I grandi esperimenti di Fisica delle Alte Energie

Livio Fano'

Dipartimento di Fisica INFN e Universita' degli Studi di Perugia la materia e' costituita da blocchi fondamentali

se si', cosa sono ? come interagiscono ? come determinano le proprietà dell'Universo ?

oggi sappiamo che...

oggi sappiamo che...

e che le forze in gioco (le interazioni) tra i costituenti fondamentali sono 4:

I) Forte

3) Debole

e che le forze in gioco (le interazioni) tra i costituenti fondamentali sono 4:

La nostra conoscenza dei fenomeni fisici fondamentali è rappresentata dal Modello Standard, una teoria di campo quantistica e relativistica

dal punto di vista fenomenologico il modello e' composto da 3 elementi:

- I) 3 generazioni di fermioni (quark e leptoni) tutta la materia dell'universo proviene dalla prima generazione (quark u, d e elettroni)
- 2) I bosoni vettori, responsabili delle interazioni (le forze)
 + 3) Il meccanismo di Higgs (attribuzione della massa alle particelle)

il modello descrive bene (molto bene) la maggior parte dei fenomeni conosciuti

Come codifichiamo tutto ? Attraverso leggi di conservazione (e simmetrie)

E = K + V = costante

cioè nel tempo $\Delta E = 0$

K definisce la "dinamica" V l'interazione

Si possono, semplificando, ricavare le "leggi del moto"

simmetria:

una trasformazione continua delle coordinate (generalizzate) che lascia invariato un sistema (lagrangiana)

Emma Noether

Cosa lega interazione e dinamica fondamentale nel MS ?

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \qquad \text{[Gauge interactions: } \mathbf{U}_{\mathsf{Y}}(1), \, \mathsf{SU}_{\mathsf{L}}(2), \, \mathsf{SU}_{\mathsf{c}}(3)\text{]} \\ + (\bar{\nu}_{L}, \bar{e}_{L}) \, \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\mathrm{h.c.}) \qquad \text{[Lepton dynamics]} \\ - \frac{\sqrt{2}}{v} \left[\left(\bar{\nu}_{L}, \bar{e}_{L} \right) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \bar{\phi} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[\left(-\bar{e}_{L}, \bar{\nu}_{L} \right) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right] \text{[Lepton masses]} \\ + (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\mathrm{h.c.}) \qquad \text{[Quark dynamics]} \\ - \frac{\sqrt{2}}{v} \left[\left(\bar{u}_{L}, \bar{d}_{L} \right) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[\left(-\bar{d}_{L}, \bar{u}_{L} \right) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \text{[Quark masses]} \\ + \overline{\left(D_{\mu} \phi \right)} D^{\mu} \phi - m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2} / 2v^{2}. \qquad \text{[Higgs dynamics \& mass]} \\ \bullet \text{ Gauge-fermion dynamics via covariant derivatives:} \\ D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} = \left[\partial_{\mu} - \frac{ig_{1}}{2} B_{\mu} + \frac{ig_{2}}{2} \mathbf{W}_{\mu} \right] \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix}, \quad D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} = \left[\partial_{\mu} + \frac{ig_{1}}{2} B_{\mu} + ig_{2} \mathbf{W}_{\mu} \right] \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} = \left[-ie_{L} - ie_{L} \right] \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix}$$

$$D_{\mu}\nu_{R} = \partial_{\mu}\nu_{R}, \quad D_{\mu}e_{R} = \left[\partial_{\mu} - ig_{1}B_{\mu}\right]e_{R}, \quad D_{\mu}u_{R} = \left[\partial_{\mu} + \frac{i2g_{1}}{3}B_{\mu} + ig\mathbf{G}_{\mu}\right]u_{R}, \quad D_{\mu}d_{R} = \left[\partial_{\mu} - \frac{ig_{1}}{3}B_{\mu} + ig\mathbf{G}_{\mu}\right]d_{R},$$
$$D_{\mu}\phi = \left[\partial_{\mu} + \frac{ig_{1}}{2}B_{\mu} + \frac{ig_{2}}{2}\mathbf{W}_{\mu}\right]\phi.$$

• Gauge-boson field strength tensors:

 $B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}, \quad \mathbf{W}_{\mu\nu} = \partial_{\mu}\mathbf{W}_{\nu} - \partial_{\nu}\mathbf{W}_{\mu} + ig_2(\mathbf{W}_{\mu}\mathbf{W}_{\nu} - \mathbf{W}_{\nu}\mathbf{W}_{\mu})/2, \quad \mathbf{G}_{\mu\nu} = \partial_{\mu}\mathbf{G}_{\nu} - \partial_{\nu}\mathbf{G}_{\mu} + ig(\mathbf{G}_{\mu}\mathbf{G}_{\nu} - \mathbf{G}_{\nu}\mathbf{G}_{\mu}).$ 19 parameters: gauge couplings, H mass&vev, H-f Yukawa coupl., CKM mixings, CP phases ISHEP'13 (Rio de Janeiro) David d'Enterria (CERN) 2/46

Ma...

I) Sperimentalmente:

- + la massa (Higgs)
- + i neutrini (perché i neutrini hanno massa ? perchè così piccola?)
- + la materia oscura (massa)
- + l'asimmetria barionica dell'universo (perchè un universo di materia e non di anti-materia?)

2) Teoricamente:

- + la gravita' resta fuori dal quadro formale (e quindi la massa)
- + II problema della gerarchia (m² $\propto \lambda^2$) sempre la massa...

...il modello standard non sembra completo sono necessarie strutture aggiuntive ?

Come investigare ?

La fenomenologia delle interazioni avviene in base alla scala energetica

Ad energie diverse le interazioni hanno ruoli diversi ed operano su distanze diverse:

$$E = hv$$
 $E = hc/\lambda$

Energia maggiore -> piccola lunghezza d'onda (particolari più piccoli)

luce visibile λ ~400-700 nm che è -ad esempio- il limite di un microscopio ottico

ENERGIA - Unita' di misura

elettronvolt (eV)

l'energia che acquista un elettrone soggetto ad una differenza di potenziale di IV

e' un'energia molto piccola: $I = I,602I \cdot I0^{-19} J$

un'auto che corre a 100 km/h ha un'energia cinetica di ~4·10²⁴ eV

il piu' potente degli acceleratori e' in grado di impartire ad una particella un'energia di 14 TeV (tera-elettronvolt = 10^{12} eV) cioe' ~10⁻⁷ J

una zanzara in volo ha un'energia cinetica 10 volte superiore

ENERGIA - Unita' di misura

elettronvolt (eV)

l'energia che acquista un elettrone soggetto ad una differenza di potenziale di IV

e' un'energia molto piccola: $I = I,602I \cdot I0^{-19} J$

un'auto che corre a 100 km/h ha un'energia cinetica di ~4·10¹² TeV !

il piu' potente degli esperimenti e' in grado di impartire ad una particella un'energia di **I4 TeV** (tera-elettronvolt = 10¹² eV) cioe' ~10⁻⁷ J

una zanzara in volo ha un'energia cinetica 10 volte superiore

acceleratori - breve storia ed evoluzione

elettronvolt (eV)

l'energia che acquista un elettrone soggetto ad una differenza di potenziale di IV

e' un'energia molto piccola: $I = I,602I \cdot I0^{-19} J$

un'auto che corre a 100 km/h ha un'energia cinetica di ~7.10⁵ J

il piu' potente degli acceleratori e' in grado di impartire ad una particella un'energia di **14 TeV** (tera-elettronvolt = 10^{12} eV) cioe' ~ 10^{-7} J

una zanzara in volo ha un'energia cinetica 10 volte superiore

nel caso degli acceleratori la differenza e' nella **capacita' di concentrare l'energia** in una collisione tra particelle, cioè in un'area molto piccola

appoggiare una mano sul tavolo oppure -con la stessa forza- su uno spillo: l'energia in gioco e' la stessa ma gli effetti sono ben diversi

Acceleratori, Higgs e l'Universo

Sfruttando la carica elettrica gli **acceleratori** conferiscono alle particelle un energia ΔE attraverso una differenza di potenziale ΔV :

$\Delta E = q \Delta V$

2 particelle possono interagire su scala energetica diversa, come 2 palle da biliardo possono scontrarsi con diverse velocita' (con diversa energia cinetica) - possono rimbalzare o rompersi

le interazioni si manifestano differentemente a seconda della scala di energia

secondo il nostro modello dell'Universo, all'origine la densità di energia era molto elevata, **capire le proprietà dei costituenti** e delle **interazioni** a scale di **energia via via più elevate** significa quindi **approssimare** le condizioni presenti nell'universo ad istanti sempre piu' vicini al **Big-Bang**

vogliamo quindi un modello in grado di spiegare perché l'universo si e' evoluto così come lo conosciamo

History of the Universe

Oggi: 15 miliardi di anni dal Big-Bang

I miliardo di anni - si formarono le prime galassie.

300,000 anni - la luce prodotta cominciò a propagarsi senza assorbimento.

3 minuti - si formarono i nuclei leggeri (D, He, Li, B).

I sec - i quarks formarono protoni e neutroni

10 -10 **sec** - forze Elettromagnetiche e Deboli erano unificate

10 -34 sec - tutte le forze unificate??

e "prima" ancora ?

COME ?

Abbiamo bisogno quindi di far interagire le particelle con alta energia

Abbiamo bisogno di una frequenza di collisioni molto alta perche' i fenomeni che vogliamo osservare sono molto rari

Abbiamo un acceleratore per questo ?

acceleratori oggi - LHC al CERN

L'Organizzazione Europea per la Ricerca Nucleare (CERN) ha dato il via al più grande esperimento scientifico mai costruito dall'uomo: il Large Hadron Collider - LHC Il collisionatore ha 27 km di diametro ed e' situato ad una profondita' media di 80m Le collisioni avvengono in 4 punti dove sono stati collocati 4 rivelatori CMS, Atlas, Alice, LHCb con obbiettivo di studiare fenomeni diversi

Il collisionatore - qualche numero

Acceleratore circolare, in particolare LHC:

Sono 2 fasci di protoni che roteano in direzione opposta lungo 2 anelli separati e si scontrano, frontalmente, in 4 punti

L'energia disponibile al centro di massa e' di 14 TeV (13 TeV ora) $\sqrt{s} = 2 \times E_{beam} \approx 2 \times p_{beam}$ fixed-target: $\sqrt{s} = \sqrt{(2 \times m \times E_{beam})}$ $m \approx 1$ GeV for proton target Opera anche come collisionatore di ioni pesanti (per esempio collisioni Pb-Pb)

Prima collisione 11/2009

Il collisionatore - qualche numero

Acceleratore circolare, in particolare LHC:

Sono 2 fasci di protoni che roteano in direzione opposta lungo 2 anelli separati e si scontrano, frontalmente, in 4 punti

L'energia disponibile al centro di massa e' di 14 TeV (13 TeV ora) $\sqrt{s} = 2 \times E_{beam} \approx 2 \times p_{beam}$ fixed-target: $\sqrt{s} = \sqrt{(2 \times m \times E_{beam})}$ $m \approx 1$ GeV for proton target Opera anche come collisionatore di ioni pesanti (per esempio collisioni Pb-Pb) 10^{-19} m !

Prima collisione 11/2009

Come "vediamo" le interazioni ?

Intorno al punto di interazione viene collocato il **rivelatore**, cioe' la parte dell'esperimento in grado di "vedere" i prodotti dello scontro tra protoni

protoni

protoni

Se 2 protoni interagiscono e si rompono, frammentano in centinaia di particelle instabili che si riassemblano in una miriade di particelle a vita breve

La difficolta' sta nel ricostruire a posteriori le traiettorie (in modo da determinarne l'energia) e da queste ricostruire la cinematica dell'interazione base che e' avvenuta tra i protoni che hanno dato inizio al tutto

La frequenza di collisioni e' $R \sim 10^9$ Hz

Uno degli occhi: CMS

I principi di rivelazione di particelle di CMS

CMS - Lo strumento scientifico più grande e complesso mai costruito dall'uomo

CMS - Lo strumento scientifico più grande e complesso mai costruito dall'uomo

1700 physicists, 700 students, 950 engineers/technicians, 180 institutions from 43 countries

Finalmente in funzione!

O

TOT

La prima risposta di CMS

4 T 4 17 🖕 19 10 1 4 1

A 45

2010 - le prime scoperte

2010 - i primi sospetti...

http://www.youtube.com/user/CMSExperimentTV

Recorded September 23, 2010 L≈7 pb⁻¹

 $M(4\mu) = 201 \text{ GeV/c}^{2}$ $M(\mu_{1}^{-}, \mu_{2}^{+}) = 92.15 \text{ GeV/c}^{2}$ $M(\mu_{3}^{+}, \mu_{4}^{-}) = 92.24 \text{ GeV/c}^{2}$

A beautiful ZZ \rightarrow 4µ candidate !

2012 - nuovi segnali

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

2012 - nuovi segnali

2012 - Higgs - La scoperta

2013 - Higgs - II Nobel

Ma

1) Sperimentalmente:

- + la massa
- + i neutrini (perchè i neutrini hanno massa
- + la materia oscura
- + l'asimmetria barionica dell materia e non di anti-pr

Ricordatevi queste domande 2) Teorica

...il modello standard non sembra completo sono necessarie strutture aggiuntive ?

Ma...

- I) Sperimentalmente:
 + la massa OK! (Higgs)
 - + i neutrini (perchè i neutrini hanno massa ? perchè così piccola?)
 - + ia materia oscura
- + <u>l'asimmetria barionica dell'universo</u> (perche' un universo di materia e non di anti-materia?)
- 2) Teoricamente:
 - + la <mark>gravita</mark>' resta fuori dal quadro formale (<mark>e quindi la massa</mark>)
 - + Il problema della gerarchia (m² $\propto \lambda^2$) sempre la massa...

...il modello standard non sembra completo sono necessarie strutture aggiuntive ?

massa, gravità, materia oscura...gravità quantistica

Sondare la struttura dello spazio-tempo

2015/2025 - e ora ?

LHC RUN2: NUOVI ORIZZONTI

La scoperta del bosone di Higgs è stato il primo capitolo della storia di LHC. Grazie ai lavori effettuati, LHC opererà a un'energia quasi doppia (13 TeV) rispetto a quella del Run 1, producendo collisioni ad altissima energia. La ripartenza della macchina (Run 2) segna così l'inizio di un'altra avventura alla scoperta di nuovi orizzonti della fisica.

Ricerca di nuova Fisica - maggior energia

maggior energia:
I) fenomeni rari diventano più frequenti
2) possiamo produrre particelle più "pesanti"

Maggior energia - LHC RunII - 13 TeV

Ricerca di SuperSimmetria (SUSY)

Search for black holes

Ricer

- Search for semi-classical and quantum black holes
- Analysis binned in number of objects (jets, leptons, photons) and S_{T}
- Model-independent limits set as function of (N, S_T) , mass limits are 8 TeV for QBH and 8.7 TeV for semiclassical (Run 1: 5.5-6.0 TeV)

N = 12

CMS Experiment at LHC. CERN

Run/Event: 257645 / 1610868539

Lumi section: 1073

Data recorded: Mon Sep 28 08:09:43 2015 CEST

S_T = 5.4 TeV

10

10

5000

Search for dark matter

- Search for generic dark matter in final states
- / with jets and large missing transverse energy
- Traditional monojet search extended to
- f multijet final states, searching for DM pairs
- produced via a **vector mediator**

Ricer

2.1 fb⁻¹ (13 TeV

🔶 Data

····· Signal (V, 1TeV)

Limits comparable to those set in Run 1

10

CMS Preliminary

Maggior energia - LHC RunII - 13 TeV

Già qualche indicazione?!

forse una nuova particella di ~750 GeV - chi sei ?

