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- Graphs and complex networks

- Physics and spectral properties of graphs

- Topological  Effects: Large Scale and the Spectral Dimension

- Topological  Effects: Local Scales 

- Quantum particles on inhomogeous networks
 
- BEC, Topology induced confined superfluidity and
  topological filters for solitons on inhomogeneous arrays

- Future: Lévy-like graphs
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Lattices and Graphs 

•
Crystals

•
Discretized Euclidean spaces                               Lattices 

                                                                                             
                 

  Effects of Geometry and Topology: Translation invariance
 

•
Reciprocal Space,  k, Fourier transform

•
Bloch states

•
Homogeneity

• Euclidean Dimension d of the lattice, Thermodynamic Limit...                                    
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Topologically disordered structures and graphs

•
Polymers, glasses, amorphous solids

•
Self-similar structures

•
Biological matter                                              Graphs and  Networks 

•
Discretized curved spaces                                 

•
Networks, engineered devices
                                                                                              
                                                                                                     

            i                  Points, fields, sites, masses, spins...

            (i,j)               Links, interactions, couplings, hopping parameters,
                     
                               Chemical bonds, ....

   The graph represents the topology of interactions
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In general:   No translation invariance

•
No reciprocal lattice
•
No Fourier transform, no k
•
No homogeneity
•
Site dependent quantities

•
Dimension of the graph?
•
Thermodynamic limit?
•
General geometrical properties of the graph?
•
Effects of Dimensionality?

  • Effects of Inhomogenenity?

Topologically disordered structures and graphs
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    A direct and inverse problem:

Physical structures                                              Experiments

 
                                               Topology 

Devices with                                                       Engineering
topological effects                                   

- Identify relevant topological features of a graph 

- Build a specific structure with given topology (and physical properties)
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A Useful tool: Algebraic  Graph Theory and Spectral Properties of 
(Infinite) Graphs  (B.Mohar 85)

Spectral properties:     

“Global” scale and geometrical parameters for graphs:
 Dimension 

 Local scale:   the whole spectrum + eigenvectors

Spectra of what?
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    GRAPHS: Some Definitions          G(V,E)  set of  vertices V and links E

•
Adjacency Matrix                                  1    if i and j are connected by a link
                                                                0    otherwise

•
Degree (coordination number) of site i                                                 

           

•
Chemical Distance  =                 #  links of the shortest path connecting 
                                                           i and j  
                                                        

On Lattices:      

{Aij =

zi =
∑

j

Aij

Aij ≡ A|i−j|
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    GRAPHS: Some Definitions

•
 Laplacian Operator on G                                              

                                                                                

• L is the generalization to networks and graphs of the usual Laplacian on
   continuous spaces and lattices (rigorous definition on           )


                                                
                    

           Ex: 1d lattice

                   
                                 

Lij = zi −Aij

Lij ≡ −∇2

−Lijφj ≡ −L|i−j|φj = −(φi+1 + φi−1 − 2φi)

l2(G)
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- Hamiltonians and differential equations can be reformulated on
  a topologically disordered networks in terms 
  of the matrices A and L
 

     - The spectral properties of A and L, i.e. the set of their
        eigenvalues  and eigenvectors, enters in many physical 
        problems defined of the network                                               

                                          

           Some examples that we have been studying in the last few years:
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Schroedinger equation on discrete structure with an on site 
potential                                                                           

 Eigenvalues equation:


                                                 

                    
       

             
                                     

n∑

j=1

( !
2mLi,j + Uiδij

)
φj = i!∂φi

∂t

n∑

j=1

( !
2mLi,j + Uiδij

)
φE

j = EφE
i
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Tight binding Hamiltonian on a network:

                    

                       creation and annihilation operators for fermions on site i    
           

Classical Spin Models on a network:
                                         

                                                                                      

              unitary spin variable on site i
                                                  

                    
       

              
                                

c+
i , cj

!Si

HTB =−T
N∑

i,j=1

Ai jc
+
i cj − a

N∑

i=1

zic
+
i ci

H =−J
N∑

i,j=1

Ai j
!Si

!Sj
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Bose Hubbard Model on a network
                                            

                                                                                      

                       number of bosons on site i                                                   
                   

 U                  on site repulsion among bosons
                    

 T                   hopping amplitude between adjacent sites      

                             chemical potential     
                                

      

H =
M∑

j=1

[
U

2
nj(nj − 1)−µnj

]
− T

M∑

i,j=1

Ai jaia
+
j

                 creation and annihilation operators for bosons on site i     a+
i , aj

a+
i aj = ni

µ
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Discrete non- linear Schroedinger equation on a discrete structure:

                                                                                                                

Stochastic Langevin equation for a phi 4 field:

           

                                            
                                                                                           
                                                                                      
                                     stochastic gaussian noise                                                

                    
                   

                                      

n∑

j=1

( !
2mLi,j + Uiδij

)
φj + Λ|φi|2φ = i!∂φi

∂t

n∑

j=1

Li,jφj(t) + Λ(φi)2φ + ηi = i
∂φi

∂t

ηi(t)
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Spectral properties of A and L play a role analogous to k space and 

plane waves, which are the eigenvalue and eigenvectors of L on the 

continuum and on the lattice  

        -  They allow for a definition of a “dimension” of a network

            with properties analogous to the Euclidean dimension

        -  Their properties can be used to determine the effects of
    
            inhomogeneous and disordered topologies on physical

            quantities (analytical and numerical tools)
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•Chemical distance:  n. of links of the shortest

path connecting i and j
ijr

( ){ }min : 0n

ij
n A ≠

•Generalized Van Hove Spheres:

,o rS G⊂

Thermodynamic limit Infinite graphs

Sphere of center o and radius r

,o rNSubgraph of G containing      points

Other interesting definitions
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•Polynomial growth ( ) c
iN r r�

n. of points at chemical distance
 r from i≤

r→∞for

max max, iz z z∃ ≤

Graphs considered here: Physical graphs

•Bounded coordination number  

•Connected

i V∀ ∈

i V∀ ∈

•Boundary conditions
,| |

lim 0
( )
o r

r
o

S
N r→∞

∂
=

Thermodynamic averages

∼
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The Laplacian on G and The Spectral Dimension

The gaussian model on a graph

,

,
,

1 ( )
2

o r

o r i j ij i ij
i j S

H L mϕϕ δ
∈

= +∑  

• iϕ ∈ �

                     

( )V∞l

• im 0 im m M< ≤ ≤ < ∞ uniformly bounded masses

Gaussian model

[ ] ,

,

1
,

o r

o r

H
o r i

i S

d Z e dµ ϕ φ−−

∈

= ∏ Ferromagnetic Gaussian 
measure

r→∞
[ ]( ) ( )F d Fϕ µ ϕ ϕ< >= ∫

R
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•Correlation functions

•Average correlation functions

                

ij i ijM mδ=

                           

1( )i j ijL Mϕ ϕ −< >= +

,

,

lim o r

i i
i S

r
o rN

ϕ ϕ

ϕ ϕ
∈

→∞

< >

< > =
∑

independent of o on  a
physical graph

ϕ ϕ< >The leading massless singularity of 
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DEF.
Let

Define

i im tµ= with 0t >

( )
( )

n
n d

dt
ϕϕ ϕϕ < > = − < > 

 

If     N so that ∃
( )

0

lnlim 0
ln

n

t t
ϕϕ

+→

< >
= 0,1,..., 1n N= −

( )

0

lnlim 0
ln

N

t
D

t
ϕϕ

+→

< >
= ≠

{ } 2( 1)md D N= + +

then

Spectral dimension

1
2

0t

d

Sing tϕϕ
−

→< > �
leading massless
singularity ∼
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    L                                             Eigenvalues of L     l           

Large N                                       density of eigenvalues

                                                                                                 

       On a very large graph (in the thermodynamic limit)      for             (large scales)
   
                                                                                                  

                                                        density of eigenvalues with
                                                        power law behavior

                                                       Spectral dimension of the graph

ρ(l) ∼ lγ

l→ 0

γ =
d̄

2
− 1

d̄
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The Spectral Dimension is a real dimension: 

• it describes the large scale geometry of the graph

             It does not depend on local geometrical details and it is invariant under
             isospectral transformations, which coincide for example with RG 
             transformations on lattices (review JPA2005)

       it is an intrinsic topological dimension, 
       it is different from the fractal dimension, which depends on immersion
                
                           ISOSPECTRAL CLASSES   

• it is the extension to general networks of the Euclidean dimension 
    defined on regular lattices, (where            ) 
    in physical quantities related to bulk properties and large scale
   

        N.B. - It can be experimentally measured ( neutron scattering )
                  vibrational modes
                - Most of our world is between 1 and 2!

     Some examples:

  

d ≡ d̄
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Statistical models on graphs 

- Classical  ferromagnetic Heisenberg O(n) spin models on graphs

On a Regular Lattice:   existence of phase transition at finite temperature for d>2
On a Graph:                 existence of phase transition at finite temperature  for    

   
   A generalization of the Froelich-Simon-Spencer Bound on lattices      

  (+ generalized Mermin Wagner Theorem: no continuos symmetry breaking
       for              )                                              

- Dynamical critical exponents for phase ordering on graphs depend on    :
  asymptotically out of equilibrium dynamic in quenches at                            
                                                                                                            

                                                                                                                      

- Peierls-Landau vibrational instability in graphs for         ,  with applications
 to biological matter and proteins.

d̄ ≤ 2

d̄ > 2

n∑

j=1

Li,jφj(t) + Λ(φi)2φ + ηi = i
∂φi

∂t

T < Tc

d̄

d̄ ≤ 2
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Peierls-Landau instability in complex topologies:

Harmonic oscillation of a discrete structure in a thermal bath T>0, mean square 
displacement of each unit

•
    On crystalline structures 
          d=1, linear chain with N points
                  Instability of crystalline order

                    d=2,  Slowly increasing fluctuations
          d=3   Bounded fluctuations, Stability

•
   On non crystalline structures

Effects of vibrations on solid structures ?
Which geometries are thermodynamically stables?

                                Stable if            > 2
                                Unstable if        < 2  ,  Maximal stability size at a given T
                                                                   when the oscillation exceeds  the
                                                                   the typical spacing
 

               -Many spectral dimensions measured in nature are < 2!
              -Limited scaling range of fractals observed in nature (Avnir, Science 2002)
              -Maximum stability size in globular proteins: experimentally verified!

    

d̄
d̄
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The quantum Case: 

Other effects of complex geometry? Local Scales and Local Topological defects?
Bose-Einstein Condensates

• Inhomogeneous topology can give rise to anomalous spectral properties of  A 
and L: Hidden States

• Hidden States can induce Bose-Einstein Condensation on inhomogeneous 
networks even at low dimensionality (     matters but is not enough) and

   without a confining external potential 

• “Topological” potentials: Condensation induced by inhomogeneous geometry

•   Topological defects can act as Filters for solitons

                           

d̄
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• An example: The Comb Lattice, a simple low dimensional
   inhomogeneous graph, where non interacting bosons can condense

• General condition for the occurrence of BEC on 
   inhomogeneous structures for non interacting bosons                                         

• Interactions: Bose Hubbard Model on a Comb Lattice
  Topology Induced confined superfluidity                             

• DNSE and Topological filters for solitons on graphs                            
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Topology induced confined superfluidity on a comb network

  Bose-Hubbard model on a comb
 

Already in the non interacting case there are interesting phenomena

H =
N∑

j=1

[
U

2
nj(nj − 1)−µnj

]
− T

N∑

i,j=1

Ai jaia
+
j
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Exact solution: spectral region with “Hidden states” at low energy in single particle
energy spectrum     
 

    N sites 

       states in the low energy region

This is a zero measure set of states,which
do no influence the thermodynamic density
of states, but where bosons can condense.

Hidden States: An energy interval  [E1,E2]  such 
that 
 

√
N

E

ρ(E)

Non interacting case

[E1, E2] ∩ Supp(ρ(E)) = 0

lim
r→∞

Nr > 0 Nr is the number of eigenvalues in that region
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• The ground state, i.e. the eigenvector with lowest energy:   
   exponentially decreasing on the fingers and delocalized
   along the backbone

• Inhomogeneous localization properties

• Finite size: Bose Einstein condensation at finite temperature with
  anomalous mesoscopic properties. A whole bunch of states is
  filled in the hidden region.   
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• Rigorous Result on the occurrence of BEC on a general network
   from the spectral properties of the adjacency matrix A:
   
             or  existence of low energy hidden states region

• The non interacting case can be solved exactly on many graphs
   star network, fractals, trees, bundled structures. Analogous results.    

• All of them feature anomalous localization properties of the eigenvectors 

d̄ > 2

 The star graph: spatial localization
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Interacting case: Mott-Superfluid transition on the comb
 

Local density of bosons on site i in the
ground state

Local compressibility
 

Homogeneous topology: phase diagram at T=0
 

-  Superfluid Phase:  k finite

-  Incompressible Mott Insulator Phase: k vanishing

   filling pinned to an integer value

 
 

mean field 
(Fisher et al 89)

ρi =< ni >

ki =
∂ρi

∂µ

f =
M

N
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                                 for all sites and M=fN     Mott

                                 extended superfluidity

                                  finite but vanishes exponentially along the fingers - 
                                  confined superfluidity

 
 

If

IIf

III

ki = 0

ki != 0

ki
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Region II: confined superfluidity

in region                             exponentially along the fingers     

 

IIf ρi → f
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local compressibility

mf

qmc

0II

1II

III

+ strong coupling expansion based
on spectral properties of A
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The Superfluid Phase is confined along the backbone 

- a possible experimental setup in cold atoms for the BH case: 
  change from a 2d to a 1d interference pattern once the lattice is released
  when crossing from region III to region II, as in the experiment of Greiner et al.

 
 

- a real experimental set up for the non interacting case: 
   a comb array of Josephson junctions (critical current)

P. Sodano, M. Cirillo et al 2006, 2007, 
Enhancement of the critical current along
the backbone - explained through 
Bogoliubov-De Gennes eq. 
(P. Sodano et al. 2006) 
 
- work in progress
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Topological filters for solitons in inhomogeneous chains:

non linear coefficient Λ

2

1

( )1 ( ) | |
2

N
i

j i ij
j

i iA tt
t

ϕ
ϕ ϕ ϕ

=

∂
− +Λ =

∂∑

Discrete non linear Scroedinger equation on a network

ijA adjacency matrix of the network

2
1 1

( )1 ( ( ) ( )) | |
2

i
j j i i

tt t i
t

ϕ
ϕ ϕ ϕ ϕ+ −

∂
− − +Λ =

∂
on a chain
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Inserting a simple topological defect on the chain
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•The spectral properties of the network plus the defect 

selects, for large fast solitons, the transmission and 

reflection properties

•Soliton-like solutions can propagate for a long time

(variational approach:                       ) 

•Topological filters for solitons: total reflection and

transmission, low pass, high pass, depeding on

the topological defect

cos( )kΛ ≈

A. Trombettoni, A. Smerzi PRL 2001
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Reflection coefficient for loop of size L=2 and L=4
(numerical and analytical results)
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Topological Filters for solitons:     
 

                 

                                                                                      


             electrical field on the n-th waveguide in the z direction                                                    
                   
                   non linear Kerr coefficient (focusing/defocusing for 
                   negative/positive values)

                    
                   coupling between adjacent waveguides, proportional to the mode
                   overlap of the corresponding electrical fields     

                                  
   

                                

      

−
N∑

j=1

βn,jEj + Λ|En|2En = i
∂En

∂t

βn,j

En

Λ
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Soliton-like solution can propagate for a long time: variational approach
 

total reflection, total trasmission, low pass, high pass
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Present and Future:

- the 2d Lévy Glass at LENS
  (P. Barthelemy, J. Bertolotti and 

D. Wiersma, Nature 2009) 
  We studied trasport in the 

classical case, for the moment.

- Lévy-distributed disorder in the 
topology, strong effects on 
transport 

- Quantum case?  Localization? 

- the Spectral Dimension?  
- Inhomogeneous Disorder?
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