Non-Abelian vortices and lumps; their moduli spaces and substructures

Sven Bjarke Gudnason
(Università di Pisa & INFN Sezione di Pisa)

Theories of fundamental interactions
Perugia
June 25, 2010

In collaboration with: Roberto Auzzi, Minoru Eto, Toshiaki Fujimori, Yunguo Jiang, Kenichi Konishi, Takayuki Nagashima, Muneto Nitta, Keisuke Ohashi and Walter Vinci.

arXiv:1005.0557 SBG
arXiv:1002.0850 Konishi,SBG
arXiv:0906.0021 SBG
arXiv:0905.3540 Eto,Fujimori,SBG,Konishi,Nagashima,Nitta,Ohashi,Vinci
arXiv:0903.4471 Eto,Fujimori,SBG,Konishi,Nagashima,Nitta,Ohashi,Vinci
arXiv:0809.2014 Eto, Fujimori, SBG, Nitta, Ohashi
Plan of the talk

Introductory part

→ ○ motivation
 ● crash course on vortices
 ● summary of recent results in the field

Results

● SO, USp theories
● $NL\sigma M$ lumps
● fractional vortices
● Chern-Simons vortices
Motivation

- Confinement of quarks in Yang-Mills theory (’t Hooft-Mandelstam)
- Electric-Magnetic duality (Dirac, Montonen-Olive)
- Non-Abelian monopoles and GNOW-duality (Goddard-Nuyts-Olive-Weinberg)
- Condensed matter systems – quantized vortices
- Fractional quantum Hall effect – Chern-Simons theory
- Neutron stars
- Cosmic strings
- etc.
“Dynamical Abelianization”?

- Softly broken $\mathcal{N} = 2$ pure $SU(2)$ in Seiberg-Witten theory
 \rightarrow Abelian

- Generic $\mathcal{N} = 2$ super-Yang-Mills (SYM) with quarks
 \rightarrow non-Abelian

Hanany-Oz 1996, Carlino-Murayama-Konishi 2000

Question: magnetic monopoles of QCD are of Abelian or non-Abelian type?
Non-Abelian monopoles

Symmetry-breaking pattern:

\[G \rightarrow H \neq U(1) \quad (1) \]

Field strength tensor:

\[F_{ij} \sim \epsilon_{ijk} \frac{x_k}{r^3} (\beta \cdot T_{\text{Cartan}}) \]

Charge quantization:

\[2\beta \cdot \alpha = \mathbb{Z} \quad (2) \]

\(\alpha \) is the root vector of \(H \). Solution: \(\beta \) is any weight vector of the dual group \(\tilde{H} \) which has root vectors

\[\alpha^* = \frac{\alpha}{\alpha \cdot \alpha} \quad (3) \]

The GNOW conjecture:

non-Abelian monopoles form multiplets of the dual group \(\tilde{H} \).

<table>
<thead>
<tr>
<th>(H)</th>
<th>(U(N))</th>
<th>(SU(N))</th>
<th>(SO(2N))</th>
<th>(SO(2N + 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{H})</td>
<td>(U(N))</td>
<td>(SU(N) / \mathbb{Z}_N)</td>
<td>(Spin(2N))</td>
<td>(USp(2N))</td>
</tr>
</tbody>
</table>
Unfortunately, there are some obstacles:

1. topological obstruction
2. non-normalizable zero-modes – going to zero as $r^{-\frac{1}{2}}$

\Rightarrow we cannot quantize the non-Abelian monopole

The transformations in H and \tilde{H}, respectively are non-local. Problematic: Coulomb phase and (dual) Higgs phase.

Strategy:

$H_{\text{Higgs phase}} \Leftrightarrow \tilde{H}_{\text{confinement phase}}$
Benchmark model

\[G \xrightarrow{\Lambda} H \xrightarrow{\mu} \mathbb{1} , \quad \Lambda \gg \mu . \quad (4) \]

Exact homotopy sequence:

\[\ldots \rightarrow \pi_2 (G) \rightarrow \pi_2 \left(\frac{G}{H} \right) \rightarrow \pi_1 (H) \rightarrow \pi_1 (G) \rightarrow \ldots \quad (5) \]

Example:

\[1 = \pi_2 (SU(3)) \rightarrow \pi_2 \left(\frac{SU(3)}{SU(2) \times U(1)} \right) \rightarrow \pi_1 (SU(2) \times U(1)) \rightarrow \pi_1 (SU(3)) = 1 . \quad (6) \]
Paradox?

Complete system

\[G \rightarrow 1 \] \hspace{1cm} (7)

\[\pi_1(G) = 1, \] \hspace{1cm} (8)

\[\Rightarrow \text{no monopoles} \]

\[\Rightarrow \text{no vortices} \]

Solution:

Vortices confine the monopoles

Idea: vortex transformation = monopole transformation

Auzzi-Bolognesi-Evslin-Konishi 2004

Auzzi-Bolognesi-Evslin-Konishi-Yung 2003
Plan of the talk

Introductory part

- motivation
 - crash course on vortices
- summary of recent results in the field

Results

- SO, USp theories
- NLσM lumps
- fractional vortices
- Chern-Simons vortices
Abrikosov-Nielsen-Olesen vortex

\[\pi_1(S^1) = \mathbb{Z} \ni k : \text{winding number} = \text{vorticity} \]

\(\xi\) : Fayet-Iliopoulos parameter – theory on the Higgs branch
Derrick’s theorem

No finite energy scalar field configuration in more than one spatial dimension, other than the vacuum can have a stationary point

- $d = 1$: domain wall – OK
- $d = 2$: vortex – stabilized by
 - flux
 - $V = 0 \Rightarrow$ sigma model lumps – harmonic maps
 - $J \neq 0$ – Q-lumps
The vortex stabilized by magnetic flux

Competition of forces:

- scalar field attractive force
- magnetic field repulsive force

\[\beta \equiv \frac{m_{\text{Higgs}}}{m_\gamma} \] classifies the vortices into:

- \(\beta < 1 \): type I – not experimentally observable as the flux attracts and breaks the superconducting phase
- \(\beta > 1 \): type II – Abrikosov lattice
- \(\beta = 1 \): BPS – supersymmetry preserving
FIG. 2. Triangular vortex lattice at magnetic field 200 Oe in MgB$_2$ single crystal. Inset: FFT pattern in an arbitrary scale.
Non-Abelian embedding

\(U(N) \) theory with \(N_F = N \) flavors:

\[
q = \begin{pmatrix}
q_{11} & q_{12} & \cdots & q_{1N} \\
q_{21} & q_{22} & q_{2N} \\
\vdots & \cdots & \vdots \\
q_{N1} & \cdots & \cdots & q_{NN}
\end{pmatrix}, \quad \langle q \rangle = 1_N
\] \hspace{1cm} (9)

Transformation

\[
q \rightarrow U_{\text{color}} q U_{\text{flavor}}^\dagger,
\] \hspace{1cm} (10)

\(U_{\text{flavor}} = U_{\text{color}} \) global symmetry.

Embedding of ANO in \(U(N) \) theory:

\[
q^{\text{ANO}} = \begin{pmatrix}
q_{\text{ANO}} & 0 & \cdots & 0 \\
0 & \sqrt{\xi} & 0 \\
\vdots & \cdots & \vdots \\
0 & \cdots & \cdots & \sqrt{\xi}
\end{pmatrix}, \quad A_i^{\text{ANO}} = \begin{pmatrix}
A_i^{\text{ANO}} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \cdots & \cdots & \vdots \\
0 & \cdots & \cdots & 0
\end{pmatrix}.
\]
A whole family of solutions appears!
Non-Abelian moduli

Color-flavor rotation:

\[q = U \begin{pmatrix} q^{\text{ANO}} & 0 & \cdots & 0 \\ 0 & \sqrt{\xi} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \sqrt{\xi} \end{pmatrix} U^\dagger, \quad (11) \]

\[A_i = U \begin{pmatrix} A_i^{\text{ANO}} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 \end{pmatrix} U^\dagger. \]

\[U \in G_{\text{color+flavor}} \text{ global symmetry.} \]

Non-Abelian moduli parametrize:

\[\frac{SU(N)}{SU(N - 1) \times U(1)} \simeq \mathbb{C}P^{N-1}. \quad (12) \]

\[\Rightarrow \text{effective world-sheet symmetry.} \]
Moduli space the non-Abelian vortex

$U(N)$ theory:

$$\mathcal{M}_k = \left(\mathbb{C} \times \mathbb{C} \mathbb{P}^{N-1} \right)^k / \mathfrak{S}_k$$

Plan of the talk

Introductory part

• motivation
• crash course on vortices
→ ○ summary of recent results in the field

Results

• \(SO, USp \) theories
• NL\(\sigma \)M lumps
• fractional vortices
• Chern-Simons vortices
Summary of recent results

- A duality between 4 dim SYM and a 2 dim non-linear σ model, realized by the non-Abelian vortex

 Hanany-Tong 2003, Shifman-Yung 2004

- $SO(5) \rightarrow U(2) \rightarrow 1$: regular monopoles are confined by $k = 2$ vortices.

 $k = 2$ moduli space of $U(2)$ vortices:

 $\mathbb{C}P^1 \times \mathbb{C}P^1 \rightarrow W\mathbb{C}P^1_{2,1,1}$

The vortex-monopole system transforms under the $3 + 1$ representation of $SU(2)$.

Group theory of vortices: single vortex $\Box : k$ vortices $\prod_{i=1}^{k} \Box$.

- The full moduli space:
 - In preparation
 - Eto-Isozumi-Nitta-Ohashi-Sakai 2005

- Reconnection of cosmic strings

- D-brane solitons in field theory, e.g. an instanton-monopole-vortex-domain wall system

- A Seiberg-like duality of non-Abelian semi-local vortices
• Non-BPS non-Abelian vortex interactions: distance-dependent forces (type I/I* and type II/II*)

Auzzi-Eto-Vinci 2007

• Non-Abelian vortices on a torus:

Lozano-Marques-Schaposnik 2007

• Non-Abelian vortices in dense QCD:

• A model of non-Abelian vortices without dynamical Abelianization

Dorigoni-Konishi-Ohashi 2008

• The stability of non-Abelian semi-local vortices

Auzzi-Eto-SBG-Konishi-Vinci 2008
• Multi-layer structure of non-Abelian vortices: Eto-Fujimori-Nitta-Ohashi-Sakai 2009

• Non-Abelian global vortices: Eto-Nakano-Nitta 2009

• Vortex description of quantum Hall ferromagnets Kimura 2009

• Non-Abelian vortex-string dynamics from non-linear realization: Liu-Nitta 2009

• Quantum Phases of a vortex string in $\mathcal{N} = 1^*$: Auzzi-Kumar 2009
• Non-Abelian Chern-Simons vortices with generic gauge groups:

• Moduli space metric for non-Abelian vortices
 – Compact Riemann surfaces:

 – Well-separated vortices:

• Low-energy $U(1) \times USp(2M)$ gauge theory from simple high-energy gauge group:
• D-branes in rotating phase-separated two-component Bose-Einstein condensates
Plan of the talk

Introductory part

• motivation
• crash course on vortices
• summary of recent results in the field

Results

→ ○ SO, USp theories
 • NLσM lumps
 • fractional vortices
 • Chern-Simons vortices
The model – general gauge group

H theory: $\mathcal{N} = 2$ (8 supercharges), $U(1) \times G'$ super-Yang-Mills (4 dimensions) with N_F massless hyper multiplets.

vector multiplet : $\{V, \Phi\}$

hyper multiplets : $\{Q, \tilde{Q}\}$

Truncated model, formally $\mathcal{N} = 1$, $U(1) \times G'$ SYM with N_F quarks Q.

$$\mathcal{L} = \text{Tr} \left[\int d^4 \theta \left(Q^\dagger e^{-V} Q + \xi V \right) + \frac{1}{g^2} \int d^2 \theta \left(WW + \text{h.c.} \right) \right],$$

$\xi > 0$ FI parameter.

$$\mathcal{L} = - \frac{1}{4e^2} F_{\mu\nu}^0 F_{\mu\nu}^0 - \frac{1}{4g^2} F_{\mu\nu}^a F_{\mu\nu}^a + \text{Tr} D_\mu H (D^\mu H)^\dagger$$

$$- \frac{e^2}{2} \left| \text{Tr} HH^\dagger t^0 - \frac{v^2}{\sqrt{2N}} \right|^2 - \frac{g^2}{2} \left| \text{Tr} HH^\dagger t^a \right|^2, \quad (13)$$

ta generators of G'.
BPS equations

Bogomol’nyi bound:

\[T \geq -\frac{v^2}{\sqrt{2N}} \int_C F_{12}^0 = 2\pi v^2 \nu , \]

(14)
saturated by BPS-equations

\[\bar{D}H = 0 , \quad F_{12}^0 = e^2 \left(\text{Tr} \ H H^\dagger t^0 - \frac{v^2}{\sqrt{2N}} \right) , \]

(15)

\[F_{12}^a = g^2 \text{Tr} \ H H^\dagger t^a , \]

(16)
\[\nu \text{ topological charge.} \]
Moduli matrix

Solution: holomorphic matrix + complexified gauge transformations:

\[H = S^{-1}(z, \bar{z}) H_0(z) , \]

(17)

with \(z = x^1 + ix^2 \), holomorphic \(N \times N_F \) matrix: moduli matrix, encodes all the moduli.

\[S = sS' , \quad s \in \mathbb{C}^* , \quad S' \in G'^{\mathbb{C}} . \]

(18)

\[\bar{D}H = 0 , \quad \Rightarrow \quad \bar{A} = -iS^{-1}\bar{\partial}S . \]

(19)

Residual symmetry – \(V \)-equivalence:

\[(S, H_0) \sim V(z) (S, H_0) . \]

(20)
Master equations

\[\tilde{D}H = 0 \text{ solved. } \Omega = \omega \Omega' = SS'^\dagger, \ \Omega_0 = H_0(z)H_0^\dagger(z): \]

For \(SU(N) \)

\[\bar{\partial} \partial \log \omega = -\frac{e^2}{4N} \left[\frac{1}{\omega} \text{Tr} \Omega_0 \Omega'^{-1} - v^2 \right] , \quad (21) \]

\[\bar{\partial} \left(\Omega' \partial \Omega'^{-1} \right) = \frac{g^2}{4\omega} \left[\Omega_0 \Omega'^{-1} - \frac{1}{N} \text{Tr} \Omega_0 \Omega'^{-1} \right] , \quad (22) \]

\(SO, USp \):

\[\bar{\partial} \left(\Omega' \partial \Omega'^{-1} \right) = \frac{g^2}{8\omega} \left[\Omega_0 \Omega'^{-1} - J^\dagger \left(\Omega_0 \Omega'^{-1} \right)^T J \right] . \quad (23) \]

Existence and uniqueness is assumed.
Asymptotic behavior:
\[s(z, \bar{z}) \sim |z|^{\nu} . \]
(24)

Holomorphic \(G' \)-invariants:
\[I_{G'}^i \left(H = s^{-1}S'^{-1}H_0 \right) = s^{-n_i}I_{G'}^i(H_0) , \]
(25)

Boundary conditions:
\[I_{G'}^i(H_0) \big|_{|z| \to \infty} = I_{\text{vev}}^i z^{\nu n_i} , \]
(26)

Single valuedness condition
\[\nu n_i \in \mathbb{Z}_+ , \]
(27)

Solution:
\[\nu = \frac{k}{n_0} , \quad k \in \mathbb{Z}_+ , \]
(28)

\[n_0 \equiv \gcd \{ n_i | I_{\text{vev}}^i \neq 0 \} . \]

\[G = \frac{U(1) \times G'}{\mathbb{Z}_{n_0}} . \]
(29)
$SU(N) = G'$

$SO, USp(2N) = G'$

$\frac{2\pi}{N}$

$\frac{2\pi}{2}$
A few groups

<table>
<thead>
<tr>
<th>G</th>
<th>C_G</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SU(N)$</td>
<td>\mathbb{Z}_N</td>
<td>k/N</td>
</tr>
<tr>
<td>$SO(2N + 1)$</td>
<td>1</td>
<td>k</td>
</tr>
<tr>
<td>$USp(2N)$</td>
<td>\mathbb{Z}_2</td>
<td>$k/2$</td>
</tr>
<tr>
<td>$SO(2N)$</td>
<td>\mathbb{Z}_2</td>
<td>$k/2$</td>
</tr>
<tr>
<td>E_6</td>
<td>\mathbb{Z}_3</td>
<td>$k/3$</td>
</tr>
<tr>
<td>E_7</td>
<td>\mathbb{Z}_2</td>
<td>$k/2$</td>
</tr>
<tr>
<td>E_8</td>
<td>1</td>
<td>k</td>
</tr>
<tr>
<td>F_4</td>
<td>1</td>
<td>k</td>
</tr>
<tr>
<td>G_2</td>
<td>1</td>
<td>k</td>
</tr>
</tbody>
</table>
Examples

Holomorphic invariant conditions:

$G' = SU(N)$:

$$\det H_0(z) = z^k + O(z^{k-1}) ,$$

(30)

$G' = SO(2N), USp(2N)$: meson field:

$$M = H^T J H ,$$

(31)

Invariant tensor:

$$J_{SO(2N)} \equiv \sigma^1 \otimes 1_N , \quad J_{USp(2N)} \equiv i\sigma^2 \otimes 1_N ,$$

(32)

Holomorphic invariant conditions:

$$H_0^T J H_0 = z^k J + O(z^{k-1}) .$$

(33)

$G' = SO(2N + 1)$:

$$H_0^T J H_0 = z^{2k} J + O(z^{2k-1}) .$$

(34)
Special points

\[H_0(z) = z^{\nu 1_N + \nu \mathcal{H}_\alpha} \in U(1)^C \times G'^C, \]

\(\mathcal{H}_\alpha \): Cartan generators of \(g' \), \(\alpha = 1, \ldots, \text{rank}(G') \)

\[\nu = \frac{k}{n_0}. \]

Single valued condition:

\[(\nu 1_N + \nu \mathcal{H}_\alpha)_{ii} \in \mathbb{Z}_{\geq 0} \quad \forall i, \quad \Rightarrow \nu + \nu \alpha \mu_{\alpha}^{(j)} \in \mathbb{Z}_{\geq 0} \quad \forall i, \]

\(\mu_{\alpha}^{(j)} \): weight vector of \(G' \).
Quantization with respect to the dual group

Quantization condition:

\[\vec{\nu} \cdot \vec{\alpha}^{(j)} \in \mathbb{Z}, \]

\(\alpha^{(j)} \): root vectors of \(G' \).

Formally Goddard-Nuyts-Olive-Weinberg quantization condition.

Solution:

\[\vec{\nu} = 2\vec{\mu}, \quad (36) \]

\(\vec{\mu} \): any weight vector of dual group, dual group’s root vectors

\[\vec{\alpha}^* = \frac{\vec{\alpha}}{\vec{\alpha} \cdot \vec{\alpha}}. \quad (37) \]

No conceptual problems in quantizing zero-modes due to exact color+flavor symmetry.
\[\mathbb{Z}_2 \text{ parity for } G' = SO(N) \]

First homotopy group
\[\pi_1 \left(\frac{U(1) \times SO(N)}{Z_{n_0}} \right) = \mathbb{Z} \times \mathbb{Z}_2 , \]

\[\begin{aligned} n_0 &= 1 , \quad N \text{ odd} \\ n_0 &= 2 , \quad N \text{ even} \end{aligned} \]

(38)

Moduli space is disconnected:
Special points for $k = 1$ vortex with $G' = SO, USp$.

$SO(2)$

$USp(2)$

$SO(3)$

$USp(4)$

$SO(5)$
Dark grey points have positive \mathbb{Z}_2-charge, white ones have negative.
Moduli space of vortices

The moduli space of vortices: completely described by moduli matrix

\[\mathcal{M} = \{H_0(z)\} \mathbin{/} U(N)^\mathbb{C}. \] (39)

Some examples: \(k = 1 \)

\[\mathcal{M}_{USp(2M)} = \mathbb{C} \times \frac{USp(2M)}{U(M)}, \] (40)

\[\mathcal{M}_{SO(2M)} = \left(\mathbb{C} \times \frac{SO(2M)}{U(M)} \right)_+ \cup \left(\mathbb{C} \times \frac{SO(2M)}{U(M)} \right)_-, \] (41)
Connectedness of the moduli space

\[SO(2) \quad \begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2}
\end{array} \quad USp(2) \quad \begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2}
\end{array} \]

\[SU(2)/U(1)_- \quad \begin{array}{c}
-\frac{1}{2}, -\frac{1}{2}
\end{array} \quad \begin{array}{c}
\frac{1}{2}, \frac{1}{2}
\end{array} \quad SO(4) \quad \begin{array}{c}
\frac{1}{2}, -\frac{1}{2}
\end{array} \quad USp(4) \quad \begin{array}{c}
\frac{1}{2}, \frac{1}{2}
\end{array} \]

\[SU(2)/U(1)_+ \quad \begin{array}{c}
\frac{1}{2}, \frac{1}{2}
\end{array} \quad \begin{array}{c}
\frac{1}{2}, -\frac{1}{2}
\end{array} \]

\[CP^1 \quad \begin{array}{c}
-\frac{1}{2}, -\frac{1}{2}
\end{array} \quad \begin{array}{c}
\frac{1}{2}, -\frac{1}{2}
\end{array} \]
The $k = 1$ odd SO “\Leftrightarrow” $k = 2$ even:
Differences

\[\begin{align*}
(1, 1) & \quad (1, -1) \\
(-1, -1) & \quad (-1, 1) \\
(0, 1) & \quad (0, -1) \\
(1, 0) & \quad (-1, 0) \\
(0, 0) & \quad (0, 0)
\end{align*} \]

\[\begin{align*}
(\frac{1}{2}, \frac{1}{2}) & \quad (\frac{1}{2}, -\frac{1}{2}) \\
(-\frac{1}{2}, \frac{1}{2}) & \quad (-\frac{1}{2}, -\frac{1}{2})
\end{align*} \]

\[\begin{align*}
SO(4) & \quad SO(5)
\end{align*} \]

\[\begin{align*}
k = 2, \; SO(2) & \quad k = 2, \; USp(2) \\
k = 1, \; SO(3)
\end{align*} \]

\[\begin{align*}
\mathbb{CP}^1 & \quad \mathbb{CP}^1 \\
\simeq (\mathbb{CP}^1)^2 / S_2 & \quad \simeq\mathbb{CP}^1
\end{align*} \]
$SO(4)$ higher windings

$\begin{align*}
 k &= 1 \\
 k &= 2 \\
 k &= 3 \\
 k &= 4 \\
 k &= 5
\end{align*}$
Plan of the talk

Introductory part

- motivation
- crash course on vortices
- summary of recent results in the field

Results

- SO, USp theories
 - $NL\sigma M$ lumps
- fractional vortices
- Chern-Simons vortices
Existence and uniqueness

1. Result of our index calculation with generic gauge group

\[\# \text{ bosonic zero-modes} \leftrightarrow \# \text{ moduli in } H_0(z) \]

2. Strong gauge coupling limit \(\Rightarrow \) non-linear \(\sigma \)-model analytic solution is obtained
Strong gauge coupling limit

\(SU(N)\):

\[
0 = \frac{1}{\omega} \text{Tr} \Omega_0 \Omega'^{-1} - v^2 ,
\]

\[
0 = \Omega_0 \Omega'^{-1} - \frac{1_N}{N} \text{Tr} \Omega_0 \Omega'^{-1} ,
\]

\(SO, USp\):

\[
0 = \Omega_0 \Omega'^{-1} - J^\dagger \left(\Omega_0 \Omega'^{-1} \right)^T J ,
\]

Solution for \(SU(N)\):

\[
\omega_\infty = \frac{N}{v^2} \left(\text{det} \Omega_0 \right)^{\frac{1}{N}} , \quad \Omega'_\infty = \left(\text{det} \Omega_0 \right)^{-\frac{1}{N}} \Omega_0 ,
\]

Solution for \(SO, USp\):

\[
\omega_\infty = \frac{1}{v^2} \text{Tr} \sqrt{M^\dagger M} , \quad \Omega'_\infty = \frac{1_N}{\sqrt{M^\dagger M}} H_0^T(z) H_0^\dagger(z) .
\]

(42, 43, 44, 45, 46)
The NLσM is integrable.

Except for the local vortex which is mapped to a point
⇒ small lump singularity.
Kähler quotient

\[U(N): \]
\[\mathcal{L} = \text{Tr} \int d^4 \theta \ \left\{ QQ^\dagger e^{-V} + \xi V \right\}, \quad (47) \]
\[\sim \int d^4 \theta \ \xi \log \det QQ^\dagger, \quad (48) \]

\[SO, USp: \]
\[\mathcal{L} = \text{Tr} \int d^4 \theta \ \left\{ QQ^\dagger e^{-V'} e^{-V_e} + \xi V_e \right\}, \quad (49) \]

\[e^{-V'} \in SO, USp. \]

Difficult calculation.
Kähler quotient for SO, USp

Relax the algebra $e^{-V'} \in SL(N, \mathbb{C})$, introduce Lagrange multipliers λ.

$$
\mathcal{L} = \text{Tr} \int d^4 \theta \left\{ QQ^\dagger e^{-V'} e^{-V_e} + \lambda \left(e^{-V'^T} J e^{-V'} - J \right) + \xi V_e \right\},
$$

$$
\sim \int d^4 \theta \xi \log \text{Tr} \sqrt{MM^\dagger}, \quad (50)
$$

$M = Q^T J Q$ is the meson field.
A similar construction has been made for the hyper-Kähler case ($\mathcal{N} = 2$).
Plan of the talk

Introductory part

- motivation
- crash course on vortices
- summary of recent results in the field

Results

- \(SO, USp\) theories
- NL\(\sigma\)M lumps
 - fractional vortices
- Chern-Simons vortices
Fractional vortices of the first type

\[M \sim S^2 \text{ with two singularities} \]

\[\mathbb{Z}_m \text{ singularity} \]

\[\mathbb{Z}_n \text{ singularity} \]

Now to avoid a singular field configuration the 2-cycle should wrap \(m \times n \) times

\[\text{winding m-lump} \]

\[\text{winding n-lump} \]

\[\text{vev} \]

\[\text{vev} \]
Formally we can write

\[R(z) = R_{\text{rev}} \frac{\prod_{j=1}^{n} (z - z_j)^{u_j}}{\prod_{i=1}^{n} (z - z_i)^{u_i}} \]
Fractional vortices of the second type
The droplet model

\[
\begin{array}{c|cc}
& U(1) \\
\hline
A & 2 \\
B & 1 \\
\end{array}
\]

\[H = \begin{pmatrix} A \\ B \end{pmatrix}. \tag{51}\]

\[
\phi(z) = \phi_{\text{vev}} \frac{(z - z_{1}^{S})(z - z_{2}^{S})}{(z - z_{1}^{N})^2}. \tag{52}\]
Example: $SO(6)$ theory

\[
\begin{array}{c}
1 \\
\frac{1}{3} + \frac{1}{3} + \frac{1}{3}
\end{array}
\]
Plan of the talk

Introductory part

- motivation
- crash course on vortices
- summary of recent results in the field

Results

- SO, USp theories
- $NL\sigma M$ lumps
- fractional vortices
 - Chern-Simons vortices
Yang-Mills-Chern-Simons-Higgs theory

$\mathcal{N} = 2$ (4 supercharges) in $d = 2 + 1$ dimensions with the gauge group $G = U(1) \times G'$, where G' is a simple group.

$$\mathcal{L}_{\text{YMCSH}} = - \frac{1}{4g^2} (F_{\mu\nu}^a)^2 - \frac{1}{4e^2} (F_{\mu\nu}^0)^2 - \frac{\kappa}{8\pi} \epsilon^{\mu\nu\rho} A^0_\mu \partial_\nu A^0_\rho$$

$$- \frac{\mu}{8\pi} \epsilon^{\mu\nu\rho} \left(A^a_\mu \partial_\nu A^a_\rho - \frac{1}{3} f^{abc} A^a_\mu A^b_\nu A^c_\rho \right)$$

$$+ \frac{1}{2g^2} (D_\mu \phi^a)^2 + \frac{1}{2e^2} (\partial_\mu \phi^0)^2 + \text{Tr} \left(D_\mu H \right) \left(D^\mu H \right)^\dagger$$

$$- \text{Tr} \left| \phi H - Hm \right|^2 - \frac{g^2}{2} \left(\text{Tr} \left(HH^\dagger t^a \right) - \frac{\mu}{4\pi} \phi^a \right)^2$$

$$- \frac{e^2}{2} \left(\text{Tr} \left(HH^\dagger t^0 \right) - \frac{\kappa}{4\pi} \phi^0 - \frac{1}{\sqrt{2N}} \xi \right)^2$$,
Integrate out the adjoint fields

Strong gauge coupling limit $e, g \to \infty$:

\[\phi^a = \frac{4\pi}{\mu} \text{Tr} \left(HH^\dagger t^a \right) , \]

\[\phi^0 = \frac{4\pi}{\kappa} \frac{1}{\sqrt{2N}} \left[\text{Tr} \left(HH^\dagger \right) - \xi \right] . \]
Chern-Simons-Higgs theory

\[\mathcal{L}_{\text{CSH}} = -\frac{\mu}{8\pi} \epsilon^{\mu\nu\rho} \left(A_{\mu}^{a} \partial_{\nu} A_{\rho}^{a} - \frac{1}{3} f^{abc} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} \right) - \frac{\kappa}{8\pi} \epsilon^{\mu\nu\rho} \left(A_{\mu}^{0} \partial_{\nu} A_{\rho}^{0} \right) + \text{Tr} \left(\mathcal{D}_{\mu} H \right)^{\dagger} \left(\mathcal{D}^{\mu} H \right) \]

\[- 4\pi^2 \text{Tr} \left\{ \frac{1}{N} \left(\text{Tr} \left(H H^{\dagger} \right) - \xi \right) + \frac{2}{\mu} \text{Tr} \left(H H^{\dagger} t^a \right) t^a \right\} H \right|^{2}, \]

(55)
Master equations

\[
\bar{\partial} \left[\Omega' \partial \Omega'^{-1} \right] = \frac{2\pi^2}{N \kappa \mu} \left(\text{Tr} \left(\Omega_0 \Omega^{-1} \right) - \xi \right) \langle \Omega_0 \Omega^{-1} \rangle_J \\
+ \frac{\pi^2}{\mu^2} \left\langle \left(\Omega_0 \Omega^{-1} \right)^2 \right\rangle_J ,
\]

(56)

\[
\bar{\partial} \partial \log \omega = -\frac{4\pi^2}{N^2 \kappa^2} \text{Tr} \left(\Omega_0 \Omega^{-1} \right) \left(\text{Tr} \left(\Omega_0 \Omega^{-1} \right) - \xi \right) \\
- \frac{2\pi^2}{N \kappa \mu} \text{Tr} \left(\Omega_0 \Omega^{-1} \langle \Omega_0 \Omega^{-1} \rangle_J \right) .
\]

(57)

\[
\langle X \rangle_J \equiv X - J^\dagger X^T J .
\]
\[E_r^0 \]

\[E_r^{\text{NA}} \]

\[-\kappa F_{12} \]

\[-\mu F_{12} \]

\[-\kappa F_{12}^{\text{NA}} \]

\[-\mu F_{12}^{\text{NA}} \]
Abelian magnetic field

Non-Abelian magnetic field

Abelian magnetic field

Non-Abelian magnetic field
Opposite sign of couplings

\[r e^{-(\psi+\chi)/2} \]

\[e^{-(\psi-\chi)/2} \]

\[\kappa = -4, \mu = 2 \]
\[\kappa = -2, \mu = 2 \]
\[\kappa = -1, \mu = 2 \]
\[\kappa = -4, \mu = 2 \]
\[\kappa = -2, \mu = 2 \]
\[\kappa = -1, \mu = 2 \]
Fractional Chern-Simons vortex

\[SO(2M): \]

\[
H_0 = \begin{pmatrix}
\begin{array}{ccc|ccc}
z - z_1 & \ddots & & \ddots & c_1 & \\
0 & & \ddots & & & \\
\vdots & \ddots & & & \ddots & \\
0 & \ddots & & & 1 & \\
& & & & & c_M
\end{array}
\end{pmatrix},
\]

(58)

\[
\Omega' = \text{diag} \left(e^{\chi_1}, \ldots, e^{\chi_M}, e^{-\chi_1}, \ldots, e^{-\chi_M} \right),
\]

(59)

\[
\omega = e^{\psi}.
\]

(60)
\[\delta \chi_m = \frac{2|c_m|^2}{m^2_{\mu}} |z|^{-4} \quad \text{Asymptotic profiles} \]

\[+ \frac{2|c_m|^2}{m^2_{\mu}} \left[3 \left(\frac{z_m}{z} + \frac{\bar{z}_m}{\bar{z}} \right) - \frac{1}{M} \sum_{n=1}^{M} \left(\frac{z_n}{z} + \frac{\bar{z}_n}{\bar{z}} \right) \right] |z|^{-4} + \mathcal{O} \left(|z|^{-6} \right) \]

\[\delta \psi = \frac{1}{M m^2_\kappa} \left(\sum_{n=1}^{M} \left(|z_n|^2 + 2|c_n|^2 \right) - \frac{1}{M} \left| \sum_{n=1}^{M} z_n \right|^2 \right) |z|^{-4} \]

\[+ \frac{1}{M m^2_\kappa} \left[\frac{1}{2} \sum_{n=1}^{M} \left(|z_n|^2 + 4|c_n|^2 \right) \left(\frac{z_n}{z} + \frac{\bar{z}_n}{\bar{z}} \right) \right. \]

\[- \frac{1}{2M} \left(\sum_{n=1}^{M} \frac{z_n^2}{z} \sum_{n'=1}^{M} \bar{z}_{n'} + \sum_{n=1}^{M} z_n \sum_{n'=1}^{M} \frac{\bar{z}_{n'}^2}{\bar{z}} \right) \]

\[+ \frac{1}{M} \left(\sum_{n=1}^{M} \left(|z_n|^2 + 2|c_n|^2 \right) - \frac{1}{M} \left| \sum_{n=1}^{M} z_n \right|^2 \right) \sum_{n'=1}^{M} \left(\frac{z_{n'}}{z} + \frac{\bar{z}_{n'}}{\bar{z}} \right) \]

\[+ \mathcal{O} \left(|z|^{-6} \right), \]
Effective size

$$|c_{\text{effective}}|^2 = \frac{1}{2M} \sum_{n=1}^{M} \left(|z_n|^2 + 2|c_n|^2 \right) - \frac{1}{2M^2} \left| \sum_{n=1}^{M} z_n \right|^2,$$
Figure – fractional Chern-Simons vortex
Future developments

• monopole-vortex systems
• the GNOW-duality
• group theory of vortices (in preparation)
• Yang-Mills-Chern-Simons-Higgs (in preparation)
• non-BPS corrections / stability
• Q-lumps in $SO, U Sp$ theories
• quantum corrections to the $\mathcal{N} = 1$ Kähler quotients
• Ricci-flat Calabi-Yau metrics
• D-brane constructions
• knotted solitons
• quantized vortices
• domain wall systems in $SO, U Sp$ theories
• the mass deformed theories
• etc.
Thanks for your attention