq;fv , OuJf =0



NB: It is possible to have scale symmetry without conformal symmetry when field virial
IS not a total derivation

= no traceless energy-momentum tensor exists, scale current is not of Bessel-Hagen
form, involves terms beyond energy-momentum tensor

It happens that in many models scale symmetry is broken (e.g. by mass terms) but
field virial is total derivative = obstacle to conformal invariance is scale non-invariance.
“scale symmetry implies conformal symmetry” NOT generally true.



Scale Symmetric but Conformally un-Symmetric Models

(A) L(Bup, ) =L <8:;%) o2

Scale invariant with any L(z)
Conformally invariant only with L(z) = Lo+ L1z
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(B) Free Maxwell theory (vector potential based)
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Fop = 00 A — 0pAq
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(a) Scale Symmetry 55 Au(z) = (27 6, + D2—2) A ()
D
6sFup(z) = (27 0- + E)Faﬁ(x)
Ti) = 0, () 2 + 22 F() Aa(a)
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field virial



Summary
4 — D

JE = gref, O F* FHP A
¥ fa + °D f B
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o, J! = 8, 0, & FM'P A
b S 55 O / 3
0,0 f* = 0 except conformal

Final observation
5an 7’4: I—an (D7+—4)
T Lie derivative

Lan = f”@MAa-I—aaf“Au
— quua+aa (fMAu)
D —4
5pAa = LjAa+ 8, f* Aq
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NB Jg‘ iIS gauge variant, but charge
/dD‘lac Jo s not
(apart from surface)

(b) Conformal Symmetry
0 Aa(x) = primary field
00 Fop(x) = not primary field
= A7 Fu+ (D —4)(g5 As — 95 Aa)
T primary field
SEL = Oy [(227 " — g7"x*)L)] 4+ (4 — D) F7" A,

4—D
(recall) V& = 5 FP Ag # 050

No conformal symmetry
(based on vector potential)



(C) Free 3-D Maxwell Theory (scalar potential based)

Fop = €apy 07 ¢
Equation of Motion: 0% F,3 = €43, 0% 07 ¢ = 0 (identity)

Bianchi Identity : % 0,e7P Fs = O = 0 (equation of motion)

uv N v gMV
Occy = 0790 ¢ — 5

1
Do o+ 2 (¢ 0= 0"0") 0

9" 0cc; = O

55 o(x) = <a: o, + %) ()

d& p(x) = primary field
0c 07 p = not primary field
6¢ Fap(r) = A Fup(x) +,5 7 p(x)

\not primary
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Dimensional Ladder for Scalar N-component field &

In D dimensions, N component field &
1 D
£:§ 8M(D8M(D—>\((Dq))m

is scale and conformally invariant
D -2

ds P(x) <a:T o + ) Pd(x)
o0-P(x) = (2:1:0 x" — g%* a:2) Or ®(x) + (D —2) 27 P(x)

Poincaré: 1SO(D — 1,1), Scale & Conformal: SO(D,2)

Continue to D =1 (time): ®(t,x) — q(t)
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Poincaré — time translation é;q = 0; q

Scale - dsq = (t0:—3) q

Conformal — dcq = (t?0: —t) q

Non relativistic conformal group SO(D,2) — SO(1,2)



