

Verifiche di teoria perturbativa chirale in decadimenti Ke4 e decadimenti $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ a NA48/2

Mauro Piccini (Università di Perugia & INFN)

A nome della collaborazione NA48/2

IFAE
Bari
15-17 Aprile 2009

Outline

- Il fascio e il rivelatore dell'esperimento NA48/2 al CERN
- Il decadimento $K^{\pm} \rightarrow \pi \pi e \nu$ (Ke4)
 - Estrazione dei fattori di forma
 - Ampiezze di scattering a₀ e a₂
- Il decadimento $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$
 - Misura dei termini di IB, DE e loro interferenza
 - Misura delle componenti X_E and X_M della DE
- Conclusioni

Il fascio simultaneo K⁺/K⁻

Il rivelatore NA48

Spettrometro magnetico (4 DCHs):

4 viste: ridondanza \Rightarrow efficienza $\sigma(p)/p = 1.0\% + 0.044\% p [GeV/c]$

Odoscopio Carico:

Trigger veloce di primo livello e ottima risoluzione temporale

(~250 ps sulla singola traccia)

Calorimetro E.M. A Krypton liquido (LKr):

10 m³ (~22 t), 1.25 m (27 X₀), 13212 celle

granularità: 2x2 cm², quasi-omogeneo

 $\sigma(E)/E = 3.2\%/\sqrt{E} + 9\%/E + 0.42\%$ [E in GeV]

Calorimetro adronico, veto a grande angolo e rivelatore di muoni (scintillatori)

Il decadidemento Ke4

Motivi di interesse:

- Misura dei fattori di forma e della loro dipendenza da q²
- Estrazione delle ampiezze di scattering nucleare a₀ e a₂

Topologia Ke4:

- 3 tracce e 1 vertice
- 1 elettrone ($E_{LKr}/p_{DCH}\sim 1$)
- due particelle di carica opposta
- Calcolo di $P_K \rightarrow$ prendere la soluzione più vicina a 60 GeV/c
- (L'alternativa è quella di ricostruire la missing mass del v assumendo P_K=60 GeV/c)

Fondi:

- $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ (dominante) con decadimento $\pi \rightarrow \text{ev}$ o misID
- $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} \text{ con } \pi^{0} \rightarrow e^{+} e^{-} \gamma \text{ e con}$ l'elettrone misID come π

Il fondo contribuisce per lo ~0.5% nel campione finale

Stima dei fondi:

- Selezione "wrong sign", con la carica dell'elettrone opposta a quella del vertice (decadimento soppresso a livello 10⁻¹⁰ da ΔS=ΔQ)
- Stima da riscalare in base alla relativa probabilità di misID :
 - RS/WS=2 per fondo da K in 3π carichi
 - RS/WS=1 per fondo da K in $\pi^0\pi^0\pi^\pm$

Statistica totale 1.15 M decadimenti K_{e4}

I fattori di forma del decadimento Ke4

5 variabili cinematiche [Phys.Rev. 137, B438 (1965)]:

$$S_e(M_{ev}^2)$$

dipion

3 fattori di forma (F,G,H) – espansione in onde parziali [Pais-Treiman1968]:

Ulteriore espansione in funzione di $q^2=(S_{\pi}/4m_{\pi}-1)$ e S_{α} [Amoros-Bijnens1999]:

$$F_{s} = f_{s} + f_{s}'q^{2} + f_{s}''q^{4} + f_{e}(S_{e}/4m_{\pi}^{2}) + ...$$

$$F_{p} = f_{p} + f_{p}'q^{2} + ...$$

$$G_{p} = g_{p} + g_{p}'q^{2} + ...$$

$$H_{p} = h_{p} + h_{p}'q^{2} + ...$$

Calcolare F_s , F_p , G_p , H_p e $\delta = \delta_s - \delta_p$ in bin di q^2 Estrarre i parametri finali dalla dipendenza dal q^2

Estrarre a_0 da dipendenza di $\delta(q^2)$ dal q^2

Fit dei fattori di forma:

Si definiscono 10x5x5x5x12 bin similmente popolati in $(M_{\pi\pi}, M_{\rm ev}, \cos\theta_{\pi}, \cos\theta_{e}, \phi)$

> 10 fits indipendenti (uno per ogni bin di $M_{\pi\pi}$) per F_s , F_n , G_n , H_n , δ nello spazio 4D

I 4 set di punti sono poi fittatti con un polinomio in potenze di q2 (Espansione di Taylor valida nel limite di validità della simmetria di isospin)

L'analisi è "Model independent" → nessuna assunzione fatta sulla dipendenza di δ e dei FF fra un bin e l'altro

Mancanza di una normalizzazione complessiva (BR non misurato), solo fattori di forma relativi (F_p, G_p, H_p)/F_s sono misurati.

dilepton

Estrazione dei fattori di forma

Risultati

f's/fs	$0.158 \pm 0.007_{\text{stat}} \pm 0.006_{\text{syst}}$
f"s/fs	$-0.078 \pm 0.007_{stat} \pm 0.007_{syst}$
f'e/fs	$0.067 \pm 0.006_{stat} \pm 0.009_{syst}$
f _p /f _s	$-0.049 \pm 0.003_{stat} \pm 0.004_{syst}$
g_p/f_s	$0.869 \pm 0.010_{stat} \pm 0.012_{syst}$
g_p'/f_s	$0.087 \pm 0.017_{stat} \pm 0.015_{syst}$
h_p/f_s	$-0.402 \pm 0.014_{stat} \pm 0.008_{syst}$

- Risultati in accordo con quelli estratti dalla sola presa dati del 2003 → EPJ C54 (2008)
- Al momento i sistematici sono conservativamente stati ripresi dall'nalisi dei dati del 2003 molti sistematici erano limitati dalla statistica saranno rivalutati con l'intero campione
- Alcuni degli effetti sistematici studiati: geometria del fascio, accettanza, ID particelle, fondi, correzioni radiative...

Misura delle ampiezze di scattering

Input esterni necessari per estrarre le ampiezze di scattering in onda S dalla variazione di $\delta = (\delta_0^0 - \delta_1^1)$:

Teoria: soluzione numerica dell' equazione di Roy

[ACGL Phys. Rep.353 (2001), DFGS EPJ C24 (2002)]

che mette in relazione δ e (a_0,a_2)

Universal band: soluzioni permesse in base ai risultati di tutti gli altri esperimenti

Previsione dalla χ PT [CGL NPB603(2001)]:

$$a_0 = 0.220 \pm 0.005$$
 $a_2 = -0.0444 \pm 0.0008$

- **2p fit** \rightarrow Estrazione di a_0 e a_2 come due parametri liberi
- 1p fit \rightarrow Estrazione di a_0 usando il vincolo dato da χ PT

Correzioni radiative considerate nel MC

Correzione di isospin applicate!

2p fit	Isospin corr OFF	Isospin corr ON
a ₀	0.244 ± 0.013	0.218 ± 0.013
a ₂	-0.0385 ± 0.0084	-0.0457 ± 0.0084

Risultati

χPT prediction:

 $a_0 = 0.220 \pm 0.005$

 $a_2 = -0.0444 \pm 0.0008$

I sistematici derivano dai dati del 2003 → da rivalutare

Errore teorico → Implementazione delle corr. di isospin
e da alcuni parametri da inserire nell'equazione di Roy

Il decadimento $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$

Motivi di interesse:

> Test della QCD a bassa energia (χPT)

$$W^{2} = \frac{(P_{\pi}^{*} \cdot P_{\gamma}^{*})(P_{K}^{*} \cdot P_{\gamma}^{*})}{(m_{K}m_{\pi})^{2}}$$

Il termine di IB può essere calcolato dal BR $(K^{\pm} \rightarrow \pi^{\pm} \pi^{0})$ + correzioni di QED

Il termine di DE a $O(p^4)$ è divisibile in due componenti:

X_E →componente elettrica (Model Dependent)

X_M→componente magnetica, somma di 2 contributi

Riducibile: $X_M \sim 260 \text{ GeV}^{-4} (\chi PT)$

Diretto : MI

Statistica e metodo di fit

La ricostruzione punta ad identificare il gamma radiativo (probabilità di mistagging<10⁻³, uguale per le tre componenti)

Il fondo e minore dell'1% rispetto alla frazione di eventi di DE (dovuto a decadimenti $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$)

Risoluzione sulla misura di W migliore dell'1%

Statistica finale dati 2003+2004:

600K candidati $\pi^{\pm}\pi^{0}\gamma$ nella regione di fit (0.2<W<0.9, 14 bin)

Altre condizioni: E γ >5 GeV, T_{π}^* < 80 MeV

2 tecniche di misura possibili per estrarre i tre termini

Maximum Likelihood, in ogni bin:

$$Dati=N_0[(1-\alpha-\beta) \cdot MC_{IB}(i) + \alpha \cdot MC_{INT}(i) + \beta \cdot MC_{DE}(i)]$$

Fit polinomiale: Fit di W(Data)/W(MC_{IB}) con : $F = c(1+aW^2+bW^4)$

Frac(DE) = $b*2.27*10^{-2}$ Frac(INT)= a*0.105

Estrazione dei termini di DE e INT

NA48/2 K[±] $\rightarrow \pi^{\pm}\pi^{0}\gamma$ risultati:

 $\begin{aligned} & Frac(DE)_{T^*\pi(0-80)MeV} = (3.32 \pm 0.15_{stat} \pm 0.14_{sys})x10^{-2} \\ & Frac(INT)_{T^*\pi(0-80)MeV} = (-2.35 \pm 0.35_{stat} \pm 0.39_{sys})x10^{-2} \end{aligned}$

Source	Sys. DE	Sys. INT
Acceptance	<0.10×10 ⁻²	<0.15×10 ⁻²
L1 Trigger	0.01x10 ⁻²	0.03x10 ⁻²
L2 Trigger	0×10 ⁻²	0.30x10 ⁻²
Energy scale	0.09×10 ⁻²	0.21x10 ⁻²
Total sys.	0.14×10 ⁻²	0.39×10 ⁻²

Misura delle componenti X_E e X_M

Approssimando $\varphi = 0$ e $\cos(\delta_1^{\ 1} - \delta_0^{\ 2}) = \cos(6.5^{\circ}) \sim 1$

Si può estrarre X_E dal termine di interferenza e quindi X_M da quello di emissione diretta:

$$X_E = \frac{Frac(INT)}{2 \cdot (0.105 \cdot m_K^2 m_\pi^2)}$$

$$X_{M} = \sqrt{\frac{Frac(DE) - m_{K}^{4} m_{\pi}^{4} |X_{E}|^{2} 2.27 \cdot 10^{-2}}{2.27 \cdot 10^{-2} \cdot m_{K}^{4} m_{\pi}^{4}}}$$

$$X_E = -24 \pm 4_{stat} \pm 4_{sys} \text{ GeV}^{-4}$$

 $X_M = 254 \pm 11_{stat} \pm 11_{sys} \text{ GeV}^{-4}$

La parte riducibile dell'anomalia chirale satura il valore di $\rm X_M$ $(\rm X_M{\sim}260~GeV^{-4})$

Conclusioni

Dai dati raccolti negli anni 2003 e 2004, NA48/2 ha misurato i fattori di forma del decadimento $K^{\pm} \rightarrow \pi \pi e \nu$

Le ampiezze di scattering a₀ e a₂ sono state estratte

Predizione χPT (banda gialla):

$$a_0 = 0.220 \pm 0.005$$

Per i risultati da ke4 a tutti i punti degli esperimenti è stata applicata la correzione di isospin, i succesivi fit tengono conto del vincolo posto dalla xPT

Inoltre nuovi risultati dal decadimento $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$

$$\begin{aligned} &\text{Frac(DE)} = (\ 3.32 \pm 0.15_{\text{stat}} \pm 0.14_{\text{sys}}) \text{x} 10^{-2} & \text{X}_{\text{E}} = -24 \pm \ 4_{\text{stat}} \pm \ 4_{\text{sys}} \text{ GeV}^{-4} \\ &\text{Frac(INT)} = (-2.35 \pm 0.35_{\text{stat}} \pm 0.39_{\text{sys}}) \text{x} 10^{-2} & \text{X}_{\text{M}} = 254 \pm 11_{\text{stat}} \pm 11_{\text{sys}} \text{ GeV}^{-4} \end{aligned}$$

$$X_{E} = -24 \pm 4_{stat} \pm 4_{sys} \text{ GeV}^{-4}$$

 $X_{M} = 254 \pm 11_{stat} \pm 11_{sys} \text{ GeV}^{-4}$

SPARES

Ke4: Variabili cinematiche

CUSP

Nel decadimento $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ evidenza di un singolarità nella massa invariante quadrata dei due pioni neutri in corrispondenza a $(2m_{\pi})^{2}$

Dallo studio di tale fenomeno è possibile estrarre le ampiezze di scattering a_0 e a_2 (dipendenti dal modello utilizzato per il fit):

CGKR:
$$a_0$$
- a_2 =0.266±0.003_{stat} ±0.002_{syst}
±0.001_{ext}

o.01 fit range
$$a_0$$
-0.01 a_0 -a_2=0.268±0.003 a_0 -0.01 a_0 -a_2=0.268±0.003 a_0 -0.01 a_0 -