On behalf of the NA48 Collaboration

New trends in high energy physics
Yalta - Crimea, 22-29 September 2001
INFN Perugia, Italy
Patrizia Cenci

The future NA48 program at CERN
The NA48 experimental program

MAIN GOAL: precise measurement of the direct CP violation

NA48/I: a high sensitivity investigation of \(\bar{K} \) and neutral hyperon decays using a modified \(K_S \) beam (2002)

NA48/II: a precision measurement of \(\Delta m \) in the neutral K meson system: published results on 1997-1999 data, 2001 run in progress

NA48/I: a precision measurement of charged K meson decay

Patrizia Cenci

The future program at CERN

data taking after the end of the \(\epsilon/\epsilon \) program:

FUTURE: 2 addenda to the NA48 proposal approved in 2000,

IN PARALLEL: many studies of \(K_S \), \(K_L \) rare decays and neutral hyperon decays (concurrently with \(\epsilon/\epsilon \) plus dedicated run).

The NA48 experimental program
The NA48 experiment at CERN

The NA48 method

- Simultaneous K_S/\bar{K}_L beams hitting the same detector region
- Concurrent collection of K_S, K_L \rightarrow \pi^0 \pi^0, \pi^+ \pi^-

- Double ratio technique for Re(\epsilon'/\epsilon) measurement
- K_S identification with proton tagging

Schedule of the forthcoming activity:

2001: End of \epsilon'/\epsilon program
2002: NA48/I: no K_L, modified K_S beam, improved readout/daq capability
2003: NA48/II: new beam line for simultaneous \pi^+ / \pi^- upgrade detector

The NA48 future program at CERN

Patrizia Cenci
The NA48 future program at CERN

The NA48 detector

- Kevlar window
- Drift chamber 1
- Anti counter 6
- Drift chamber 2
- Magnet
- Drift chamber 3
- Helium tank
- Anti counter 7
- Drift chamber 4
- Hodoscope
- Liquid krypton calorimeter
- Hadron calorimeter
- Muon veto system

CHARGED DECAYS:

\[
\frac{\sigma}{E} > 300 \text{ ps above } 20 \text{ GeV}
\]

\[
\frac{\sigma}{E} > 0.5 \% (E \text{ in GeV})
\]

\[
\sigma(p) = 0.5 \% \oplus 0.009 \%
\]

\[
\sigma(p, GeV/c) = 90 \mu m \oplus 2 \text{ mm} \oplus 200 \text{ ps}
\]

NEUTRAL DECAYS:

\[
\frac{\sigma}{E} > 1.3 \text{ mm}
\]

\[
\frac{\sigma}{E} \approx 0.5 \% \oplus 0.10 \% \oplus 0.2 \% = \frac{E}{0.5} \oplus 3.2 \% \oplus \frac{E}{(E)} \oplus 0.5 \%
\]

Hodoscope

\[
\frac{\sigma}{d} > 0.5 \% \oplus 0.009 \%
\]

\[
\frac{\sigma}{d} = 1 \text{ MeV/c}
\]

\[
\sigma(x,y) < 1.3 \text{ mm}
\]

NEUTRAL DECAYS:

\[
\frac{\sigma}{E} = 3.2 \% \oplus 0.1 \% \oplus 0.5 \%(E \text{ in GeV})
\]

Magnetic spectrometer and scintillator

\[
\frac{\sigma}{d} < 300 \text{ ps above } 20 \text{ GeV}
\]

\[
\frac{\sigma}{d} = 265 \text{ MeV/c}
\]

\[
\frac{\sigma}{d} \approx \frac{1}{p_{\text{track}}} \frac{d}{(d)}
\]

The NA48 detector
RARE DECAYS IN NA48

✦ 1997-1999 Re(ε′/ε) data taking:
 - 450 GeV/c proton momentum
 - SPS pulse: 2.4s/14.4s
 - 3.0×10^7 ppp on K_S target ⇒ $\sim 3 \times 10^2$ K_S
 - 1.5×10^{12} ppp on K_L target ⇒ $\sim 2 \times 10^7$ K_L
 - Decays per year (120 days, 50% efficiency):
 - 6.5×10^7 K_S /year ⇒ SES: $\sim 1.5 \times 10^{-7}$
 - 3.6×10^{10} K_L /year ⇒ SES: $\sim 3 \times 10^{-10}$
 (E_K: 70–170 GeV, 10% acceptance)

✦ 1999 High Intensity K_S run (48 hours)
 - no K_L beam
 - $\sim 6.0 \times 10^9$ ppp on K_S target (×200)
 - $\sim 2.3 \times 10^8$ K_S decays in E_K: 60–190 GeV
 ⇒ SES: $\sim 4 \times 10^{-8}$ (10% acceptance)
 ⇒ 48 hours \simeq 3-4 years of ϵ'/ϵ operation

✦ 2000 High Intensity K_S run
 - no charged spectrometer
 - 400 GeV/c proton momentum
 - $\sim 9.0 \times 10^9$ ppp on K_S target
 - modified production angle
 - modified duty cycle (3.2s/14.4s)
 - $\sim 10^{10}$ K_S decays collected in \sim 40 days
<table>
<thead>
<tr>
<th>Decay</th>
<th>NA48 (Preliminary)</th>
<th>Published result</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0 γγ</td>
<td>3.7 ± 0.5 (1–0.1)</td>
<td>2.7 ± 0.4 (1–0.1)</td>
</tr>
<tr>
<td>π^+ π^− e^+ e^−</td>
<td>6.7 ± 0.4 (1–0.1)</td>
<td>4.9 ± 0.3 (1–0.1)</td>
</tr>
<tr>
<td>π^+ π^− e^+ µ^-</td>
<td>6.9 ± 0.3 (1–0.1)</td>
<td>5.5 ± 0.2 (1–0.1)</td>
</tr>
<tr>
<td>π^+ π^− e^+ γ</td>
<td>6.1 ± 0.2 (1–0.1)</td>
<td>4.4 ± 0.1 (1–0.1)</td>
</tr>
<tr>
<td>K^+ γγ</td>
<td>5.8 ± 0.3 (1–0.1)</td>
<td>4.7 ± 0.2 (1–0.1)</td>
</tr>
</tbody>
</table>

Summary of recent rare decays results in NA48
The NA48/I proposal

✦ A program for K_S rare decay and neutral hyperon search in the year 2002 has been approved by the CERN Research Board (CERN SPSC 2000-002) starting in April 2002.

✦ ≥ 120 days of data taking starting in April 2002

AIM: collect at least 50 times the statistics of the 1999 data

 Proposal: $S_{EES} \approx 3 \times 10^{-11}$ (α: acceptance for the decay after all cuts)

⇒ better sensitivity actually expected due to the upgrade of front end and read out electronics

⇒ optimized design:
 ∗ optimized collimator design
 ∗ optimized read out, data acquisition and trigger systems
 ∗ new drift chamber front end and read out electronics
 ∗ vacuum along the passage of the beam
 ∗ no K_S veto counter

PROPOSALS OF THE NA48 SETUP

"The NA48/I proposal"
The NA48/I beam characteristics

DETAIL OF THE K_S TARGET STATION

SPS proton momentum $400\; GeV/c$
Duty Cycle $5.2\; s/16.8\; s$
Protons per pulse on target 1×10^{10}
Production angle $-2.5\; mrad$
Total kaon flux/pulse $\sim 1.5 \times 10^5$
K-decays (40-240 GeV)/pulse 1.1×10^5
K-decays (40-240 GeV)/year 3.0×10^{10}
(50% efficiency $\times 120$ days)

✧ Features of the 2002 intense K_S beam (wrt 1999)
⇒ lower proton momentum
⇒ longer duty cycle
⇒ modified production angle
⇒ higher intensity
Physics case: $K_S \rightarrow \pi^0 e^+ e^-$

The measurement of $K_S \rightarrow \pi^0 e^+ e^-$ is essentially a measurement of $K_1 \rightarrow \pi^0 e^+ e^-$ with CP=$+1$ (CPC)

PHYSICS INTEREST:

♦ understand the chiral structure of the $K \rightarrow \pi \gamma^*$ vertex:

\Rightarrow $K_S \rightarrow \pi^0 e^+ e^-$ is dominated by long–distance dynamics through one–photon exchange

\Rightarrow theoretical expectation from χPT ($a_s \sim O(1)$):

$$BR(K_S \rightarrow \pi^0 e^+ e^-) \sim 5.2 \times 10^{-9} |a_s|^2$$

♦ bound the indirect CPV component of the $K_L \rightarrow \pi^0 e^+ e^-$ decay: 3 components contribute to the decay amplitude:

\Rightarrow CP conserving component

$$BR(K_L \rightarrow \pi^0 e^+ e^-)_{CPC} \leq few \times 10^{-12}$$

dominated by the two-photon process (CP=-1)

$K_2 \rightarrow \pi^0 \gamma^* \gamma^*$

\Rightarrow indirect CP violating component due to the fraction ϵ of K_1 in K_L:

$$BR(K_L \rightarrow \pi^0 e^+ e^-)_{ind} = |\epsilon|^2 \frac{\tau_L}{\tau_S} BR(K_S \rightarrow \pi^0 e^+ e^-)$$

\Rightarrow direct CP violating component due to the K_2 decay in K_L
Search for \(\text{K}_S \rightarrow \pi^0 \text{e}^+ \text{e}^- \)

MEASUREMENT MOTIVATIONS:

- direct and indirect CPV components of \(\text{K}_L \rightarrow \pi^0 \text{e}^+ \text{e}^- \) interfere, and the indirect contribution is linked to the \(\chi \text{PT} \) parameter \(a_s \)

- Since the \(a_s \) parameter cannot be predicted, a high sensitivity search for \(\text{K}_S \rightarrow \pi^0 \text{e}^+ \text{e}^- \) is needed.

PRESENT STATUS:

- Best result (NA48, 2001):
 \[\text{BR} < 1.4 \times 10^{-7} \text{(90\% CL)} \]
 \((\text{PDG: BR} < 1.1 \times 10^{-6} \text{ (90\% CL)} \text{ NA31, 1993}) \)

- NA48/I proposal: \(SES \sim 6 \times 10^{-10} \)
 \((1 \text{ year data taking, MC acceptance} \sim 5\%) \)

- expected signal in one year \(\sim 7 \text{ events} \)
 for \(\text{BR(K}_S \rightarrow \pi^0 \text{e}^+ \text{e}^-) = 5 \times 10^{-9} \)

- main background due to \(\text{K}_S \rightarrow \pi^0 \pi^0_D \) estimated to be \(< 0.3 \text{ events} \) (MC simulation)

- negligible background due to \(\text{K}_S \rightarrow \pi^0_D \pi^0_D \) and \(\text{K}_L,S \rightarrow \text{e}^+ \text{e}^- \gamma \gamma \)
The uncertainty on $\langle \mathcal{G} \rangle$ is dominated by the error on η_{000}.

K_S and K_L decay amplitudes into all final states.

Relation which couples the CP violation parameter η_{000} and η_{000} is also important for CP test through the Bell-Steinberger relations.

Physics case: CP violation in $K_S \to \pi_0 \pi_0 \pi_0$.

$\langle \eta_{000} \rangle$ is sensitive to direct CPV in a decay amplitude.

η_{000} is also important for CPT test through the Bell-Steinberger relation which couples the CPT violation parameter $\Im(\delta)$ and $K_0 - K_0$ mixing.

η_{000} is predicted by CPV in the $K_0 - K_0$ mixing.

η_{000} is predicted by CPV in the $K_0 - K_0$ mixing.

η_{000} is predicted by CPV in the $K_0 - K_0$ mixing.

η_{000} is predicted by CPV in the $K_0 - K_0$ mixing.

η_{000} is predicted by CPV in the $K_0 - K_0$ mixing.

η_{000} is predicted by CPV in the $K_0 - K_0$ mixing.

η_{000} is predicted by CPV in the $K_0 - K_0$ mixing.

η_{000} is predicted by CPV in the $K_0 - K_0$ mixing.

η_{000} is predicted by CPV in the $K_0 - K_0$ mixing.

η_{000} is predicted by CPV in the $K_0 - K_0$ mixing.
The NA48 future program at CERN...
The η_{000} measurement

Sensitivity to η_{000} in NA48/I

- Method: measure $K_S - K_L$ interference near the production target
 - maximum interference at the K_S target
 - most of the effect within few K_S lifetimes
- Sensitivity to $\Re(\eta_{000})$ and $\Im(\eta_{000})$ evaluated with $3\pi^0$ events (HI K_S run data and MC)
 - high $K^0 \to 3\pi^0$ statistics required to improve limits on $\Re(\eta_{000})$ and $\Im(\eta_{000})$
 - excellent knowledge of detector acceptance

$\Re(\eta_{000}), \Im(\eta_{000})$: statistical and systematic error due to limited knowledge of the acceptance:

\Longrightarrow NA48/I error on $\Re(\eta_{000})$ and $\Im(\eta_{000})$ within $\sim 1\%$ in one year of data taking
Hyperon decays in NA48

The K_S target is source of hyperons: the intense beam will be used to improve NA48 current results on neutral hyperon decays and start new studies.

HYPERON SAMPLE IN NA48 (1999 data): two tracks reconstructed under the $\pi^+\pi^-$ hypothesis ($\sim 41 \times 10^6$ 2–tracks events)

HYPERON TRIGGER IN NA48: apply cuts on anti–$[K_S \rightarrow \pi^+\pi^-]$ mass and p^+/p^- momenta ratio
Neutral hyperon physics

OUTLOOK AND MOTIVATION

✦ precise measurement of $M(\Xi^0)$
 ⇒ check mass splitting among the SU(3) octect members related to radiative corrections
 ⇒ test of theoretical approaches to mass calculation
 ⇒ NA48: $M(\Xi^-) - M(\Xi^0) = 6.5 \pm 0.25 \text{ MeV}/c^2$
 ⇒ NA48/l: improve error to 0.1 MeV/c2

✦ radiative decays $\Xi^0 \rightarrow \Lambda^0 \gamma / \Sigma^0 \gamma$
 ⇒ poor theoretical understanding: predictions of various models over an order of magnitude
 ⇒ NA48 results (preliminary):
 \[\text{BR}(\Lambda \gamma) = (1.9 \pm 0.2) \times 10^{-3} \quad (497 \text{ events}) \]
 \[\text{BR}(\Sigma^0 \gamma) = (3.7 \pm 0.5) \times 10^{-3} \quad (380 \text{ events}) \]
 ⇒ NA48/l: increase samples by factor 100 and reduce systematics by factor 2: expect 5% accuracy on BR

✦ hyperon β decay $\Xi^0 \rightarrow \Sigma^+ e^- \bar{\nu}$
 ⇒ direct analogue to $n \rightarrow pe^- \bar{\nu}$
 ⇒ study flavor symmetry violation
 ⇒ PDG: $\text{BR}(\Sigma^+ e^- \bar{\nu}) = (2.7 \pm 0.4) \times 10^{-4} \quad (KTeV)$
 ⇒ NA48: observe ~ 60 events
 ⇒ NA48/l: expect up to 25000 events

✦ search for $\Xi^0 \rightarrow p\pi^- \Delta S=2$ transitions
 ⇒ predicted $\text{BR}(p\pi^-) \sim 10^{-17}$
 ⇒ current limit: $\text{BR}(p\pi^-) \leq 4 \times 10^{-4} \quad (90\% \text{ CL})$
 ⇒ NA48/l: expect a factor 100 on existing limit
Competition to \(\text{NA48/I} \) is up to one order of magnitude better than \(\text{KTeV} \) (no hole in tracking chambers)

- Capability of \(\text{KTeV} \) to track the leading baryon in the beam
- Region
- Only hyperons with very high energy decay in \(\text{KTeV} \) fiducial
- KLOE collects neutral hyperons from the vacuum beam
- Competition from the \(\text{KTeV} \) experiment (FNAL – USA) which

\[\begin{align*}
\text{NEUTRAL HYPERON PHYSICS} \\
\text{NA48/I proposal} \\
\text{However, the sensitivity per year for } K^0 \rightarrow \pi^0 e^+ e^- \text{ is less than} \\
\text{at the full } \text{DAΦNE} \text{ design luminosity of } 5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1} \\
\text{KLOE} \\
\text{Complementary experimental technique due to the } K_S \text{ tagging in} \\
\text{KLOE experiment (Frascati – Italy)}
\end{align*} \]

\[\begin{align*}
\text{RARE } K_S \text{ DECAYS} \\
\text{Competition to NA48/I}
\end{align*} \]
Summary of NA48/I physics topics

K^0 \to \pi^+ \pi^- \gamma \gamma

(\times 10^9)

\frac{1.5}{2.6} \times 10^6

\frac{3.4}{5.3} \times 10^6

\frac{5.4}{9.6} \times 10^5

\frac{9.0}{1.8} \times 10^4

Dalitz decays (\gamma \gamma^*)

\text{Non-Leptonic decays (\chi PT)}
The NA48/II proposal

A new program has been approved by the CERN RB to study with high statistics specific properties of the decay of charged kaons (CERN SPSC 2000-003):

- **direct CP violation in** $K \rightarrow 3\pi$
- **$q\bar{q}$ condensate in QCD vacuum** (K_{e4})
- **possible deviations from V-A and Standard Model**
- **measurement of rare charged kaon decays involving photons and/or e^+e^- pairs**

✦ **use new simultaneous charged kaon beams**
✦ **upgrade the NA48 detector with a TRD for π/e rejection and with a small beam spectrometer for better K position and momentum measurement**
✦ **optimize trigger system**
✦ **data taking in the year 2003**
Direct CP Violation in K^{\pm} decays

High precision study of charged kaon decays:
⇒ important new possibility to search for direct CP violation additional to that of the neutral kaon sector without the complications induced by mixing
⇒ any difference in K^{\pm} decay matrix elements indicates direct CP violation

NA48/II proposal: high statistics comparison of $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$, $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$
⇒ most promising processes
⇒ decay matrix element parametrized as:

$$|M(u,v)|^2 \sim 1 + gu + hu^2 + kv^2$$

$$u = (s_3 - s_0)/m_\pi^2 \quad v = (s_1 - s_2)/m_\pi^2$$

$$s_0 = (s_1 + s_2 + s_3)/3$$

$$s_i = (P_K - P_i)^2 \quad (i = 3 \text{ for the odd pion})$$

⇒ direct CPV measured through the asymmetry:

$$A_g = \frac{g^+ - g^-}{g^+ + g^-}$$

⇒ observable quantity:

$$R(u) = \frac{\int dv |M^+(u,v)|^2}{\int dv |M^-(u,v)|^2} \approx 1 + u \cdot (g^+ - g^-) = \frac{N^+(u)}{N^-(u)}$$

⇒ any variation of $R(u)$ as a function of u is evidence of direct CPV.
The A_g measurement

PRINCIPLE OF A_g MEASUREMENT IN NA48/II

- Systematic uncertainties on A_g can create a slope different from zero (studied with MC):
 - different K^+ and K^- energy distributions
 - local inefficiencies in drift chambers
 - differences between the magnetic field in the two polarities
 - relative offset of the two beams
 - relative asymmetry in the profile of the two beams
 - differences in the punch-through probabilities for positive and negative pions
 - difference in the interaction probability in the spectrometer for positive and negative pions

- Systematics could be kept at a level of $< 10^{-4}$ under the following conditions:
 - use simultaneous K^+ and K^- beams overlapping in space and time, and within a narrow range of momentum such that K^+ and K^- decay in the same fiducial volume
 - alternate the sign of the spectrometer field to equalize acceptances for K^+ and K^- decays in presence of localized imperfection in the detector
 - bin data in kaon momentum and average $R(u)$ over different field orientations in each bin for a measurement independent of acceptance
The simultaneous K^+ and K^- beams

K^+ and K^- beam parameters

<table>
<thead>
<tr>
<th></th>
<th>K^+</th>
<th>K^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>400 GeV/c</td>
<td></td>
</tr>
<tr>
<td>Duty cycle</td>
<td>5.2s/16.8s</td>
<td></td>
</tr>
<tr>
<td>Proton per pulse</td>
<td>10^{12}</td>
<td></td>
</tr>
<tr>
<td>Production angle, mrad</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Acceptance angle, mrad</td>
<td>±0.36</td>
<td></td>
</tr>
<tr>
<td>Momentum, GeV/c</td>
<td>60±3</td>
<td></td>
</tr>
<tr>
<td>proton flux/pulse (10^6)</td>
<td>8.6</td>
<td>0.9</td>
</tr>
<tr>
<td>pion flux/pulse (10^6)</td>
<td>33.2</td>
<td>24.6</td>
</tr>
<tr>
<td>kaon flux/pulse (10^6)</td>
<td>3.1</td>
<td>1.8</td>
</tr>
<tr>
<td>$K_3\pi$(in 100m)/year (10^{10})</td>
<td>1.4</td>
<td>0.8</td>
</tr>
</tbody>
</table>
The precision of A_g measurement

RECONSTRUCTION OF $K^{\pm} \rightarrow 3\pi^{\pm}$ IN NA48/II

<table>
<thead>
<tr>
<th>Decay</th>
<th>$\pi^{\pm}\pi^{\mp}\pi^{-}$</th>
<th>$\pi^{\pm}\pi^{0}\pi^{0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance (%)</td>
<td>45</td>
<td>6.5</td>
</tr>
<tr>
<td>K^+/K^- decays/pulse (10^4)</td>
<td>2.3/1.4</td>
<td>0.05/0.03</td>
</tr>
<tr>
<td>K^+/K^- decays/year (10^9)</td>
<td>7.3/4.4</td>
<td>0.15/0.09</td>
</tr>
<tr>
<td>M_K resolution (MeV/c^2)</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>P_K resolution (MeV/c)</td>
<td>460</td>
<td>360</td>
</tr>
<tr>
<td>z resolution (cm)</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>u resolution</td>
<td>0.035</td>
<td>0.02</td>
</tr>
<tr>
<td>STATISTICAL ERROR</td>
<td>0.7×10^{-4}</td>
<td>$< 2.2 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

SYSTEMATICS UNCERTAINTIES ON A_g

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty on $A_g (10^{-5})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam non collinearity</td>
<td>< 3.8 (MC stat.)</td>
</tr>
<tr>
<td>$P_{K^+} \neq P_{K^-}$</td>
<td>~ 1.0 (Kabes)</td>
</tr>
<tr>
<td>Accidentals in detector</td>
<td>< 2.0 (MC stat.)</td>
</tr>
<tr>
<td>π^+/π^- cross section difference</td>
<td>< 0.07 (MC stat.)</td>
</tr>
<tr>
<td>Pion punch-through effects</td>
<td>< 0.5 (K_e3 stat.)</td>
</tr>
<tr>
<td>Parasitic B, resolution on u,p...</td>
<td>negligible</td>
</tr>
<tr>
<td>TOTAL SYSTEMATICS</td>
<td>~ 5</td>
</tr>
</tbody>
</table>

\Rightarrow the precision of A_g measurement in NA48/II is limited by statistics

\Rightarrow total systematics $\sim 5 \times 10^{-5}$

\Rightarrow with $\sim 10^{10}$ $K^{\pm} \rightarrow \pi^{\pm}\pi^{\mp}\pi^{-}$ decays/year

NA48/II aims at a precision of $\sim 10^{-4}$ on A_g
Outlook on A_g measurement

✦ The precision of A_g measurement in NA48/II is limited by statistics
✦ Present experimental limit:

$$A_g = (-7 \pm 5) \times 10^{-3} \quad Ford \ et \ al. \ (1970)$$

✦ Status of A_g measurement:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>K^\pm decays</th>
<th>Statistics</th>
<th>δA_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>HyperCP</td>
<td>$\pi^\pm \pi^\mp \pi^0$</td>
<td>4.5×10^8</td>
<td>$\sim 6 \times 10^{-4}$</td>
</tr>
<tr>
<td>KLOE (1 year)</td>
<td>$\pi^\pm \pi^\mp \pi^0$</td>
<td>1.5×10^8</td>
<td>$\sim 4.4 \times 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td>$\pi^\pm \pi^\mp \pi^0$</td>
<td>0.6×10^8</td>
<td>$\sim 6.3 \times 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td>$\pi^\pm \pi^\mp \pi^0$</td>
<td>1.17×10^{10}</td>
<td>$\sim 0.7 \times 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td>$\pi^\pm \pi^\mp \pi^0$</td>
<td>2.4×10^8</td>
<td>$< 2.2 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

✦ Status of theoretical calculations:

<table>
<thead>
<tr>
<th>Author</th>
<th>A_g prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Belkov et al.</td>
<td>$(2-4) \cdot 10^{-4}$</td>
</tr>
<tr>
<td>E. Shabalin</td>
<td>$4 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>D’Ambrosio</td>
<td>$4 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>L.Maiani, N.Paver</td>
<td>$(2.3 \pm 0.6) \cdot 10^{-6}$</td>
</tr>
<tr>
<td>D’Ambrosio et al.</td>
<td>$\sim 10^{-4}$</td>
</tr>
</tbody>
</table>

✦ CP can also be investigated in NA48/II (limited statistics) in decays such as: $K^\pm \rightarrow \pi^\pm \pi^0 \gamma$
CONCLUSIONS

✦ NA48 is concluding with the last data taking in 2001 a successful experimental program:

⇒ direct CP violation in the neutral kaon system has been clearly established

⇒ the rare decay program has provided very interesting physics results in the field of χPT and of CP violation in the neutral kaon sector and in the field of neutral hyperon physics

✦ two addenda to the NA48 proposal have been approved for further running after the end of $Re(\varepsilon'/\varepsilon)$ program to get a deeper knowledge of kaon and hyperon physics:

NA48/I will take data in 2002 using the present beam line and detector with improved readout capability to probe the K_S and neutral hyperon decays physics with a beam intensity ~ 500 times the actual one.

NA48/II will take data in 2003 using an upgraded detector and simultaneous charged kaon beams to study direct CP violation in the decay $K^{\pm} \to \pi^{\pm} \pi^+ \pi^-$.

✦ The K sector has still great potentialities for exiting physics in the framework of direct CP violation investigation