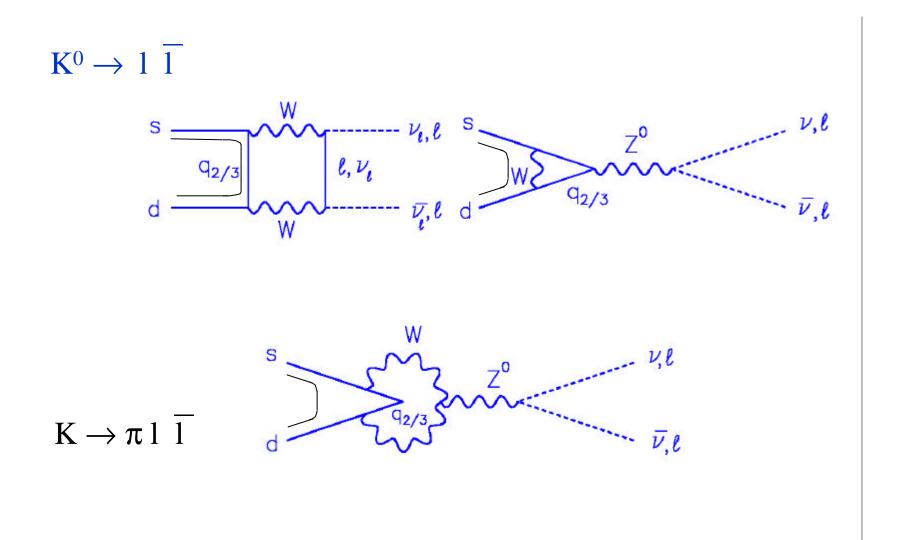
Future prospects for K experiments

A. Nappi University of Perugia and INFN EPS HEP 2001 - Budapest 13/7/01

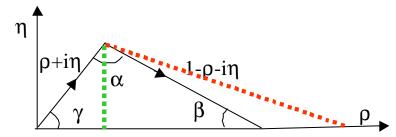

Outline

- What is still to be learned from the K system
- Prospects of ongoing programs
 - ◆ KLOE @ DAPHNE
 - ◆ NA48 @ CERN
 - ◆ E949 @ BNL
 - ◆ E391a @ KEK
- New projects
 - ◆ KOPIO @ BNL
 - ◆ KAMI @ FNAL
 - ◆ CKM @ FNAL

Physics issues

- Overconstrain flavour structure of S.M.
 - FCNC decay channels
 - exploit suppressions (2nd order weak interactions, GIM, CP violation) for enhanced sensitivity to "new physics"
- Simmetry violations
 - ◆ CP, T: narrow the gap between experiment and predictions using improved experimental techniques
 - Charge asymmetries , T violating observables
 - ◆ CPT: Tighten constraints from Bell-Steinberger sum rule + K_S/K_L semileptonic decays?
- Sharpen the theoretical tools
 - χPT tests + parameter determination
 - framework for interpretation of more fundamental processes

A few loop diagrams ...



FCNC decays (1)

- $K_L \rightarrow \mu\mu$
 - ◆ Experimental effort concluded [B.R.=(7.18±0.17)×10⁻⁹]
 - Information on short range contribution limited by interpretation
 - Dominating absorptive contribution from $\gamma\gamma$: $(7.07\pm0.18)\times10^{-9}$
 - * Better experimental information on $K_L \rightarrow \mu \mu \gamma$, ee γ , eeee, ee $\mu \mu$ needed to constrain long range dispersive contributions
- \bullet $K_L \rightarrow \pi^0 e^+ e^-, \pi^0 \mu^+ \mu^-$
 - Direct CP violation component has to be disentangled from
 - ❖ Indirect
 - 2 γ CP conserving long range contribution
 - Experimental information on $K_S \to \pi^0 e^+ e^-$, $K_L \to \pi^0 \gamma \gamma$ valuable
 - Prohibitive physical background from γγe+e-, γγμ+μ-

FCNC decays (2)

- $K \rightarrow \pi \nu \ \overline{\nu}$
 - Unique "theoretical cleanliness"
 - no long range contribution

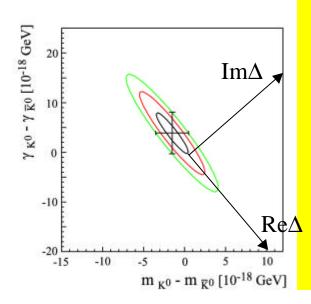
- matrix elements of quark operators related to Ke3 decays

$$B(K_L^0 \to \boldsymbol{p}^0 \boldsymbol{n} \boldsymbol{n}) = kB(K^+ \to \boldsymbol{p}^0 e^+ \boldsymbol{n}) \left[\operatorname{Im}(V_{ts}^* V_{td}) X \left(\frac{m_t^2}{m_W^2} \right) \right]^2 = k^+ \boldsymbol{h}^2 \approx 3 \times 10^{-11}$$

$$B(K^+ \to \boldsymbol{p}^+ \boldsymbol{n} \boldsymbol{n}) = kB(K^+ \to \boldsymbol{p}^0 e^+ \boldsymbol{n}) V_{cs}^* V_{cd} X \left(\frac{m_c^2}{m_W^2} \right) + V_{ts}^* V_{td} X \left(\frac{m_t^2}{m_W^2} \right)^2 \propto \left[(1.4 - \boldsymbol{r})^2 + \boldsymbol{h}^2 \right] \approx 8 \times 10^{-11}$$
Small additional uncertainty from m_C

- Experiments challenging
 - ❖ B.R. ~ 10⁻¹¹, kinematics underconstrained, background from channels with much larger decay rates

CPT tests


• CPT violation in K^0 mass matrix $\Lambda = M - i\Gamma/2$ characterized by

$$\Delta = \frac{\Lambda_{\overline{K}^0 \overline{K}^0} - \Lambda_{K^0 K^0}}{2(\boldsymbol{I}_L - \boldsymbol{I}_S)}$$

$$\Delta = \frac{\Lambda_{\overline{K}^0 \overline{K}^0} - \Lambda_{K^0 K^0}}{2(\boldsymbol{I}_L - \boldsymbol{I}_S)}$$

$$Re \Delta = (m_{K^0} - m_{\overline{K}^0}) \frac{-2\Delta m}{(\Gamma_S - \Gamma_L)^2 + 4\Delta m^2} + (\Gamma_{K^0} - \Gamma_{\overline{K}^0}) \frac{\Gamma_S - \Gamma_L}{(\Gamma_S - \Gamma_L)^2 + 4\Delta m^2}$$

$$Im \Delta = (m_{K^0} - m_{\overline{K}^0}) \frac{\Gamma_S - \Gamma_L}{(\Gamma_S - \Gamma_L)^2 + 4\Delta m^2} + (\Gamma_{K^0} - \Gamma_{\overline{K}^0}) \frac{2\Delta m}{(\Gamma_S - \Gamma_L)^2 + 4\Delta m^2}$$

PDG 2000:

* from
$$4 \operatorname{Re} \Delta = \frac{P[\overline{K}^0 \to \overline{K}^0(t)] - P[K^0 \to K^0(t)]}{P[\overline{K}^0 \to \overline{K}^0(t)] + P[K^0 \to K^0(t)]}$$

CPLEAR: error $\sim 3.3 \times 10^{-4}$

* neglecting CPT in $\pi\pi$ decay amplitude

$$\left| \mathbf{h}_{+-} \right| \left(\mathbf{f}_{SW} - \frac{2}{3} \mathbf{f}_{+-} - \frac{1}{3} \mathbf{f}_{00} \right) = \Delta_{\perp} = \frac{\left(m_{K^0} - m_{\overline{K}^0} \right)}{\left(\Gamma_S - \Gamma_L \right)^2 + 4\Delta m^2}$$

 Δ_{\perp} known to precision ~ 2.5×10⁻⁵

• from B.S. sum rule Im Δ to $\sim 5 \times 10^{-5}$

CPT tests

Bell-Steinberger sum rule (unitarity)

$$\left(1 + i \frac{2\Delta m}{\Gamma_S - \Gamma_L}\right) \left(\text{Re } \mathbf{e} - i \text{ Im } \Delta\right) =$$

$$= \frac{1}{\Gamma_S} \sum_f A^* (K_S \to f) A(K_L \to f)$$

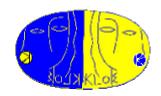
◆ Im∆ limited by η_{000} and Re ε

Decay mode	$lpha_f$	$10^3 \times \operatorname{Re}(\alpha_f)$	$10^3 \times \mathrm{Im}(\alpha_f)$
$K_L o \pi^+\pi^-$	$\alpha_{+-} = \mathcal{B}_{+-}^{(S)} \eta_{+-}$	1.137 ± 0.015	1.079 ± 0.016
$K_L \rightarrow \pi^0 \pi^0$	$\alpha_{00} = \mathcal{B}_{00}^{(S)} \eta_{00}$	0.519 ± 0.011	0.491 ± 0.011
${ m K_L} ightarrow \pi^+\pi^-\gamma$	$\alpha_{+-\gamma} = \mathcal{B}_{+-\gamma}^{(S)} \eta_{+-\gamma}$	< 0.001	< 0.001
${ m K_L} ightarrow \pi l u$	$lpha_{l3} = rac{ au_S}{ au_L} [\mathcal{B}_{\pi\mu u}^{(L)} + \mathcal{B}_{\pi e u}^{(L)}] imes$		
	$[\delta_l(1+\operatorname{Re}(x))-2i\operatorname{Im}(x)]$	0.004 ± 0.001	0.007 ± 0.059
$K_S \rightarrow \pi^+\pi^-\pi^0$	$\alpha_{+-0} = \frac{\tau_S}{\tau_L} \mathcal{B}_{+-0}^{(L)} \eta_{+-0}$	0.000 ± 0.002	0.000 ± 0.002
$K_S \rightarrow \pi^0 \pi^0 \pi^0$	$lpha_{000} = rac{ au_S}{ au_L} \mathcal{B}_{000}^{(L)} \eta_{000}$	0.062 ± 0.044	0.026 ± 0.055
$(1 + i \tan \phi_{\rm SW}) \text{Re}(\epsilon)$		1.635 ± 0.060	1.551 ± 0.057
Difference $\sum_{f} o$	$\alpha_f - (1 + i \tan \phi_{\rm SW}) \operatorname{Re}(\epsilon)$	0.087 ± 0.077	0.052 ± 0.101

Semileptonic charge asymmetries K_s vs K_l

$$d_{L,S} = \frac{\Gamma(K_{L,S} \to \boldsymbol{p}^- e^+ \boldsymbol{n}) - \Gamma(K_{L,S} \to \boldsymbol{p}^+ e^- \bar{\boldsymbol{n}})}{\Gamma(K_{L,S} \to \boldsymbol{p}^- e^+ \boldsymbol{n}) + \Gamma(K_{L,S} \to \boldsymbol{p}^+ e^- \bar{\boldsymbol{n}})} \qquad \bullet \quad \delta_L = (32.7 \pm 1.2) \times 10^{-4} \\ \bullet \quad (1974: \sim 5 \times 10^7 \text{K}_{|3} \text{ decays})$$

$$d_S - d_L = 4 \operatorname{Re} \Delta - 4 \operatorname{Re} \left(\frac{d^*}{a}\right) \qquad \bullet \quad \delta_S \text{ from KLOE ?}$$

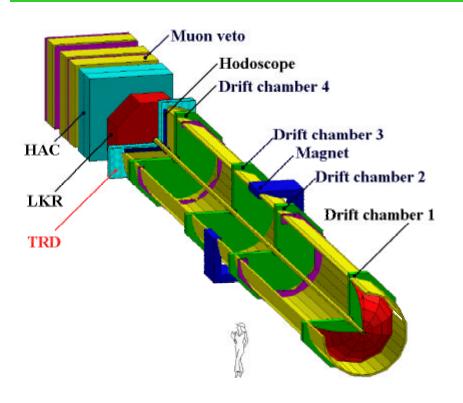

$$\bullet \quad \text{error } \sim 10^{-3} \text{ with design L}$$

$$= 0 \text{ if no } \Delta S = -\Delta O \text{, CPT violating}$$
Future kaon expts A N_EPS 2001 13/7/07

- $\delta_{\rm S}$ from KLOE ? ❖ error ~10⁻³ with design L

KLOE

- Tagged K_L/K_S decays from $\Phi \rightarrow K_L/K_S$
 - ♦ design luminosity: 5×10³²cm⁻²/s
 - even before that has interesting program of K_s measurements
 - branching ratio's for dominating decays
 - K_s semileptonic branching ratio's
 - rare K_s decays
- Machine performance improved
 - 2×10^{31} cm⁻²/s peak L, 1 pb ⁻¹/day reached, but large backgr.
 - ◆ 35 pb⁻¹ logged
 - * Performance demonstrated by preliminary data on $K_s \rightarrow \pi e \nu$
 - 283 events in 11.5 pb⁻¹ sample
 - ~ 4 × present world statistics (CMD-2: 75 ev.)
 - ◆ 200 pb⁻¹ goal for 2000 running


data yield for 200pb⁻¹

```
2 10<sup>8</sup>
> Ks
                                                                                      0.6 \cdot 10^8
           Tagged Ks (KI visible Interactions)
                                                                        0.3 \ 10^8 \ x \ BR \sim 2 \ 10^7
                  Ks \pi^+ \pi^-
             - Ks \pi^0 \pi^0
                                                                        0.3 \ 10^8 \ x \ BR \sim 1 \ 10^7
                                                                        0.9 \ 10^7 \ x \ BR \sim 6700
             - Ks \pi e \nu
             - Ks \gamma\gamma
                                                                        3.3 \ 10^7 \ x \ BR \sim 70
             - Ks \pi^0 e +e - Single Event Sens.
                                                                        0.8 - 1.5 \cdot 10^{-7}
             - Ks \pi^0 \pi^0 \pi^0 Single Event Sens.
                                                                         3 10-8
\triangleright KI 2 10<sup>8</sup>
      • Tagged KI (Ks \pi^+\pi^-)
                                                                                      0.9 \, 10^{8}
            - KI Decay in FV (D.C.)
                                                                        2.5 \ 10^7
            - KI \pi^+ \pi^-
                                                                         \sim 2.7 \cdot 10^4
            - KI \pi^{0} \pi^{0}
                                                                         \sim 1.0 \cdot 10^4
            – ΚΙ γγ
                                                                         \sim 0.5 \cdot 10^4
F K^{+/-} 3 10^8

    Tagged K<sup>+</sup> (K<sup>-</sup>)

                                                                                      0.7 \cdot 10^8
                  Reconstructed K<sup>+</sup> (K<sup>-</sup>)
                                                                         5 10<sup>7</sup>
```

CERN NA48

- 2001 ends ε'/ε program
- 2 extensions approved
- NA48/1 (2002)
 - ◆ K_S rare decays
- NA48/2 (2003 ...)
 - ★ K+/K- 🗭 asymmetries
 - ♦ High statistics study of $K^{\pm} \rightarrow e^{\pm}\pi^{+}\pi^{-}\nu$ [$\pi\pi$ scattering length \Rightarrow ⟨0 | q q | 0⟩]

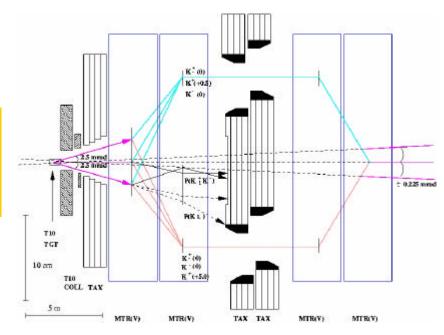
- Drift chambers rebuilt (operational from 2001)
- TRD will be installed before NA48/2

NA48 K_s rare decays

- ~ 3×10¹⁰ decays in typical 1 year run
- $K_S \rightarrow \pi^0 e^+ e^-$ with a SES ~ 6×10^{-10}
 - $1.5 \times 10^{-12} < BR_{CPdir}(K_1 \rightarrow \pi^0 e^+ e^-) < 5 \times 10^{-12}$
 - BR_{CPind}($K_I \rightarrow \pi^0 e^+ e^-$) ?
 - ★ 3×10⁻³ BR(K_S→ π⁰e⁺e⁻)
 - $5 \times 10^{-10} < BR(K_S \rightarrow \pi^0 e^+ e^-) < 5 \times 10^{-8}$
 - ❖ ~7 events with B.R. in the middle of expected range
- Bounds on η_{000} of ~ 10^{-2}
 - * 8×10^6 events for $1.2\tau_S < t_0 < 4.7\tau_S$
 - Control of acceptance to 10 ⁻³/cτ_s
 - Precision of B.S. sum rule to $\sim 2 \times 10^{-2}$

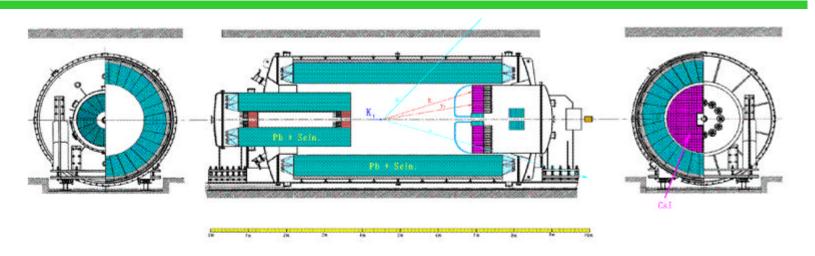
- Sizable samples for channels of interest for χPT phenomenology
 - * $K_S \rightarrow \gamma \gamma$
 - exp BR 2.1×10^{-6}
 - 24000 events
 - $K_S \rightarrow \pi^0 \gamma \gamma$:
 - exp BR 3.8×10^{-8} (m_{$\gamma\gamma$}>220MeV/c²)
 - 114 ev.
 - . .

NA48 K[±] program


• Main goal: $\pi^{\pm}\pi^{+}\pi^{-}$ Dalitz plot slope asymmetry

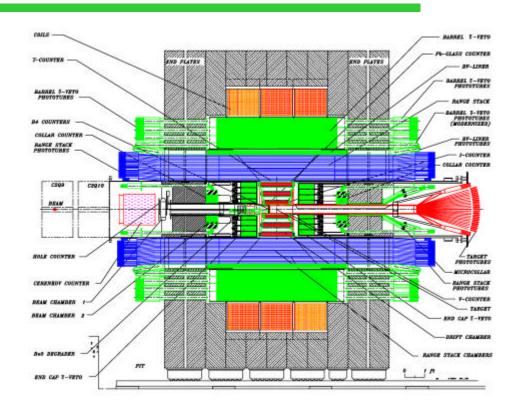
$$|M(u,v)|^{2} \propto 1 + gu + hu^{2} + kv^{2}$$

$$u = \frac{2M(M - 3E_{p}^{*})}{3m^{2}}$$

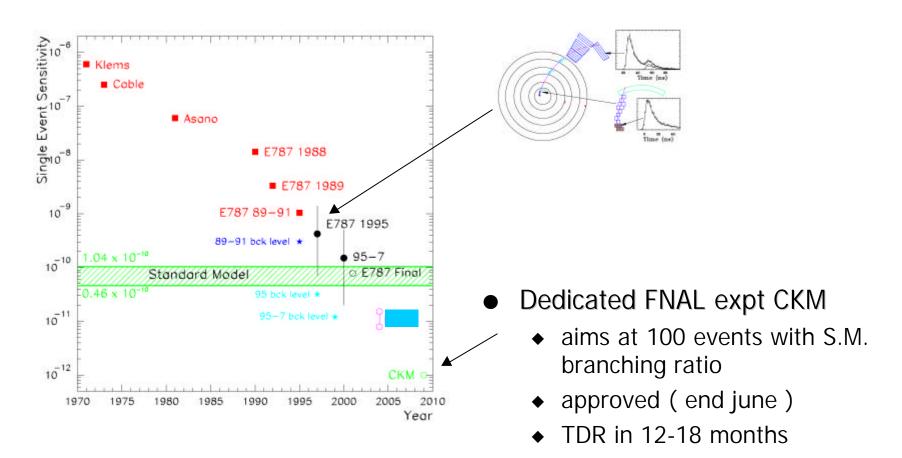

$$A_{g} = \frac{g^{+} - g^{-}}{g^{+} + g^{-}}$$

- Present experimental limit: $A_g = (-7\pm5) \times 10^{-3}$ [Ford .. 70]
- HyperCP has $3.9/1.6 \times 10^8 \, \text{K}^+/\text{K}^-$ decays yielding $\Delta A_g \sim 5 \times 10^{-4}$ stat, $> 10^{-3} \, \text{syst}$
- S.M. theoretical predictions range from $\sim 10^{-6}$ to $\sim 10^{-4}$
 - ❖ no $\Delta I = 1/2$ rule suppression **T**
 - FSI phases

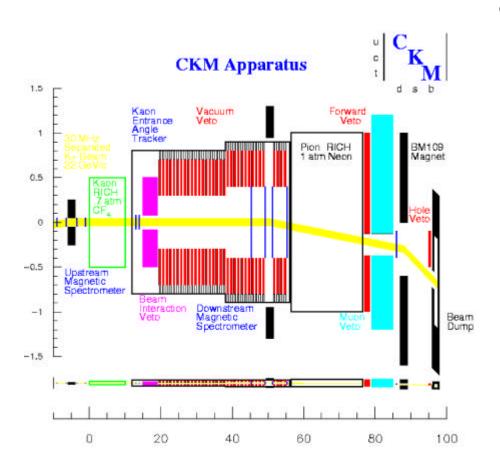
- NA48 aims at ~10⁻⁴ ΔA_g
 - $7.3/4.4 \times 10^9$ +/- decays/year • $\Delta A_g \sim 0.7 \times 10^{-4} (stat)$
 - ◆ Simultaneous K[±] beams + B field reversal to symmetrize efficiencies


KEK E391a

- Ground breaking experiment for $K_1 \rightarrow \pi^0 \nu \ \overline{\nu}$
- Approved december 97. Addressing relevant experimental issues in a systematic way
 - Detector inefficiency measurements (physics limited)
 - ❖ Beam survey (Dec. 2000)
- Prospects:
 - ❖ Data taking from Oct 2003, aiming at sensitivity ~ 1×10⁻¹⁰
 - ❖ Test bed for experiment at JHF aiming at sensitivity ~ 3×10⁻¹⁴


BNL E949

- ◆ Upgrade of E787
- * with 1 event in 1995-97 $B(K^+ \to p^+ n n) = (1.5^{+3.4}_{-1.2}) \times 10^{-10}$
 - 98 data of comparable size
 - Key features
 - Redundant kinematic information on π^+
 - hermetic veto coverage
 - * looks for π^+ above end point for $K^+{\longrightarrow}\pi^+\pi^0$
 - ◆ E 949
 - improved sensitivity (14 x)
 - data for 2 additional years
 - expect to reach 10⁻¹¹/ evt by 2004 (7 events for S.M. BR prediction)


Increased spill length (×1.56) Lower momentum (×1.38) Increased efficiency (trigger, DAQ, analysis) (×3.2) Acc. below $K\pi 2$ + higher rate analysis reopt. (×2) Total gain - ×14 per hour of data taking

Progress in K+®p + n`n

(courtesy of L.Littenberg)

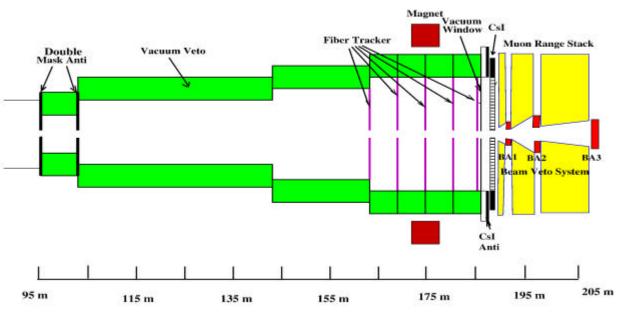
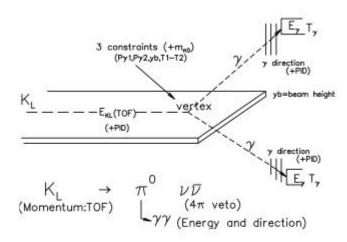
CKM at FNAL M.I.

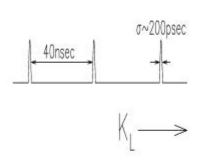
Features

- First attempt of in-flight measurement of $K^+ \rightarrow \pi^+ \nu^- \nu^-$
- Superconducting RF separated beam
 - ❖ Hadron purity > 70%
 - ❖ 33MHz 22GeV/c K⁺
- redundant determination of K⁺
 and π⁺ momentum
 - ❖ spectrometer + RICH
- veto with total inefficiency for π^0 from π^+ π^0 ~ 10^{-7}
- expects 100 signal with ~10 background events

KAMI

KAMI DETECTOR LAYOUT


Figure 1: Schematic of the KAMI detector.

- Aiming at ~ 100 $\pi^0 \nu \bar{\nu}$ events with S:B 4:1
- ◆ Veto inefficiencies ~ 10⁻⁶ required
- Recently discussed by FNAL PAC and not recommended

KOPIO: new way to pon'n

- In addition to veto's as many kinematical constraints as possible
 - photon energy, position and angle
 - ❖ K_L momentum via TOF allows transformation to CM system
- ◆ RF bunched beam , ~ 0.8GeV/c

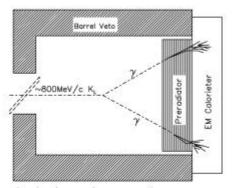
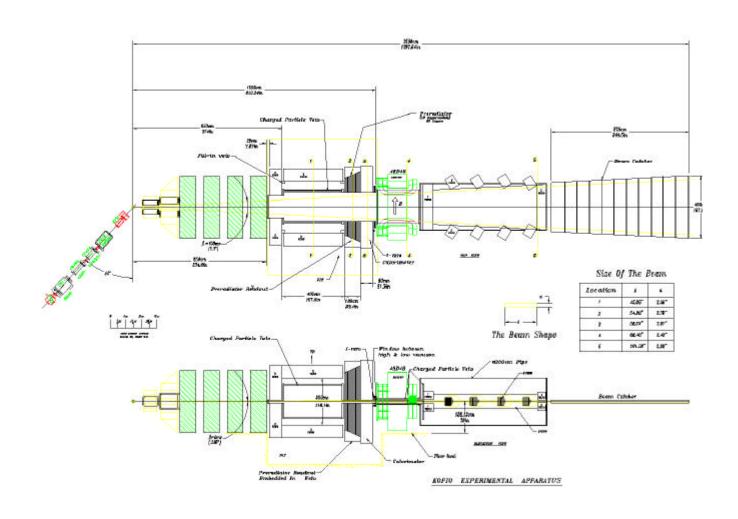



Fig. 4. Elements of the KOPIO concept : a pulsed primary beam produces low energy kaons whose time-of-flight reveals their momentum when the π^0 from $K_L^0 \to \pi^0 \nu \bar{\nu}$ decay is reconstructed.

- Tracking preradiator for γ direction measurement
- E measurement combining prerad + Shashlik
- Hermetic veto coverage including beam hole

KOPIO layout

KOPIO: existence proofs

- Many critical parameters established by test measurements
 - ◆ Beam bunching: 280 ps achieved with 33MHz, 30 kV cavity
 - final scheme with 25MHz, 150kV + additional harmonic cavity at 100MHz
 - Preradiator angle resolution 25-30 mr for 250 MeV γγ
 - Energy resolution in Shashlik 6.7% for 250MeV γ
 - In combination with preradiator Monte-Carlo indicates

$$S/E \cong 2.7\% / \sqrt{E(GeV)}$$

 ◆ Veto efficiencies from E787 measurements, only slightly upgraded for better sampling (low E) and larger number of radiation lengths (high E)

KOPIO: kinematics at work

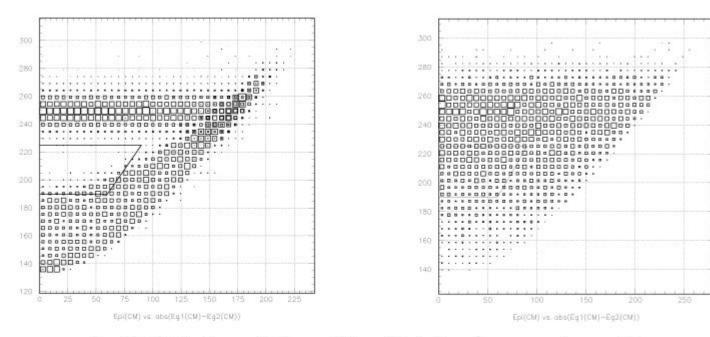
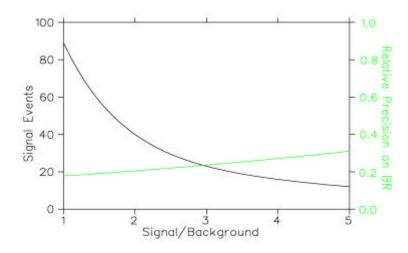
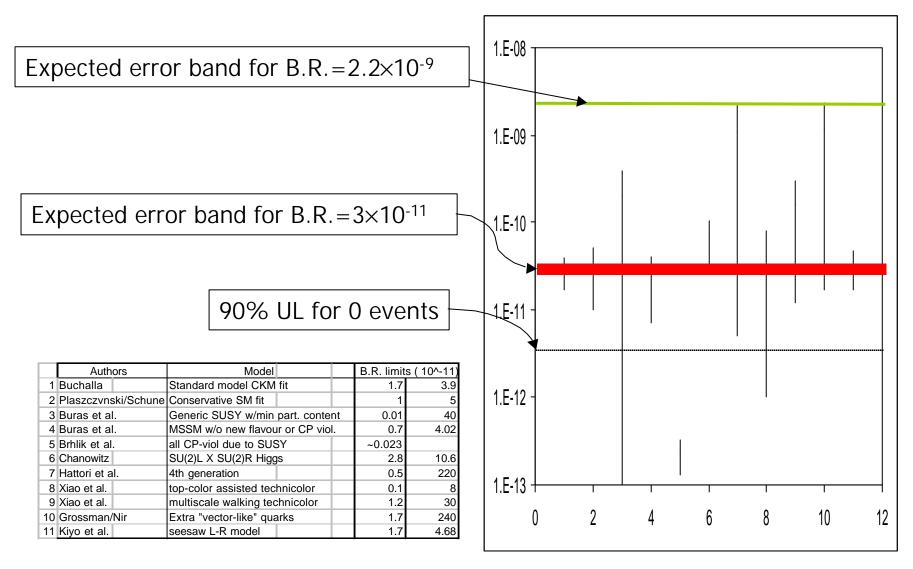



Fig. 9. Distributions of $E_{\pi^0}^*$ vs. $|E_{\gamma 1}^* - E_{\gamma 2}^*|$ after π^0 mass requirement for the $K_L \to \pi^0 \pi^0$ (left) and for the signal (right). The solid line encloses the signal region.


- Transformation to CM and full γ reconstruction provides region where $2\pi^0$ background negligible
- kinematics complementary to vetos (small $E_{\pi}^* \to higher veto efficiency)$

KOPIO: expected results

Process	Modes	Main source	Events
$K_L^0 \to \pi^0 \nu \bar{\nu}$			40
K_L decays $(ar{\gamma})$	$\pi^{0}\pi^{0}$, $\pi^{0}\pi^{0}\pi^{0}$, $\pi^{0}\gamma\gamma$	$\pi^0\pi^0$	12.4
$K_L \rightarrow \pi^+ \pi^- \pi^0$	W1 000		1.7
$K_L \rightarrow \gamma \gamma$	70 109 10		0.02
K_L decays (\overline{charge})	$\pi^{\pm}e^{\mp}_{ u,\pi}^{}_{\mu}^{}_{ u,\pi}^{}_{\pi}^{}_{\pi}^{}$	$\pi^-e^+\nu$	0.02
K_L decays $(\bar{\gamma}, \overline{charge})$	$\pi^{\pm}l^{\mp}\nu\gamma$, $\pi^{\pm}l^{\mp}\nu\pi^{0}$, $\pi^{+}\pi^{-}\gamma$	$\pi^- e^+ \nu \gamma$	4.5
Other particle decays	$\Lambda \to \pi^0 n, K_{\pi 2}^-, \Sigma^+ \to \pi^0 p$	$\Lambda \to \pi^0 n$	0.01
Interactions	n, K_L , γ	$n \to \pi^0$	0.2
Accidentals	n, K_L , γ	n, K_L , γ	0.6
Total Background			19.5

KOPIO "discovery potential"

Conclusions

- K system still has potentialities for exciting physics.
- With the ε'/ε saga come to an end, the next few years will see
 - polishing of precision results
 - a more complete phenomenological picture of K decays and CP violation
 - room for surprises
- Great potentialities of two new ambitious projects for studies of the FCNC in the K sector
 - ◆ Together with B results, capable to put severe constraints on the flavour structure of the S.M.
 - No technical show stopper
 - It would be a pity if they are missed for lack of funding