Summary on CP Violation with Kaons

Patrizia Cenci

INFN Sezione di Perugia

XX Workshop on Weak Interaction and Neutrinos

Delphi, June 7th 2005

On behalf of the NA48 Collaboration

Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

- Introduction
- CP Violation with Kaons
- Experiments: KLOE, KTeV, NA48
- Results:
 - Direct CP Violation with neutral Kaons
 - Charge Asymmetry in K⁰_{e3}
 - $ightarrow K_{S} \rightarrow 3\pi^{0}$
 - > Direct CP Violation in $K_{3\pi}^{\pm}$ decays
 - ightarrow K_{s,L} \rightarrow π^0 |+|-
- Prospects and conclusions

Introduction

Why Kaons

- crucial for the present definition of Standard Model
- search for explicit violation of SM: key element to understand flavour structure of physics beyond SM

Motivation for Kaons experiments

- Test of fundamental symmetries
 - CP Violation: charge asymmetry, T violating observables
 - CPT test: tigher contraints from Bell-Steinberger rule, K_s/K_L semileptonic decays
- Sharpen theoretical tools
 - Study low energy hadron dynamics: χPT tests and parameter determination, form factors
- Probe flavour structure of Standard Model and search for explicit violation (e.g. Lepton Flavour Violation)
 - Rare decays suppressed (FCNC: 2nd order weak interactions) or not allowed by SM
 - Sensitivity to physics BSM

CP Violation with Kaons

CP Violation: a window to physics beyond SM

Brief History of CP Violation

- 1964: CP violation in K⁰ (Cronin, Christenson, Fitch, Turlay)
- 1993-99: Direct CP violation in K⁰ (NA31, NA48, KTeV)
- 2001: CP violation in B^o decay with oscillation (Babar, Belle)
- 2004: Direct CP violation in B^o (Belle, Babar)

CP Violation in Kaon decays can occur either in K⁰-K⁰ mixing or in the decay amplitudes
 Only Direct CP Violation occurs in K[±] decays (no mixing)
 Complementary observables to measure Direct CP Violation in Kaons: ε'/ε, rare decays, A_g

Experiments with Kaons

FNAL - KTeV Experiment

Parallel K beams:

- 2 proton lines (~ 10¹² ppp)
- K_s from K_L on Regenerator (scintillator plates),
- K_s identification via x-y position
- switches beam line once per cycle
- $\pi^+\pi^-$: Magnetic Spectrometer $\sigma(p)/p \cong 0.17\% \oplus 0.007 p[GeV/c]\%$
- $\pi^0\pi^0$: CsI calorimeter $\sigma(E)/E \cong 2.0\%/JE \oplus 0.45\%$

 $σ_{M}(π^{0}π^{0}) \sim σ_{M}(π+π-) \sim 1.5 \text{ MeV}$

Photon veto and muon veto

Experimental Program KTeV: 1997,1999 K_L,K_S

CERN - NA48 Experiment

Simultaneous K beams:

- split same proton beam (~10¹² ppp)
 convergent K_L-K_S beams
 K_S from protons on near target
 K_S identification via proton tagging

• $\pi^+\pi^-$: Magnetic Spectrometer

- ∆p/p = 1.0% ⊕ 0.044% × p [GeV/c]
- $\pi^0\pi^0$: LKr Calorimeter

 $\Delta E/E = 3.2\%/JE \oplus 9\%/E \oplus 0.42\%$ [GeV]

 $\sigma_{M}(\pi^{0}\pi^{0}) \sim \sigma_{M}(\pi+\pi-) \sim 2.5 \text{ MeV}$

Photon and muon veto

\Phi Factory: e⁺e⁻ collider@√*s* =1019.4 MeV = M_{Φ}

- Φ Decays: BR($\Phi \rightarrow K_L K_S$)=34.3%; BR($\Phi \rightarrow K^+ K^-$)=49.31%
- tagged K decays from Φ → KK ⇒ pure K beams
 clean investigation of K decays and precision measurements
- KLOE data taking: 2000-01-02-04-05

(Recent results from KLOE: S. Dell'Agnello - LNF SC Open Meeting, may '05 and M. Martini - Krare Workshop@LNF, may '05)

New KLOE run in progress

LNF: the KLOE detector

EM Calorimeter: Lead and scintillating fibres

Drift Chamber: Stereo geometry

$$\delta p \mid p \approx 4 \times 10^{-3}$$

 $\sigma_{r\phi} = 150 \mu m$
 $\sigma_z = 2 m m$

The recent past

Direct CP Violation: experimental results on ɛ'/ɛ

* Direct CPV established in $K^0 \rightarrow \pi\pi$ by NA48 and KTeV

more results expected (KTeV, KLOE)

> no third generation experiments

Result (roughly) compatible with SM

Exclude alternative to CKM mechanism (superweak models and approximate-CP)

> Despite huge efforts, ε'/ε not yet computed reliably due to large hadronic uncertainties

Improvement of the calculation expected with lattice

New physics may contribute as a correction to SM predictions

K⁰_{e3} Charge Asymmetry

- Charge Asymmetry in K_{e3}^0 is due to $\overline{K}^0 K^0$ mixing (Indirect CPV)
- Limits on CPT and $\Delta S = \Delta Q$
- Il CPT is conserved and $\Delta S = \Delta Q$:

$$\delta_{\rm L}(e) = \frac{\Gamma(K_L \to e^+\pi^-\nu) - \Gamma(K_L \to e^-\pi^+\overline{\nu})}{\Gamma(K_L \to e^+\pi^-\nu) + \Gamma(K_L \to e^-\pi^+\overline{\nu})} \cong 2 \times Re(\varepsilon)$$

Results in NA48 (~ $2 \times 10^8 \text{ K}_{e3}$) and KTeV (~ $3 \times 10^8 \text{ K}_{e3}$)

KTeV (2002): $\delta_{L}(e) = (3.322 \pm 0.058_{stat} \pm 0.047_{syst}) \times 10^{-3}$

The present

Semileptonic K₅ decays

* KLOE: first measurement (2002), update in progress

> Method:

- K_s tagged by opposite K_L ($\Phi \rightarrow \overline{K}K$)
- Identify πe pairs using TOF
- Event counting by fitting the [E(πe)-P] distribution (test for ν)
- Independent measurement of the two charge modes
- Selected ~10⁴ signal events per charge in the 2001-02 data (0.5 fb⁻¹)
- New preliminary result:

BR(K_S $\rightarrow \pi e \nu$) = (7.09 ± 0.07_{stat} ± 0.08_{syst}) 10⁻⁴

CPT Test: new measurement of the charge asymmetry in K_S: δ_s(e)= (-2 ± 9 ± 6) × 10⁻³ (δ_L(e) = 3.32 ± 0.07) × 10⁻³)

CP Violation in $K_S \rightarrow \pi^0 \pi^0 \pi^0$

- ★ $K_S \rightarrow 3\pi^0$ is CP violating [CP(K_S) = +1, CP($3\pi^0$) = -1]
- Allowed by SM, but never observed
- According to SM:

$$BR\left(K_{S} \rightarrow 3\pi^{0}\right) \approx \left|\varepsilon\right|^{2} \frac{\tau_{S}}{\tau_{L}} BR\left(K_{L} \rightarrow 3\pi^{0}\right) = 1.9 \times 10^{-9}$$

- ★ Last limit from direct search: $BR(K_S \rightarrow 3\pi^0) < 1.4 \times 10^{-5}$ (SND, 1999)
- Can be parametrized with the amplitude ratio n₀₀₀

$$|\eta_{000}| = \frac{A(K_s \to 3\pi^0)}{A(K_L \to 3\pi^0)} = \sqrt{\frac{\tau_L}{\tau_s}} \frac{BR(K_s \to 3\pi^0)}{BR(K_L \to 3\pi^0)} \Rightarrow \left[|\eta_{000}| = \varepsilon + i \frac{Im(A_l)}{Re(A_l)} \right] \begin{cases} \text{If CPT is conserved:} \\ \text{Re}(\eta_{000}): \text{ CPV in mixing} \\ \text{Im}(\eta_{000}): \text{ direct CPV} \end{cases}$$

* The uncertainty on $K_s \rightarrow 3\pi^0$ amplitude limits the precision on CPT test (Bell-Steinberger relation)

$$(1+i\tan\phi_{SW})(\Re e\varepsilon -i\Im m\delta) = \sum_{f} A^{*}(K_{S} \to f)A(K_{L} \to f)$$

$$\swarrow P \quad \And P$$

KLOE search for $K_S \rightarrow \pi^0 \pi^0 \pi^0$

- Direct search, new result
- Rarest decay studied by KLOE so far
- Data sample: 0.5 fb⁻¹ (2001-2002 run)
 - > 37.8 × 10⁶ (K_L-crash tag + K_S $\rightarrow 2\pi^0$)
- Require 6 prompt photons
 - Iarge background ~40K events
- Kinematic fit, $2\pi^{0}, 3\pi^{0}$ estimators (ζ_{2}, ζ_{3})
- After all analysis cuts ($\varepsilon_{3\pi}$ = 24.4%)
 - 2 candidate events found
 - expected background: 3.13 ± 0.82 ± 0.37

NA48/1: $K_5 \rightarrow \pi^0 \pi^0 \pi^0$ and η_{000}

Measurement in NA48

> Sensitivity to n_{000} from K_s - K_L interference superimposed on a huge flat $K_L \rightarrow \pi^0 \pi^0 \pi^0$ component

- > Aim: O(1%) error on $Re(n_{000})$ and $Im(n_{000})$
- > Method: measure K_S-K_L interference near the production target
 - use $3\pi^0$ events from near-target run for η_{000}
 - normalize to $K_L \rightarrow 3\pi^0$ from far-target run
 - use MC to correct for residuals acceptance difference and Dalitz decays

♦ Time evolution of $K_{L,S}$ → $3\pi^{0}$:

$$I_{3\pi^{0}}(t) \propto \underbrace{e^{-\Gamma_{L} t}}_{K_{S} \text{ decay}} \underbrace{K_{S} \text{ decay}}_{K_{S} \text{ observe}} + 2 D(p) \left(\text{Re}(\eta_{000}) \cos \Delta m t - \text{Im}(\eta_{000}) \sin \Delta m t \right) e^{-\frac{1}{2}(\Gamma_{S} + \Gamma_{L}) t}}_{K_{L} - K_{S} \text{ interference}}$$

Dilution $D(p) = \frac{N(K^{0}) - N(\overline{K^{0}})}{N(K^{0}) + N(\overline{K^{0}})} \approx 0.35 \text{ momentum dependent.}$

1 NA48/1 results on K_S $\rightarrow \pi^0 \pi^0 \pi^0$

- Data samples (run 2000):
 - > Near-target run: $4.9 \times 10^6 \text{ K}_{\text{L,s}} \rightarrow 3\pi^0 \text{ data}$ 90
 - Far-target (K_L) run:
- 4.9×10⁶ K_{L,S} → $3\pi^0$ data 109×10⁶ K₁ → $3\pi^0$ data

90×10⁶ $K_L \rightarrow 3\pi^0 MC$ 90×10⁶ $K_L \rightarrow 3\pi^0 MC$

Fit method: fit double ratio

 $\frac{3\pi^{0} \text{ (Data, } K_{\text{S}} \text{ run)}}{K_{L} \rightarrow 3\pi^{0} \text{ (Data, } K_{\text{L}} \text{ run)}} \Big/ \frac{K_{L} \rightarrow 3\pi^{0} \text{ (MC, } K_{\text{S}} \text{ run)}}{K_{L} \rightarrow 3\pi^{0} \text{ (MC, } K_{\text{L}} \text{ run)}}$

Final Results (PL B610 2005) :

- > $Re(n_{000}) = -0.002 \pm 0.011_{stat.} \pm 0.015_{syst}$
- > $Im(n_{000}) = -0.003 \pm 0.013_{stat.} \pm 0.017_{syst}$
- ▷ |η| < 0.045 90% CL</p>
- > Br($K_S \rightarrow 3\pi^0$) < 7.4 × 10⁻⁷ 90% CL

If $Re(n_{000}) = Re(\epsilon) = 1.66 \times 10^{-3}$ (CPT):

- > $Im(\eta_{000})_{CPT} = -0.000 \pm 0.009_{stat.} \pm 0.017_{syst}$
- |η|_{CPT} < 0.045 90% CL</p>

>
$$Br(K_S \rightarrow 3\pi^0)_{CPT} < 2.3 \times 10^{-7}$$
 90% CL

Direct CP Violation in $K_{3\pi}^{\pm}$

NA48/2: search for Direct CPV by comparing the linear slopes g_{\pm} for K[±]

Experimental results Experimental results

SM estimates of A_g vary within an order of magnitude (few 10⁻⁶ to 8×10⁻⁵).

Models beyond SM predict substantial enhancements partially within the reach of NA48/2. (theoretical analyses are by far not exhaustive by now)

CPV asymmetry in decay width is much smaller than in Dalitz-plot slopes A_g (SM: ~10⁻⁷...10⁻⁶)

NA48/2 goal and method

Primary NA48/2 goal:

- > Measure slope asymmetries in "charged" and "neutral" modes with precisions $\delta A_q < 2.2 \times 10^{-4}$, and $\delta A_q^0 < 3.5 \times 10^{-4}$, respectively
- Statistics required for this measurement: > 2×10⁹ in "charged" mode and > 10⁸ in "neutral" mode

NA48/2 method:

- Two simultaneous K⁺ and K⁻ beams, superimposed in space, with narrow momentum spectra
- Detect asymmetry exclusively considering slopes of ratios of normalized u distributions
- Equalise K⁺ and K⁻ acceptances by frequently alternating polarities of relevant magnets

NA48/2 Data Taking

Data taking finished 2003 run: ~ 50 days 2004 run: ~ 60 days

Total statistics in 2 years: $K^{\pm} \rightarrow \pi^{-}\pi^{+}\pi^{\pm}$: ~ 4×10⁹ $K^{\pm} \rightarrow \pi^{0}\pi^{0}\pi^{\pm}$: ~ 2×10⁸

~ 200 TB of data recorded

This presentation: first result based on 2003 K[±] $\rightarrow \pi^{\pm}\pi^{-}\pi^{+}$ sample

Ag measurement strategy - 1

Use only the slopes of ratios of normalized u-distribution

- Build u-distributions of K⁺ and K⁻ events: N⁺(u), N⁻(u)
- > Make a ratio of these distributions: R(u)
- > Fit a linear function to this ratio: normalised slope $\approx \Delta g$

$$R(\mathbf{u}) = \frac{N^{+}(\mathbf{u})}{N^{-}(\mathbf{u})} = \overline{R} \frac{1 + g^{+}u}{1 + g^{-}u} \approx \overline{R}(1 + \Delta g u)$$

$$A_{g} = \frac{\Delta g}{2g} \implies \text{e.g. uncertainty } \delta Ag < 2.2 \cdot 10^{-4}$$
corresponds to $\delta \Delta g < 0.9 \cdot 10^{-4}$

Compensate unavoidable detector asymmetry inverting periodically the polarity of the relevant magnets:

- Every day: magnetic field B in the spectrometer (up/down: B+/B-)
- Every week: magnetic field A of the achromat (up/down: A+/A-)

A_g measurement strategy - 2

Four ratios are used to cancel acceptances:

- $R_{US} = \frac{N(A+B+K+)}{N(A+B-K-)}$ $R_{UJ} = \frac{N(A+B-K+)}{N(A+B+K-)}$
- $R_{\text{DS}} = \frac{N(A-B+K+)}{N(A-B-K-)}$
- $R_{DJ} = \frac{N(A-B-K+)}{N(A-B+K-)}$

- beam line polarity (U/D)
- direction of kaon deviation in the spectrometer (S/J)
- "Supersample" data taking strategy:
 > achromat polarity (A) was reversed on weekly basis
 - spectrometer magnet polarity (B) was reversed on <u>daily</u> basis

⇒ 1 Supersample ~ 2 weeks ⇒ 2003 data: 4 Supersamples

Ag measurement strategy - 3

Quadruple ratio is used for further cancellation:

$\mathbf{R} = \mathbf{R}_{US} \times \mathbf{R}_{UJ} \times \mathbf{R}_{DS} \times \mathbf{R}_{DJ} \sim 1 + 4 \times \Delta \mathbf{g} \times \mathbf{u}$

Cancellation of systematic biases:

- 1) Beam rate effects: global time-variable biases (K^+ and K^- simultaneously recorded)
- 2) Beam geometry difference effects: beam line biases (K⁺ beam up / K⁻ beam up etc)
- 3) Detector asymmetries effects (K⁺ and K⁻ illuminating the same detector region)

Acceptance is defined respecting azimuthal symmetry:

4) Effects of permanent stray fields (earth, vacuum tank magnetisation) cancels

The result is sensitive only to <u>time variation</u> of asymmetries in experimental conditions (beam+detector) with a characteristic time smaller than the corresponding field-alternation period (e.g. the supersample time scale: beam-week, detector-day)

Beam systematics

Time variations of beam geometry

- Acceptance largely defined by central beam hole edge (R~10 cm)
- Acceptance cut defined by a (larger) "virtual pipe" centered on averaged beam positions - as a function of charge, time and K momentum

Spectrometer systematics

* Time variations of spectrometer geometry

> DCH drifts by $O(100\mu m)$ in a 3 month run: asymmetry in p measurement

> alignment is fine tuned by forcing the average value of the reconstructed invariant 3π masses to be equal for K⁺ and K⁻

Momentum scale

> due to variations of the magnet current (10^{-3})

> sensitivity to a 10⁻³ error on field integral: $\Delta M \approx 100 \text{ keV}$

mostly cancels due to simultaneous beams

> in addition, it is adjusted by forcing the average value of reconstructed invariant 3π masses to the PDG value of M_{K+}

Trigger systematics

- Measure inefficiencies using control data from low bias triggers
- Assume rate-dependent trigger inefficiencies symmetric

Fit linearity: 4 Supersamples

Systematics summary and results

Combined result in $\Delta g \times 10^4$ units (3 independent analyses)

	Raw	Corrected for L2 eff
SS 0	0.0±1.5	0.5±2.4
SS1	0.9±2.0	2.2±2.2
SS 2	-2.8±2.2	-3.0±2.5
553	2.0±3.4	-2.6±3.9
Total	-0.2±1.0	-0.2±1.3
χ ²	2.2/3	3.2/3

L2 trigger correction included

Conservative estimation of systematic uncertainties	Effect on ∆gx10⁴
Acceptance and beam geometry	0.5
Spectrometer alignment	0.1
Analyzing magnet field	0.1
π±→µν decay	0.4
U calculation and fitting	0.5
Pile-up	0.3
Systematic errors of statistical nature	
Trigger efficiency: L2	0.8
Trigger efficiency: L1	0.4
Total systematic error	1.3

Stability of the result

Neutral mode asymmetry $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

- Statistics analyzed: 28 x 10⁶ events (1 month of 2003)
- Statistical error with analyzed data: $\delta A_q = 2.2 \times 10^{-4}$
- Extrapolation to 2003 + 2004 data: $\delta A_g = 1.3 \times 10^{-4}$
- Similar statistical precision as in "charged" mode
- Possibly larger systematics errors

A glance to the future

Search for $K_S \rightarrow \pi^0 e^+ e^-$

Motivation: determination of the indirect CP violating amplitude of the decay $K_L \rightarrow \pi^0 e^+ e^-$

NA48/1: $K_{S}^{0} \rightarrow \pi^{0}|^{+}|^{-}$

Main motivation for the NA48/1 proposal

SM prediction for $K^0_L \rightarrow \pi^0 I^+ I^-$

G. Buchalla, G. D'Ambrosio, G. Isidori, Nucl. Phys. B672, 387 (2003) - S. Friot, D. Greynat, E. de Rafael, hep-ph/0404136, PL B 595

Prospects and conclusions

- Kaon was central in the definition of SM
- Quantitative tests of CKM mechanism and search for new physics beyond SM are possible with rare Kaon decay mesurements
- High level of precision is attainable
- Constraints to CKM variables and further test of CPV from FCNC processes ("golden decays"):
 - > $K_L \rightarrow \pi^0 e^+ e^-$ decays
 - > $\mathbf{K} \rightarrow \pi \ \overline{\nu}\nu$ decays

 \Rightarrow see M. Gorbahn and M. Diwan talks, this conference