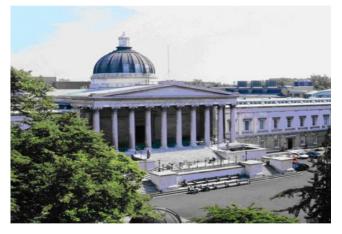
Entanglement in the Kondo Spin Chain

UCL

<u>Abolfazl Bayat¹, Sougato Bose¹, Pasquale Sodano²</u>

¹ University College London, London, UK. ² University of Perugia, Perugia, Italy.



References:

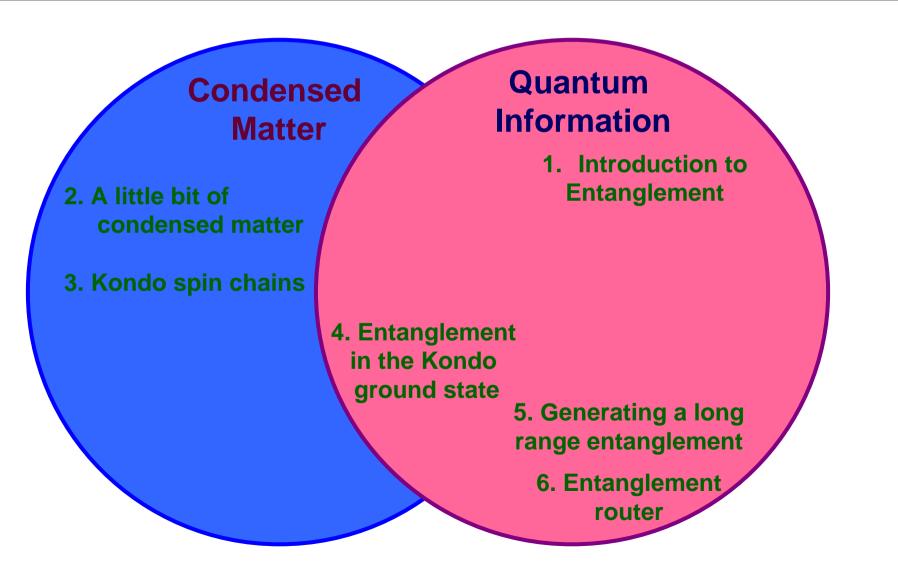
A. Bayat, S. Bose, P. Sodano, PRL 105, 187204 (2010)
A. Bayat, P. Sodano, S. Bose, PRB 81, 100412 (R) (2010)
P. Sodano, A. Bayat, S. Bose, PRB 81, 064429 (2010)

"I feel really fortunate to have met Pasquale in 2008 for the start of what has been an amazing learning, and fruitful research experience for me! I have to say that within the mere span of two years, it already seems that I have known and worked with Pasquale for ages. Pasquale, I have always been highly impressed by your strong physical intuition, during which your take on a problem has repeatedly turned out to be true in the end. I always long for those discussions over the cigarettes, which are very pleasant indeed . I know that I am missing a great meeting but the circumstances were a bit unavoidable. I wish you a very happy 60th birthday and an enjoyable meeting and looking forward to writing several more papers together.

best wishes,

Sougato"

Contents of the Talk



Pure Entangled States

ICL

Separable states:

$$\left|\psi\right\rangle_{AB} = \left|\alpha\right\rangle_{A} \otimes \left|\beta\right\rangle_{B}$$
$$\left|\psi\right\rangle_{AB} = \frac{\left|00\right\rangle + \left|01\right\rangle}{\sqrt{2}} = \left|0\right\rangle_{A} \otimes \left(\frac{\left|0\right\rangle + \left|1\right\rangle}{\sqrt{2}}\right)_{B}$$

Entangled states:

$$\begin{split} \left|\psi\right\rangle_{AB} &\neq \left|\alpha\right\rangle_{A} \otimes \left|\beta\right\rangle_{B} \\ \left|\psi\right\rangle_{AB} &= \frac{\left|00\right\rangle_{AB} + \left|11\right\rangle_{AB}}{\sqrt{2}} \\ \rho_{B} &= tr_{A} \left|\psi_{AB}\right\rangle \left\langle\psi_{AB}\right| = \frac{1}{2} \left|0\right\rangle \left\langle0\right| + \frac{1}{2} \left|1\right\rangle \left\langle1\right| = \frac{I}{2} \right] \end{split}$$

In maximally entangled states, state of the subsystem is identity

Non Maximal Entangled States

UCL

$$|\psi\rangle_{AB} = \sqrt{\frac{1}{3}}|00\rangle_{AB} + \sqrt{\frac{2}{3}}|11\rangle_{AB}$$
$$\rho_{B} = tr_{A}|\psi_{AB}\rangle\langle\psi_{AB}| = \frac{1}{3}|0\rangle\langle0| + \frac{2}{3}|1\rangle\langle1|$$

For entangled pure states:

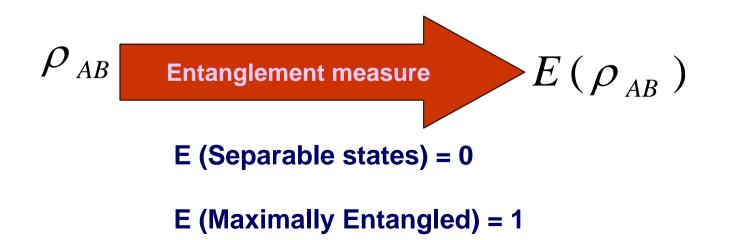
- State of the subsystem is mixed.
- More mixedness in the subsystem more entanglement in the system
- Entropy of the subsystem is a unique measure of entanglement

Mixed Entangled States

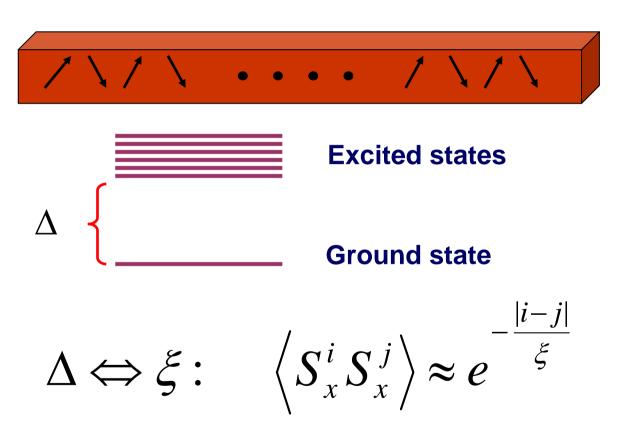
Separable states:

$$\rho_{AB} = \sum_{i} p_{i} \rho_{i}^{A} \otimes \rho_{i}^{B}$$

There is no unique measure of entanglement

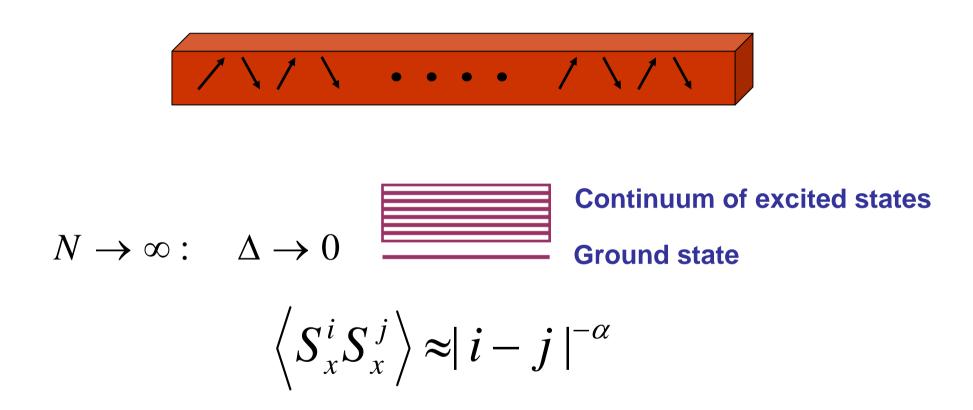


Gapped Systems



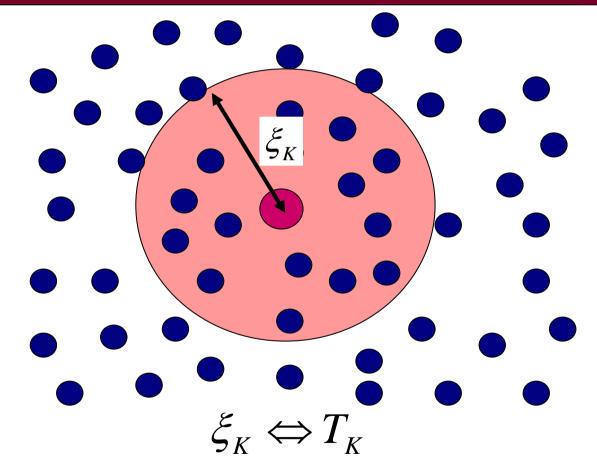
The intrinsic length scale of the system impose an exponential decay

Gapless Systems



There is no length scale in the system so correlations decay algebraically

Kondo Physics



Despite the gapless nature of the Kondo system, we have a length scale in the model

Interesting Issues of the Kondo Physic

- 1- Size of the cloud
- 2- Scaling properties in terms of the Kondo length
- **3- Detecting the Kondo cloud**
- 4- Physical properties (resistively, susceptibility) in the Kondo regime

Realization of the Kondo Effect

UCL

Semiconductor quantum dots D. G. Gordon *et al.* Nature 391, 156 (1998). S.M. Cronenwett, Science 281, 540 (1998).

Carbon nanotubes

J. Nygard, *et al.* Nature 408, 342 (2000). M. Buitelaar, Phys. Rev. Lett. 88, 156801 (2002).

Individual molecules

J. Park, *et al.* Nature 417, 722 (2002). W. Liang, *et al*, Nature 417, 725–729 (2002).

Kondo Spin Chain

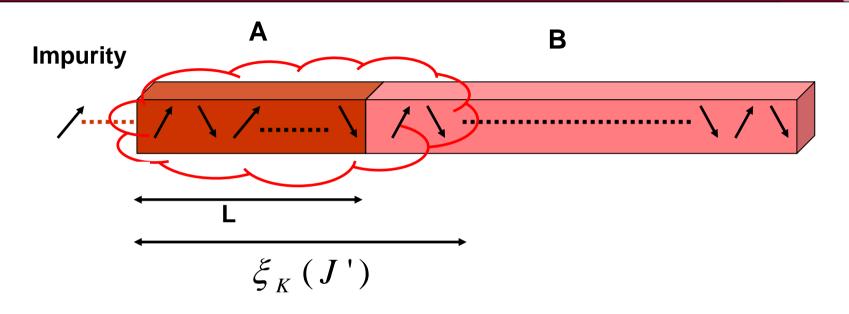
UCL

$$H = J'(J_1\sigma_1.\sigma_2 + J_2\sigma_1.\sigma_3) + \sum_{i=2} J_1\sigma_i.\sigma_{i+1} + J_2\sigma_i.\sigma_{i+2}$$
$$\frac{J_2}{J_1} < J_2^c = 0.2412: \text{ Kondo (gapless)}$$
$$\frac{J_2}{J_1} > J_2^c: \text{ Dimer (gapfull)}$$

E. S. Sorensen et al., J. Stat. Mech., P08003 (2007)

Entanglement as a Witness of the Cloud

UCI

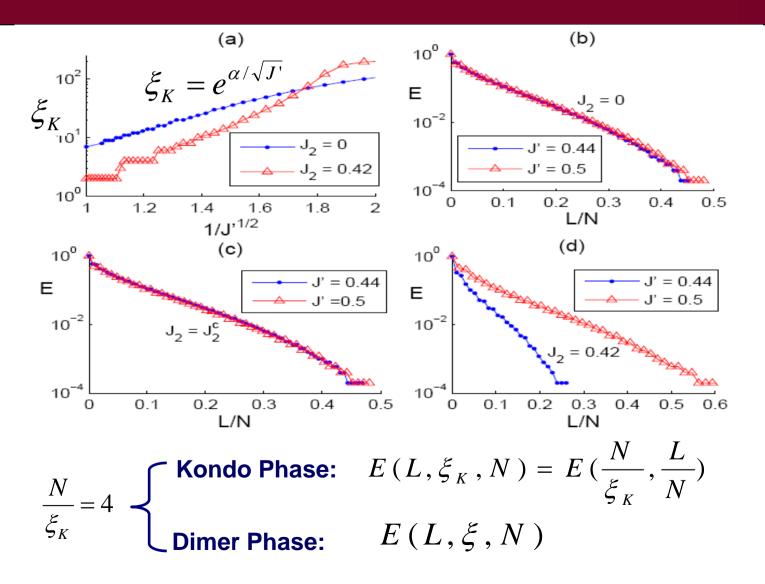


$$\begin{cases} L < \xi_{K} : E_{SA} < 1 \Rightarrow E_{SB} > 0 \\ L = \xi_{K} : E_{SA} = 1 \Rightarrow E_{SB} = 0 \\ L > \xi_{K} : E_{SA} = 1 \Rightarrow E_{SB} = 0 \end{cases}$$

Scaling

Β Impurity Α 1-----..... L **N-L-1** Kondo Phase: $E(L, \xi_K, N) = E(\frac{N}{\xi_{\nu}}, \frac{L}{N})$ **Dimer Phase:** $E(L, \xi, N) \neq E(\frac{L}{\xi_{\nu}}, \frac{N}{L})$

Scaling Properties of the Kondo regime



Local Quench

/.....

AUCI

-

$$H_{1} = J'(J_{1}\sigma_{1}.\sigma_{2} + J_{2}\sigma_{1}.\sigma_{3}) + \sum_{i=2} J_{1}\sigma_{i}.\sigma_{i+1} + J_{2}\sigma_{i}.\sigma_{i+2}$$
Quench
$$H_{2} = J'(J_{1}\sigma_{1}.\sigma_{2} + J_{1}\sigma_{N-1}.\sigma_{N} + J_{2}\sigma_{1}.\sigma_{3} + J_{2}\sigma_{N-2}.\sigma_{N})$$

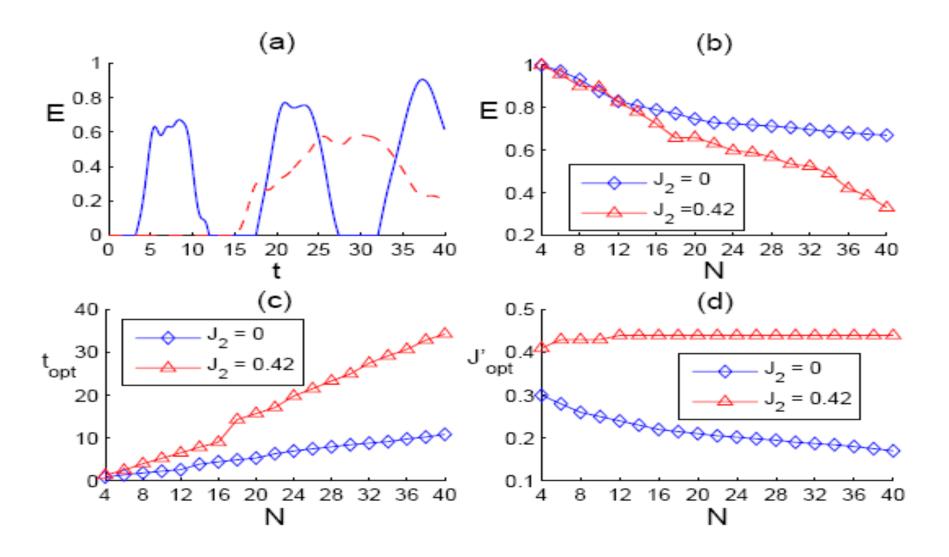
$$+ \sum_{i} J_{1}\sigma_{i}.\sigma_{i+1} + J_{2}\sigma_{i}.\sigma_{i+2}$$

$$|\psi(0)\rangle = |GS_{H1}\rangle$$

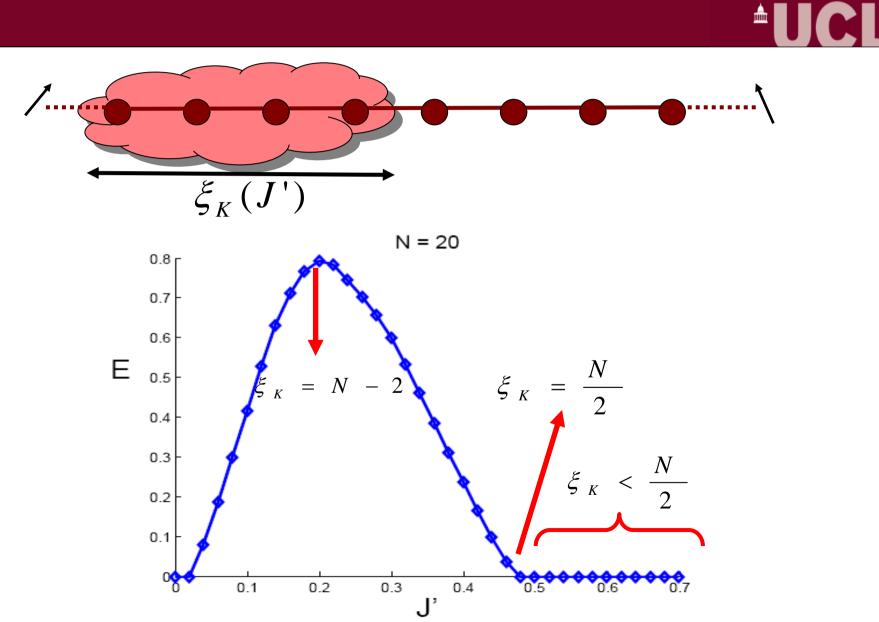
$$|\psi(t)\rangle = e^{-iH_{2}t}|GS_{H1}\rangle \longrightarrow \rho_{1N}(t) \longrightarrow E_{1N}(t)$$

/\/\ •••• /\/\

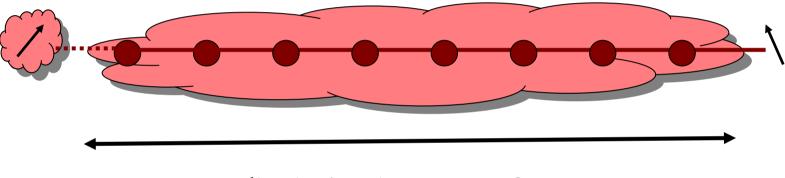
Kondo versus Dimer



Optimal Parameter



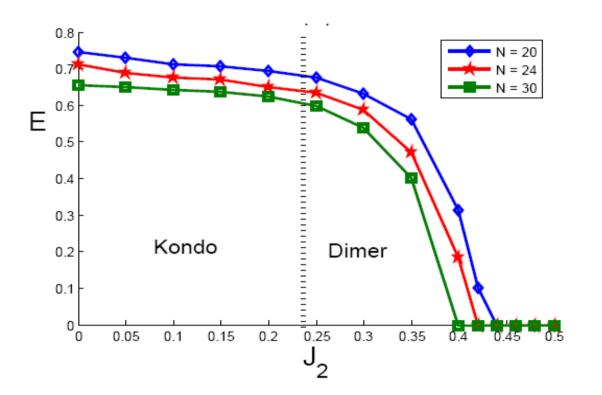
Optimality and Distance independence



$$\xi_{K}(J'_{opt}) = N - 2$$

Independent of length N, when cloud contains N-2 spins we generate a constant Entanglement

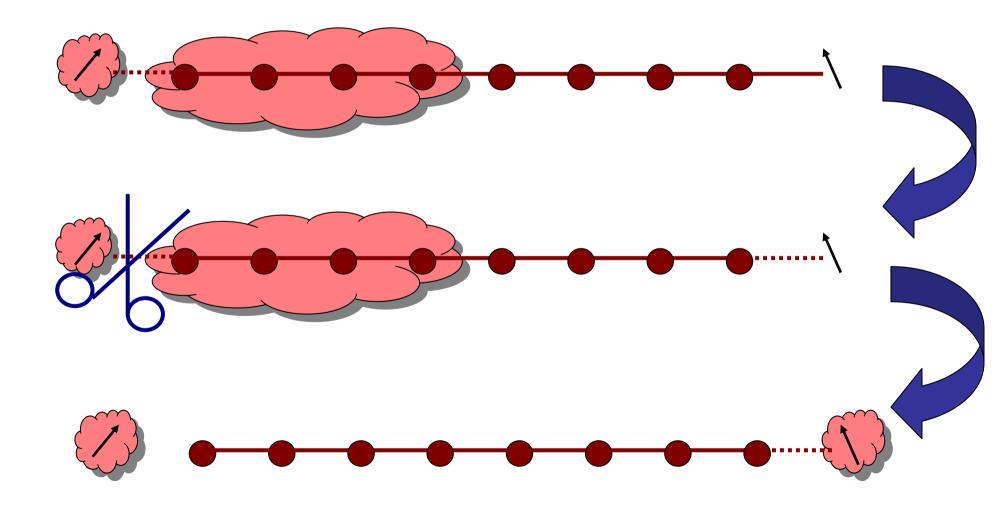
Entanglement in Whole Phase Diagram



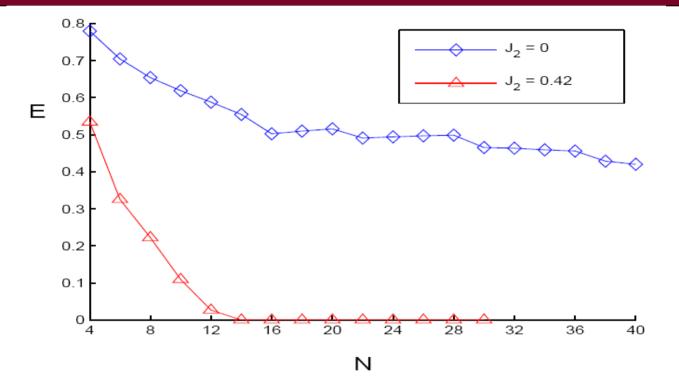
Entanglement drops in the dimer regime

Cloud's Role

UCL



Entanglement in the Modified Strategy



Kondo: High value distance independent entanglement mediated by the cloud.

Dimer: Entanglement is just due to an end-end effect which decays exponentially.

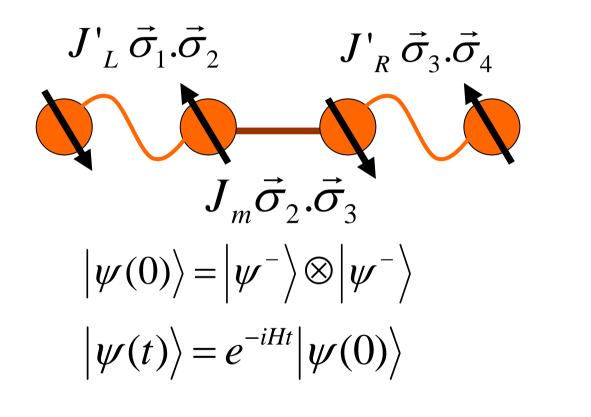
More Improvement?

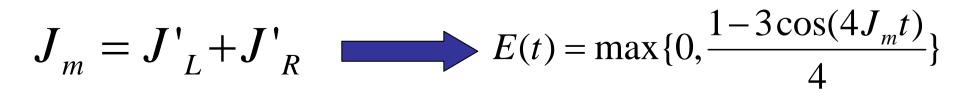
Is there a way to improve the strategy?

1) Higher entanglement

2) A way to route entanglement

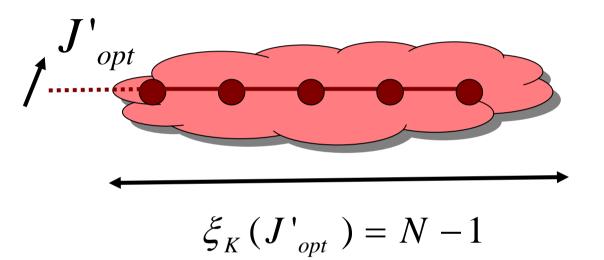
Two Spin Singlets





Can we find some many-body singlets (extended singlets) which play the same role?

Extended Singlet



With tuning J' we can generate a proper cloud which extends up to the end of the chain

Quench Dynamics

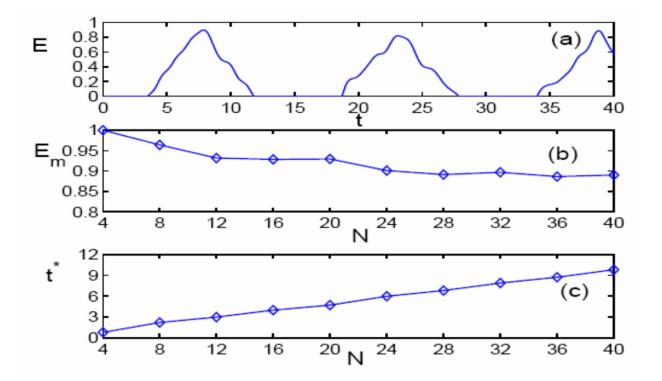
â

 J'_{L} J'_{R} J'_{R} $\xi_{L}(J'_{L}) = N_{L} - 1$ $\xi_{R}(J'_{R}) = N_{R} - 1$

 $|\psi(0)\rangle = |GS_L\rangle \otimes |GS_R\rangle$

 $|\psi(t)\rangle = e^{-iH_{LR}t} |\psi(0)\rangle$ $\rho_{1N}(t)$ $E_{1N}(t)$

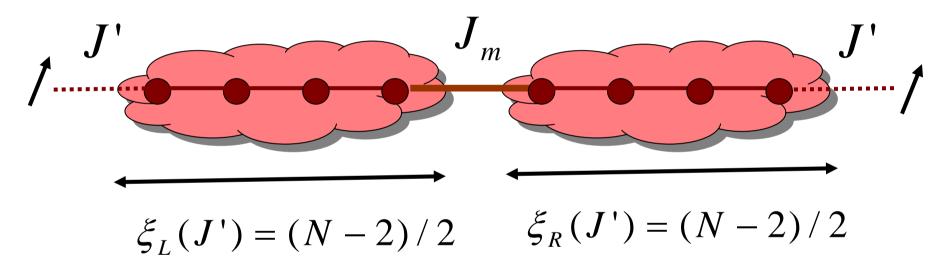
Attainable Entanglement



- 1- Entanglement dynamics is very long lived and oscillatory
- 2- maximal entanglement attains a constant values for large chains
- 3- The optimal time which entanglement peaks is linear

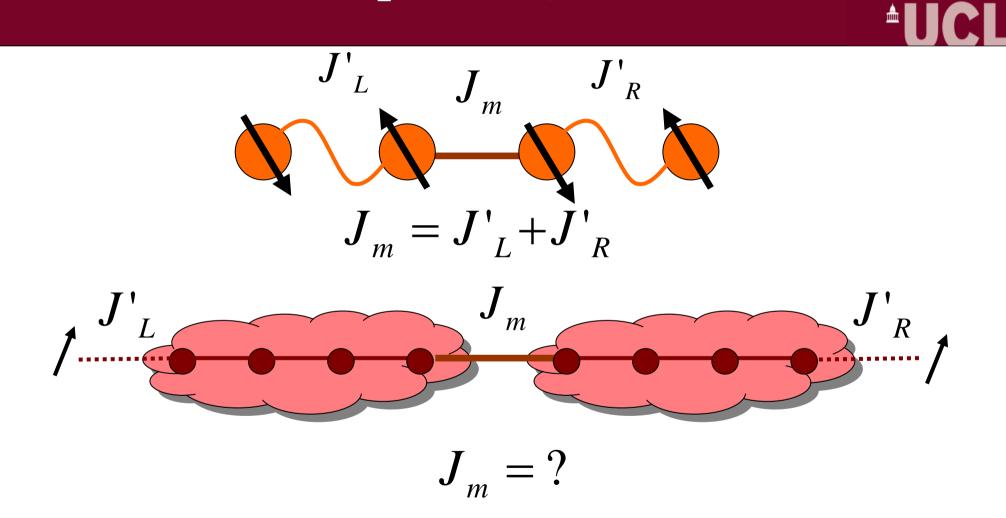
Distance Independence

For simplicity take a symmetric composite:

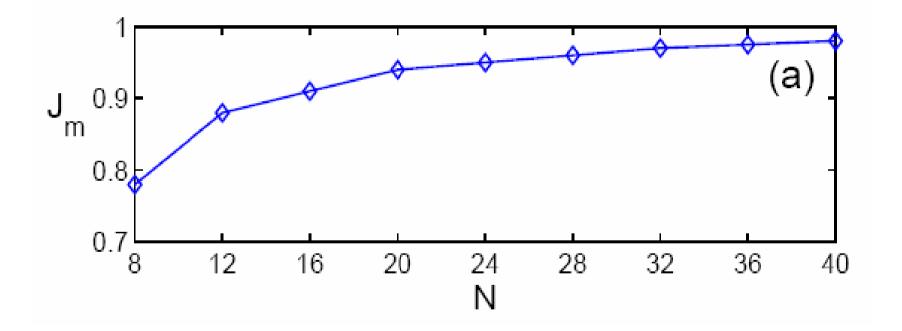


 $E(t, N, J') = E(t, N, \xi) = E(\frac{t}{N}, \frac{N}{\xi}) = E(\frac{t}{N}, \frac{2N}{N-2})$

Optimal Quench

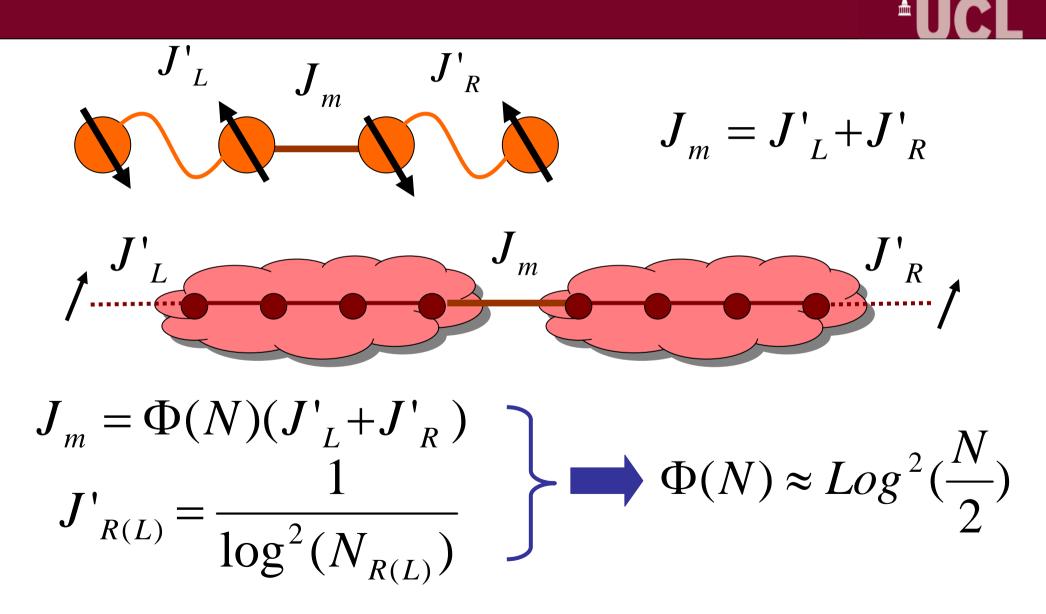


Optimal Jm



Jm saturates to J1 for large N

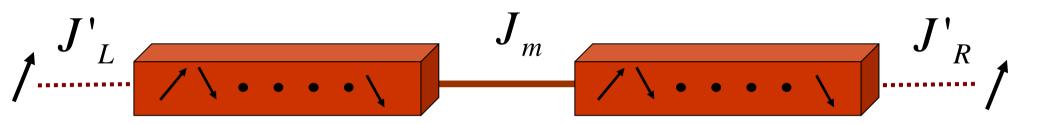
Optimal Quench



Dependence on N



Non-Kondo Singlets (Dimer Regime)



Clouds are absent

N	8	12	16	20	24	28	32	36	40
$E_m(\mathbf{K})$	0.964	0.932	0.928	0.929	0.901	0.891	0.897	0.886	0.891
$E_m(D)$	0.957	0.903	0.841	0.783	0.696	0.581	0.468	0.330	0.160
$t^*(\mathbf{K})$	2.200	2.980	3.980	4.700	5.980	6.800	7.880	8.720	9.800
$t^*(D)$	3.780	7.290	10.32	13.41	16.89	20.43	24.51	27.12	35.01

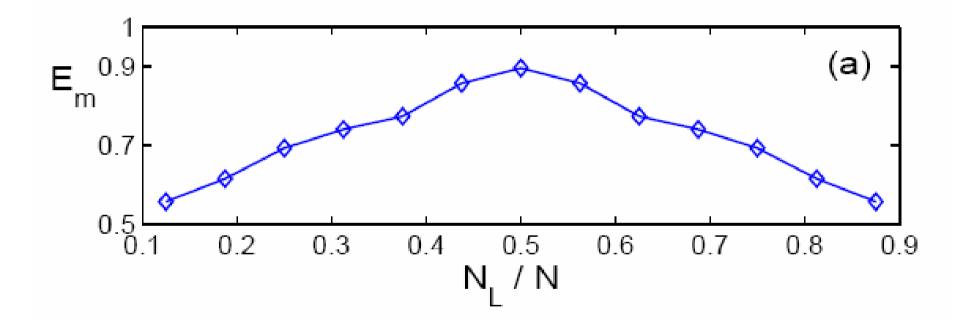
K: Kondo (J2=0) D: Dimer (J2=0.42)

Non-Symmetric Chains

UCL

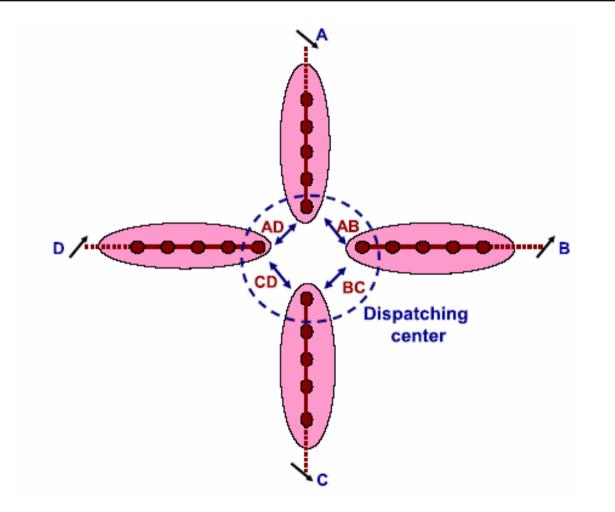


Entanglement in Non-Symmetric Chains



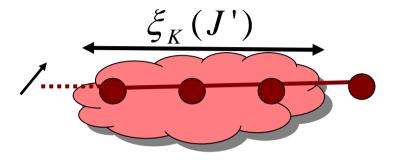
Symmetric geometry gives the best output

Entanglement Router

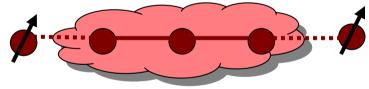


Summary

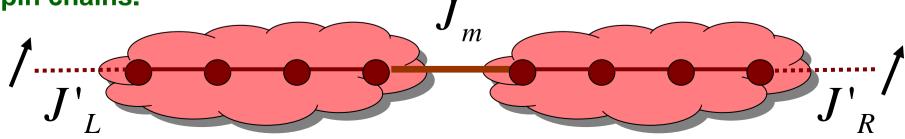
 With using the entanglement measures, one can capture the properties of the Kondo physics.



• In the Kondo regime, Kondo cloud plays the role of the mediator to create a long range "*distance independent*" entanglement between individual ending spins.



 One can make an entanglement router through connecting Kondo spin chains.



Mechanism of Entanglement Generation

$$H_{1}: |\psi(0)\rangle = |GS_{1}\rangle$$

$$H_{1} \rightarrow H_{2}: \{E_{i}, |E_{i}\rangle\}$$

$$|\psi(t)\rangle = \sum_{i} e^{-iE_{i}t} \langle E_{i}|GS_{1}\rangle |E_{i}\rangle$$

Kondo Phase: *Only two* states dominantly involve in the dynamics Dimer Phase: *Many* states involve in the dynamics

Dynamics in the Kondo Regime

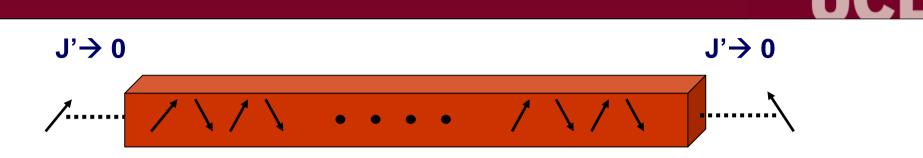
$$\left|\psi(t)\right\rangle = \sum_{i=1,2} e^{-iE_{i}t} \left\langle E_{i} \right| GS_{I} \right\rangle \left|E_{i}\right\rangle$$

By Quenching a single bond we release some energy into the system: $\delta\!E \propto 1 - J\,'$

Energy separation between E1 and E2: $\Delta E(J')$

Optimal quench: $\delta E \propto \Delta E$

Static Entanglement



Static strategy creates high amount of entanglement in perturbative regime $(J' \rightarrow 0)$.

Due to the vanishing gap this entanglement is highly unstable to thermal fluctuations.

Dynamical Entanglement

$$\rho_{th} = \frac{e^{-\beta H_1}}{Z}$$

$$H_1 \rightarrow H_2 \implies \rho(t) = e^{-iH_2 t} \rho_{th} e^{+iH_2 t} \implies \rho_{1N}(t) \implies E_{1N}(t)$$

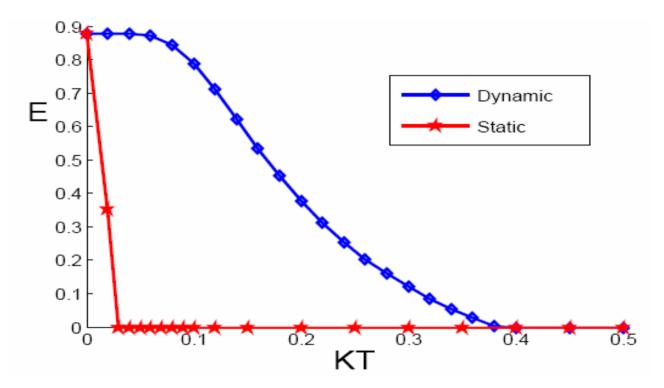
UCL

Thermal stability:

$$KT_{K} = \frac{1}{\xi} = \frac{1}{N-2}$$
 $KT < KT_{K} = \frac{1}{N-2}$

Thermal Effect on the Entanglement

UCI



Dynamical strategy for creating entanglement is more resistive than the static one.