Results on direct CP Violation in $K^{\pm} \rightarrow 3\pi$ decays from the NA48/2 experiment at CERN

Giuseppina Anzivino
University of Perugia and INFN

On behalf of the NA48/2 collaboration:
Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienne

New Trends in High Energy Physics
Yalta, 10-17 September 2005
Outline

- Direct CP violation in $K^\pm \rightarrow 3\pi$ decays
- NA48/2 experimental setup
- Measurement principle
- Systematic effects
- Preliminary result in $K^\pm \rightarrow \pi^\pm \pi^+ \pi^-$ decay
- Outlook for $K^\pm \rightarrow \pi^\pm \pi^0\pi^0$ analysis
- Neutral mode “Cusp effect”
- Conclusions
Brief history of CP violation

1964 - CP violation in K^0 (Cronin, Christenson, Fitch, Turlay)
1993-99 - Direct CP violation in K^0 (NA31, NA48, KTeV)
2001 - CP violation in B^0 mixing (Babar, Belle)
2004 - Direct CP violation in B^0 (Belle, Babar)

Direct CP Violation, also known as CPV in decay amplitudes, is the most “straightforward” CP effect:

- Hard to detect experimentally
- Hard to connect to the parameters of the underlying fundamental theory (i.e. SM)

But it is a crucial window to physics beyond SM because possible non-SM enhancements to heavy quark loops are just at the core of DCPV processes.
Direct CPV in $K^0 \to \pi\pi$ decays

Final NA48 result

$\varepsilon' / \varepsilon = (14.7 \pm 2.2) \times 10^{-4}$
CP violation in $K_{3\pi}^{\pm}$ decays

- Potentially large statistics
- Simple selection
- Low background

No absolute K flux measurement

Compare only Dalitz plot shapes

Complementary observables in Kaons: $\varepsilon'/\varepsilon \leftrightarrow A_g \leftrightarrow$ rare decays

Look for direct CP violation in K^{\pm}

(only direct CPV in K^{\pm} possible - no mixing)
Direct CP violation observable A_g

$|M(u,v)|^2 \sim 1 + gu + hu^2 + kv^2$

π_1^{even} \hspace{1cm} π_2^{even} \hspace{1cm} π_3^{odd}

$K^\pm \rightarrow \pi^\pm \pi^0 \pi^0$

$\text{BR} = 5.57\%$; $g = -0.2154 \pm 0.035$

$K^\pm \rightarrow \pi^\pm \pi^0 \pi^0$

$\text{BR} = 1.73\%$; $g = 0.652 \pm 0.031$

$|h|, |k| \ll |g|$

$K^\pm \rightarrow \pi^\pm \pi^0 \pi^0$

$|M(u,v)|^2 \sim 1 + gu + hu^2 + kv^2$

$U = \frac{s_3 - s_0}{m^2_{\pi}}$

$V = \frac{s_2 - s_1}{m^2_{\pi}}$

$s_i = (P_K - p_{\pi_i})^2$

$s_0 = \frac{1}{3} \sum s_i$

$i = 3$ odd pion

$A_g = \frac{g_+ - g_-}{g_+ + g_-} = \frac{\Delta g}{2g} = -\frac{\Delta g}{0.43}$

$A_g < 5 \times 10^{-5}$ compatible with SM

$A_g > 1 \times 10^{-4}$ SUSY/new physics

$A_g \neq 0$ \hspace{1cm} Direct CP violation
Experimental and theoretical status

SM estimates of A_g vary within an order of magnitude (few 10^{-6}...8 $x10^{-5}$).

Models beyond SM predict substantial enhancements partially within the reach of NA48/2.
(theoretical analyses are by far not exhaustive by now)
Goals and method

- **Primary NA48/2 goals:**
 - Measure slope asymmetries in “charged” and “neutral” modes with precisions $\delta A_g < 2.2 \times 10^{-4}$, and $\delta A_g^0 < 3.5 \times 10^{-4}$, respectively.
 - Statistics required for this measurement: $>2 \times 10^9$ in “charged” mode and $>10^8$ in “neutral” mode.

- **NA48/2 method:**
 - Two simultaneous K^+ and K^- beams, superimposed in space, with narrow momentum spectra;
 - Detect asymmetry exclusively considering slopes of ratios of normalized u distributions;
 - Equalise averaged K^+ and K^- acceptances by frequently alternating the polarities of the relevant magnets.
Experimental setup

- **PK spectra**, 60 ± 3 GeV/c

He tank + spectrometer

10 cm

- **Front-end achromat**
 - Momentum selection

- **Quadrupole quadruplet**
 - Focusing
 - μ sweeping

- **Second achromat**
 - Cleaning
 - Beam spectrometer

- **Analysing magnet**

- **Decay volume**

- **K+**
- **K−**

Beams coincide within ~ 1 mm all along 114 m decay volume

$\sim 7 \cdot 10^{11}$ ppp

\cdot K^+
\cdot $K^−$

- Target
- 0.36 mrad
- 1 cm

Crimea 2005

Giuseppina Anzivino
Main detector components:

- **Magnetic spectrometer (4 DCHs):**
 - 4 views: redundancy ⇒ efficiency
 - $\sigma(p)/p = 1.0\% + 0.044\% \ p [GeV/c]$
- **Hodoscope:** fast trigger and precise time measurement (150ps)
- **Liquid Krypton e.m. calorimeter:**
 - High granularity, quasi-homogeneous
 - $\sigma(E)/E = 3.2%/\sqrt{E} + 9%/E + 0.42\% [GeV]$ e/π discrimination
- **Hadron calorimeter, photon vetos, muon veto counters**
Data taking: completed

2003 run: ~ 50 days
2004 run: ~ 60 days

Total statistics in 2 years:
• $K^\pm \rightarrow \pi^+ \pi^- \pi^\pm$: $\sim 3.5 \cdot 10^9$
• $K^\pm \rightarrow \pi^0 \pi^0 \pi^\pm$: $\sim 2 \cdot 10^8$

~ 200 TB of data recorded
The result based on 2003 $K^\pm \rightarrow \pi^\pm \pi^+ \pi^-$ sample will be presented here
Data-taking 2003:
$1.61 \times 10^9 \, K^\pm \to \pi^\pm \pi^+ \pi^- \, \text{events}$

- $K^+: \, 1.03 \times 10^9 \, \text{events}$
- $K^-: \, 0.58 \times 10^9 \, \text{events}$

$K^+/K^- \approx 1.8$
Method to extract A_g

- Build projections of the Dalitz plot for K^+ and $K^-\colon N^+(u),N^-(u)$
- Make the ratio of these two distributions: $R(u)$
- Fit a linear function to this ratio to extract $\Delta g = g^+ - g^-$

$$R(u) = \frac{N^+(u)}{N^-(u)} \propto \frac{1 + g^+ u}{1 + g^- u} \approx 1 + \Delta g u$$

$$A_g = \frac{\Delta g}{2 g}$$

This holds only if the acceptance for K^+ and K^- is the same

$$\delta A_g < 2.2 \cdot 10^{-4}$$

$$\delta \Delta g < 0.9 \cdot 10^{-4}$$

The magnetic fields (achromat and spectrometer) are intrinsic sources of charge asymmetry in the detector!!!
Instrumental asymmetries

In real life

- Detector acceptance asymmetries
- Time variation of detector response
- Charge-dependent beam optics
- Time variation of beams’ properties
- Spurious magnetic fields
- Charge-asymmetric interactions
Strategy of data taking

Beam line (achromat) polarity (A) reversed on **weekly** basis
Spectrometer magnet polarity (B) reversed on **daily** basis

Example: August 6 to September 7, 2003

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Achromat –</th>
<th>B+ B- B+ B- B+ B-</th>
<th>Supersample 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>Achromat +</td>
<td>B+ B- B+ B- B+ B-</td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td>Achromat –</td>
<td>B+ B- B+ B- B+ B-</td>
<td>Supersample 2</td>
</tr>
<tr>
<td>Week 4</td>
<td>Achromat +</td>
<td>B+ B- B+ B- B+ B-</td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>Achromat –</td>
<td>B+ B-</td>
<td>Supersample 3</td>
</tr>
<tr>
<td></td>
<td>Achromat +</td>
<td>B+ B-</td>
<td></td>
</tr>
</tbody>
</table>

12 subsamples

12 subsamples

4 subsamples
Acceptance cancellation

Detector left-right asymmetry cancels in 4 ratios of K^+/K^- distributions:

(same deviation by spectrometer in numerator and denominator)

$$R_{US} = \frac{N(A+B+K^+)}{N(A+B-K^-)}$$

$$R_{UJ} = \frac{N(A+B-K^+)}{N(A+B+K^-)}$$

$$R_{DS} = \frac{N(A-B+K^+)}{N(A-B-K^-)}$$

$$R_{DJ} = \frac{N(A-B-K^+)}{N(A-B+K^-)}$$

Indexes correspond to:
- beamline polarity (U / D)
- direction of kaon deviation in spectrometer (S / J)

Crimea 2005

Giuseppina Anzivino
Quadruple ratio

\[R = R_{US} R_{UJ} R_{DS} R_{DJ} \sim 1 + 4 \Delta g \cdot u \]

3-fold cancellation of systematic biases:
1) Global time-variable biases (K\(^+\), K\(^-\) simultaneously recorded)
2) Beam line biases (K\(^+\) beam up / K\(^-\) beam up etc.)
3) Detector asymmetries (K\(^+\) toward Saleve / K\(^-\) toward Saleve etc.)
4) Effects of permanent stray fields (earth, vacuum tank magnetisation) cancel

The result is sensitive only to time variation of asymmetries in experimental conditions with a characteristic time smaller than corresponding field-alternation period (beam-week, detector-day)
Monte Carlo simulation

Due to acceptance cancellations, the analysis does not rely on Monte-Carlo to calculate acceptance.

Still MC is used to study systematics. MC features:

- Based on GEANT
- Full detector geometry and material description
- Local DCH inefficiencies simulated
- Variations of beam geometry and DCH alignment are followed
- Simulated statistics similar to experimental one.

Example of data/MC agreement: mean beam positions @DCH1

<table>
<thead>
<tr>
<th>K+ data</th>
<th>K− data</th>
<th>K+ MC</th>
<th>K− MC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crimea 2005

Giuseppina Anzivino
Beam systematics

Time variations of beam geometry

Acceptance largely defined by central beam hole edge.

Acceptance cut defined by (larger) "virtual pipe" centered on averaged beam positions as a function of charge, time and K momentum

Effects due to beam movements and not perfect overlap corrected
Spectrometer systematics

Time variations of spectrometer geometry - Alignment is fine tuned by forcing mean reconstructed invariant $\pi\pi\pi$ masses to be equal for K^+ and K^-.

E.g. sensitivity to DCH4 horizontal shift: $\Delta M / \Delta x \approx 1.5$ keV/\(\mu m\)

Momentum scale

variation due to limited control of spectrometer magnet current (10^{-3}) cancels due to simultaneous beams.

In addition, it is adjusted by forcing mean reconstructed invariant $\pi\pi\pi$ masses to PDG value of M_{K^+}.
Trigger systematics

L1 trigger (2 hodoscope hits): stable and small inefficiency: $1-e \approx 0.7 \cdot 10^{-3}$, charge-symmetric, flat in u NO CORRECTION NEEDED

L2 trigger (online vertex reconstruction on DCH data):

time-varying inefficiency (local DCH inefficiencies) $1-e \approx 0.2\%$ to 1.8%, flat in u
within measurement precision u-dependent CORRECTION APPLIED

<table>
<thead>
<tr>
<th>Subsample</th>
<th>L2 correction $\delta \Delta g \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS0</td>
<td>0.5±1.8</td>
</tr>
<tr>
<td>SS1</td>
<td>1.4±1.0</td>
</tr>
<tr>
<td>SS2</td>
<td>-0.2±1.2</td>
</tr>
<tr>
<td>SS3</td>
<td>-4.5±1.9</td>
</tr>
</tbody>
</table>

L2 ineff for K+ and K- in subsamples

L2 efficiency vs U

statistical uncertainty from control sample
Other systematics

Residual effects of stray magnetic fields (magnetised vacuum tank, earth field) minimised by explicit field map correction

Further systematic effects studied
- Bias due to resolution in u calculation
- Sensitivity to fitting interval and method
- Effects connected to $\pi \rightarrow \mu \nu$ decay
- Effects due to event pile-up
- π^+ / π^- interactions in material
- Track charge misidentification

Crimea 2005 Giuseppina Anzivino
Systematics summary and result

<table>
<thead>
<tr>
<th>Conservative estimations of systematic errors</th>
<th>Effect on (\Delta x 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance and beam geometry</td>
<td>0.5</td>
</tr>
<tr>
<td>Spectrometer alignment</td>
<td>0.1</td>
</tr>
<tr>
<td>Analyzing magnet field</td>
<td>0.1</td>
</tr>
<tr>
<td>(\pi^+ \rightarrow \mu \nu) decay</td>
<td>0.4</td>
</tr>
<tr>
<td>U calculation and fitting</td>
<td>0.5</td>
</tr>
<tr>
<td>Pile-up</td>
<td>0.3</td>
</tr>
<tr>
<td>Syst. errors of statistical nature</td>
<td></td>
</tr>
<tr>
<td>Trigger efficiency: L2</td>
<td>0.8</td>
</tr>
<tr>
<td>Trigger efficiency: L1</td>
<td>0.4</td>
</tr>
<tr>
<td>Total systematic error</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Combined preliminary result:

in \(\Delta g \times 10^4 \) units

(3 independent analyses)

Including L2 trigger correction

<table>
<thead>
<tr>
<th></th>
<th>Raw</th>
<th>Corrected for L2 eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS0</td>
<td>0.0±1.5</td>
<td>0.5±2.4</td>
</tr>
<tr>
<td>SS1</td>
<td>0.9±2.0</td>
<td>2.2±2.2</td>
</tr>
<tr>
<td>SS2</td>
<td>-2.8±2.2</td>
<td>-3.0±2.5</td>
</tr>
<tr>
<td>SS3</td>
<td>2.0±3.4</td>
<td>-2.6±3.9</td>
</tr>
<tr>
<td>Total</td>
<td>-0.2±1.0</td>
<td>-0.2±1.3</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>2.2/3</td>
<td>3.2/3</td>
</tr>
</tbody>
</table>
Result stability

\[
\Delta g \times 10^{-4}
\]

\[
\chi^2/\text{ndf} \quad 3.346 \quad / \quad 9
\]

\[
E_K \text{ (GeV)}
\]

\[
\Delta g \times 10^{-4}
\]

\[
\chi^2/\text{ndf} \quad 6.615 \quad / \quad 9
\]

\[
z_{\text{vertex}} \text{ (cm)}
\]
Preliminary result (2003 data)

- **slope difference**
 \[\Delta g = (-0.2 \pm 1.0)_{\text{stat.}} \pm 0.9_{\text{stat.(trig.)}} \pm 0.9_{\text{syst.}} \times 10^{-4} \]
 \[\Delta g = (-0.2 \pm 1.7) \times 10^{-4} \]

- **charge asymmetry**
 \[A_g = (0.5 \pm 2.4)_{\text{stat.}} \pm 2.1_{\text{stat.(trig.)}} \pm 2.1_{\text{syst.}} \times 10^{-4} \]
 \[A_g = (0.5 \pm 3.8) \times 10^{-4} \]

- This is a preliminary result with conservative estimate of systematic uncertainties.
- Extrapolated statistical uncertainty 2003+2004: \(\delta A_g = 1.6 \times 10^{-4} \)
- Expect smaller systematic effects in 2004 data (due to more frequent polarity alternation, better L2 performance).
Comparison $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$

This preliminary result is already an order of magnitude better than previous experiments.
$K^\pm \rightarrow \pi^\pm \pi^0 \pi^0$ analysis

“neutral” mode wrt “charged”

- Same strategy of analysis
- Only the Lkr used to define u
- Totally different systematics
- Statistical precision in A_g^0 similar
 - Ratio of “neutral” to “charged” statistics: $N^0/N^\pm \sim 1/20(\sqrt{f}=1/4.5)$
 - Ratio of slopes: $|g^0/g^\pm| \sim 3$
 - More favourable Dalitz-plot distribution (gain factor $f\sim 1.5$)
Status of analysis

- Statistics analyzed: 50 × 10^6 events
- Statistical error with analyzed data: \(\delta A_g(\text{stat}) = 1.7 \times 10^{-4} \)
- Extrapolation to 2003+2004 data (115 × 10^6) \(\delta A_g(\text{stat}) = 1.1 \times 10^{-4} \)

Preliminary results will be announced soon
Observation of $\pi\pi$ scattering effect in $K\to 3\pi$ decays

Thanks to the large statistics in the neutral mode we can see (for the first time) the contribution of the charge exchange process $\pi^+\pi^-\to\pi^0\pi^0$ in the $K^\pm\to\pi^0\pi^0\pi^\pm$ decay. This effect stimulated some theoretical work.
(a_0-a_2) determination in K^+\rightarrow\pi^+\pi^0\pi^0

Two processes contribute to K^+ --> \pi^+\pi^0\pi^0
1) Direct emission of \pi^+\pi^0\pi^0
2) \pi^0\pi^0 produced in charged pions rescattering

\[M_0 = 1 + gu/2 \]
\[u = 2m_\kappa(m_\kappa/E_{\text{odd}}/m_\pi^2 \]
\[g = 0.638 \pm 0.020 \]
(present PDG value)

\[M_1 \propto (a_0 - a_2) \]

\[\frac{d\Gamma}{dm_{\pi\pi}} \propto |M_0 + M_1|^2 \]

Interference is expected

Fits to the “cusp” effect in $K^\pm \rightarrow \pi^\pm \pi^0\pi^0$

$\Delta = (\text{data-fit})/\text{data}$

$\chi^2 = 133/139$

for $M(\pi^0\pi^0) > 80$ MeV/c2

The best fit obtained with two loops adding a small amount of pionium to improve the χ^2

One-loop exchange: $\chi^2 = 463/149$

One and two loops: $\chi^2 = 159/147$

Cabibbo, Isidori: hep-ph/0502130

Incl. $\pi^+\pi^-$ atoms: $\chi^2 = 144/146$
Preliminary result

the pionium contribution has been fixed to the prediction:
Z.K. Silagadze, hep-ph/9411382

\[
\frac{K^+ \to \pi^+ + \text{pionium}}{K^+ \to \pi^+ \pi^+ \pi^-} \approx 7.4 \times 10^{-6}
\]

\[(a_0 - a_2)m_+ \quad \text{has low sensitivity to pionium}\]

\[(a_0 - a_2)m_+ = 0.281 \pm 0.007 \text{(stat)} \pm 0.014 \text{(syst)} \pm 0.014 \text{(theor)}\]

\[
\chi^2/\text{ndf} = 154/146
\]

No surprise from other parameters

In agreement with theory \[(a_0 - a_2)m_+ = 0.265 \pm 0.004 \text{ (Colangelo 2001)}\]
Conclusions

- Preliminary NA48/2 result (only 2003 data) on direct CP-violating charge asymmetry in $K^\pm \rightarrow \pi^\pm \pi^+ \pi^-$ decays is
 \[A_g = (0.5 \pm 2.4_{\text{stat.}} \pm 2.1_{\text{stat.(trig.)}} \pm 2.1_{\text{syst.}}) \times 10^{-4} \]
- x 10 times better precision than previous measurements
- Further room to decrease systematic error (trigger efficiency)
- 2004 data contains another $2 \times 10^9 K^\pm \rightarrow \pi^\pm \pi^+ \pi^-$ events, possibly with higher quality → Design goal within reach
- $K^\pm \rightarrow \pi^\pm \pi^0 \pi^0$ neutral asymmetry: complementary, comparable sensitivity
- “Cusp” effect: determination of the $\pi \pi$ scattering lengths
- A lot of other interesting results coming (other CP asymmetries, rare decays)
SPARE SLIDES
$K_{3\pi}^\pm$ decays

\[\text{BR}(K^\pm \to \pi^\pm \pi^+ \pi^-) = 5.57\% \]

``charged``

Kinematic variables

Lorentz-invariants

\[u = (s_3-s_0)/m_\pi^2; \]
\[v = (s_2-s_1)/m_\pi^2; \]
\[s_i = (P_K-P_{\pi_i})^2, \ i=1,2,3 \ (3=\text{odd } \pi); \]
\[s_0 = (s_1+s_2+s_3)/3. \]

Centre of mass frame

\[u = 2m_K \cdot (m_K/3-E_{\text{odd}})/m_\pi^2; \]
\[v = 2m_K \cdot (E_1-E_2)/m_\pi^2. \]

Matrix element parameterized in terms of slopes

\[|M(u,v)|^2 \sim 1 + gu + hu^2 + kv^2 \]

Measured quantity sensitive to direct CP violation:

Slope asymmetry:

\[A_g = (g^+ - g^-) / (g^+ + g^-) \]
NA48/2 narrow-band beams

simultaneous, coaxial, focused

<table>
<thead>
<tr>
<th>Beam</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary proton momentum</td>
<td>400 GeV/c</td>
<td></td>
</tr>
<tr>
<td>Duty cycle</td>
<td>5.2 s / 16.8 s</td>
<td></td>
</tr>
<tr>
<td>Protons on target per cycle</td>
<td>10^{12}</td>
<td></td>
</tr>
<tr>
<td>Production angle</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Beam acceptance</td>
<td>±0.36 mrad</td>
<td></td>
</tr>
<tr>
<td>Beam momentum</td>
<td>(60 ± 3) GeV/c</td>
<td></td>
</tr>
<tr>
<td>Beamline length</td>
<td>102 m</td>
<td></td>
</tr>
<tr>
<td>p / \bar{p} per cycle (10^6)</td>
<td>8.6</td>
<td>0.9</td>
</tr>
<tr>
<td>π^+ / π^- per cycle (10^6)</td>
<td>33.2</td>
<td>24.6</td>
</tr>
<tr>
<td>K^+ / K^- per cycle (10^6)</td>
<td>3.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Decay region</td>
<td>115 m</td>
<td></td>
</tr>
</tbody>
</table>

P_K spectra, 60 ± 3 GeV/c

⇒ Pion decay products stay in beam pipe...
Theoretical predictions of A_g

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Model</td>
<td>L. Maiani, N. Paver ’95</td>
<td>$(2.3 \pm 0.6) \times 10^{-6}$</td>
</tr>
<tr>
<td></td>
<td>A. Bel’kov ’95</td>
<td>$< 4 \times 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td>G. D’Ambrosio, G. Isidori ’98</td>
<td>$< 10^{-5}$</td>
</tr>
<tr>
<td></td>
<td>E. Shabalin ’01</td>
<td>$< 3 \times 10^{-5}$</td>
</tr>
<tr>
<td></td>
<td>E. Gamiz, J. Prades, I. Scimemi ’03</td>
<td>$(-2.4 \pm 1.2) \times 10^{-5}$</td>
</tr>
<tr>
<td></td>
<td>E. Shabalin ’05 (La Thuile’05)</td>
<td>$< 8 \times 10^{-5}$</td>
</tr>
<tr>
<td>SUSY</td>
<td>G. D’Ambrosio, G. Isidori, G. Martinelli</td>
<td>$\sim 10^{-4}$</td>
</tr>
<tr>
<td>New physics</td>
<td>E. Shabalin ’98 [Weinberg model of extended Higgs doublet]</td>
<td>$\sim 4 \times 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td>I. Scimemi ’04</td>
<td>$> 3 \times 10^{-5}$</td>
</tr>
</tbody>
</table>
(1) **Double ratio** cancellation of **global time instabilities** (rate effects, *simultaneous beams*):

\[
R_U = R_{US} \times R_{UJ} \quad \Rightarrow \quad R(u) = n \cdot (1 + 2 \Delta g_U u)
\]

\[
R_D = R_{DS} \times R_{DJ} \quad \Rightarrow \quad R(u) = n \cdot (1 + 2 \Delta g_D u)
\]

(2) **Double ratio** cancellation of **beam geometry difference** effects:

\[
R_S = R_{US} \times R_{DS} \quad \Rightarrow \quad R(u) = n \cdot (1 + 2 \Delta g_S u)
\]

\[
R_J = R_{UJ} \times R_{DJ} \quad \Rightarrow \quad R(u) = n \cdot (1 + 2 \Delta g_J u)
\]

(3) **Fit with quadruple ratio**:

\[
R = R_{US} \times R_{UJ} \times R_{DS} \times R_{DJ} \quad \Rightarrow \quad R(u) = n \cdot (1 + 4 \Delta g u)
\]

The fit result is sensitive only to **time variation** of **asymmetries** in experimental conditions on a time-scale of ~ 1 subsample.
Break down of $K^\pm \rightarrow \pi^\pm \pi^+ \pi^-$ statistics

Statistics selected for A_g measurement, events $\times 10^6$

<table>
<thead>
<tr>
<th>Dates</th>
<th>Sub-sample</th>
<th>Achromat A+</th>
<th>Achromat A-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>K^+</td>
<td>K^-</td>
</tr>
<tr>
<td>0 22.06-25.07</td>
<td>26</td>
<td>229.6</td>
<td>125.9</td>
</tr>
<tr>
<td>1 6.08-20.08</td>
<td>12</td>
<td>122.5</td>
<td>68.1</td>
</tr>
<tr>
<td>2 20.08-3.09</td>
<td>12</td>
<td>147.2</td>
<td>81.8</td>
</tr>
<tr>
<td>3 3.09-7.09</td>
<td>4</td>
<td>40.6</td>
<td>22.6</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>Total events selected</td>
<td>1613.2</td>
</tr>
</tbody>
</table>
Invariant $\pi\pi\pi$ mass

$\sigma_M = 1.7$ MeV/c2

$K^+: 1.03 \times 10^9$ events \hspace{1cm} No significant background \hspace{1cm} $K^- : 0.58 \times 10^9$ events
Fit linearity - four supersamples

SS0: \(\Delta g = (0.6 \pm 2.4) \times 10^{-4} \) \(\chi^2 = 39.7/38 \)

SS1: \(\Delta g = (2.3 \pm 2.2) \times 10^{-4} \) \(\chi^2 = 38.1/38 \)

SS2: \(\Delta g = (-3.1 \pm 2.5) \times 10^{-4} \) \(\chi^2 = 29.5/38 \)

SS3: \(\Delta g = (-2.9 \pm 3.9) \times 10^{-4} \) \(\chi^2 = 32.9/38 \)
Cancellation of beam spectra

Achromat reversal reverses K^+ and K^- beam spectra.

Systematic differences of K^+ and K^- acceptance due to beam spectra mostly cancel in $R_U R_D$.

Systematic check:
Reweighting K^+ events so as to equalise momentum spectra leads to negligible effect $\delta \Delta g = 0.03 \times 10^{-4}$.
Theoretical predictions

Weinberg (1966)
Effective field theory for strong interaction at low E

\[a_0 m_{\pi^+} = \frac{7 m_{\pi^+}^2}{16\pi f_{\pi}^2} = 0.159 \]
\[a_2 m_{\pi^+} = \frac{-m_{\pi^+}^2}{8\pi f_{\pi}^2} = -0.045 \]

Most recently
Colangelo (2001)
\(\chi pt \)-theory two loops
Ref: hep-ph/0103088

\[a_0 m_{\pi^+} = 0.220 \pm 0.005 \]
\[a_2 m_{\pi^+} = -0.0444 \pm 0.0010 \]
\[(a_0 - a_2) m_{\pi^+} = 0.265 \pm 0.004 \]

* 2% level of accuracy: quite unusual for hadronic physics experiments have not yet reached the same level
Experimental status

1977: measurement by Genève/Saclay experiment @ 20% accuracy

2003: BNL E865 extracts a_0 at 5% accuracy by measuring the form factors of the decay $K \rightarrow \pi\pi\nu\nu$ with 400,000 events

\[a_0 m = 0.216 \pm 0.013 \{\text{stat.}\} \pm 0.002 \{\text{syst.}\} \pm 0.002 \{\text{theor.}\} \]

Ref. Pisla et al. (2003) hep-ex/0301040

Present: Cern experiment DIRAC, with a sophisticated technique, aims to measure the pionium lifetime @ 10% accuracy

\[\tau \sim 40 \cdot (a_0 - a_2)^2 \cdot 10^{-15} \text{sec} \]