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One of challenging problems of particle, nuclear  and 
statistical physics is the theory of dense  hadron matter.

I will discuss general properties of cold nucleon matter
which are missed in the text books



Review and references in L.Frankfurt& M.Strikman & 
M.Sargsian in print

Understanding of the role of interactions gives key to old  
questions: 

Stability or instability of neutron, hyperon stars at zero 
temperature 

Luminocity of neutron stars at nonzero temperature

Eventual fate of neutron stars -QCD challenge.



Basic facts from low energy nuclear phenomenology.

Existence and stability of nuclei requires attraction in NN 
interaction and stronger NN repulsion at small distances.

Prediction of large high momentum nucleon component
with universal, independent on atomic number  properties.
F.S. 70th

Theory:  distribution of nucleons within neutron star differ from 
Fermi step-                 tail of nucleons   with momenta above 
Fermi surface.

≥ 30%

In the low energy processes SRC can not be observed because 
of proximity of scales characterizing measuring process and 
SRC.  60 years of attempts.



In the hard high energy processes SRC can be investigated 
using universality and properties of SRC as the signature. The 
methods  of hard processes were adjusted to search of SRC  
in F.S. 70th

Observed indirectly in 70 th (Dubna, ITEP, IHEP, FNAL) 
in the significant cross section of the processes:

a + T → backward(proton, pion, kaon) + X

a=proton, pion, photon, electron, neutrino,light nuclei 

T is nuclear  target 

 



New information from high energy nuclear physics

Last few years SRC were observed directly in the  
processes with predicted rate cf talk of E.Pisetzky:

e+A->e+X  for    3>x>1   TJNF

p+A->p+N+n+X   BNL

e+A->e+N+N+X         TJNF



Nucleon occupation number  in nuclei is around 0.8 instead of 1

(p-n) correlations dominate over pp correlations

Theoretical conclusion:  distribution of nucleons within gas 
of strongly interacting nucleons even at zero temperature  
is different from step function.  Occupation number for  a 
nucleon within Fermi surface  <0.7   at nuclear density.
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Neutron stars  are stellar objects with masses (1-2) solar masses 
and  radii of the order  10 -  12 km, and temperatures well 
below one MeV.  The matter becomes more neutron rich with 
an increase of the density, as  a result of the increase of the  
electron Fermi energy which favours the  electron capture   by 
the  protons, 

At a density of the order of a half of the nuclear matter 
density, the matter  dissolves into uniform liquid composed 
primary of neutrons,                          protons, and equal 
number of electrons. 

∼ 5− 10%

Introduction

e + p→ n + ν



Ideal gas approximation for a neutron star .

n, p, e  noninteracting gases. 

Nn ! Np = Ne

EF (n) = EF (p) + EF (e)

kF (p)/kF (n) = (Np/Nn)1/3 ! 1

For an electron from a  neutron  decay for any 
positive neutron density :

kF (e) ≥ kmax(e)
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Ni = (1/3π2)(kF (i))3



β

Proton and electron states are filled at zero temperature  
so Pauli blocking forbids neutron decay.  

Thus a neutron within a neutron star is stable within the 
ideal gas approximation
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Pauli blocking disappears  due to strong and Coulomb 
interactions between neutrons, protons and electrons 
leading to the collapse of neutron star  into quark-gluon 
stage of the star. 



Life-time of neutron star at zero temperature but nuclear 
density is                 years .  Life time of hyperon, muon 
stars  should be significantly lesser because of larger 
energies of electrons in the         decay.  However 
assumption that strange matter may appear ground state 
of stable hadron matter (E.Witten et al) may complicate 
conclusions. 
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∼ 109

β

Neutrino cooling of a neutron star at nonzero temperature 
is parametrically enhanced as compared to the ideal gas 
approximation because of  the SRC.
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Content

Internucleon interactions

Coulomb p,e interactions 

Collapse of neutron star at T = 0

Neutrino cooling at T > 0

Conclusions



For certainty we shall attack this problem within the 
nonrelativistic framework for nucleons and relativistic one 
for electrons.  
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L.Landau  theory of Fermi liquid needs drastic 
modifications  to become effective tool for the  description 
of  3 interacting liquids if  the number of neutrons 
significantly exceeds the number of protons.

Theoretical challenge is to build theory of  3 interacting 
liquids: neutron ,proton and electron liquids.   



Internucleon interaction tends to equilibrate momenta of 
protons and neutrons -strong departure from the ideal gas 
approximation for the asymmetric matter . Distinctive  
effect is the strong distortion of  the proton Fermi surface 
in momentum space , appearance of significant number of 
nucleons with momenta above Fermi surface.  Application 
of baryon sum rules   found significant probability of 
proton,neutron holes in the proton,neutron Fermi seas. 
 
Thus Fermi blocking of neutron β      decay related to 
proton sector disappears as the consequence of 
internucleon interactions.
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Calculation of many properties of high momentum 
component of proton ,neutron momentum distributions 
like dependence on nucleon momentum is rather 
straightforward for any system :neutron star or nucleus. 
This is because high momentum component of w.f. of 
many body system is given by   Fourier component of 
singular part of internucleon potential.  Below are the 
formulae  for high momentum tail of proton, neutron 
occupation numbers derived from singular behaviour of 
pair nucleon potential.  
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fp(k) ≈ 2
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Here                              V = (4π/3)R3

and R is radius of neutron star ; V is potential of NN interaction.

In the leading order over             for                 :1/k2 k ! kF



Recent calculation of nucleon occupation numbers within 
the frame  of Schrodinger equation  with realistic potentials 
of nucleon-nucleon interactions cf.T.Frick et al found that 
occupation numbers of protons with zero momenta are                 

for the asymmetric nuclear matter. Even larger depletion of 
occupation numbers  is for protons with momenta near the  
Fermi surface.  

≈ 70%
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Thus significant jump in the proton occupation numbers 
at                          which is the basis of  L.Landau-A.Migdal 
Fermi liquid theory for one type constituents is improbable 
for the asymmetric nuclear matter consisting of different 
constituents.

k = kF (p)
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Numerical analysis (L.Frankfurt&.M.Strikman.1976,1981) 
shows that high momentum component of many body wave 
function at achievable nucleon momenta is dominated by 
Fourier transform of coordinate space wave function in the 
region where internucleon attraction dominates .Therefore.   
high momentum nucleon component arises due to  
classically allowed trajectories.



Coulomb interaction between protons with momenta above Fermi 
surface and electrons with momenta within Fermi surface produces 
electrons with momenta “k” above electron Fermi surface:
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fe(ke ≥ kF (e), T = 0) ≈ (1/2)
∫

(d3kp/(2π))3fp(kp)θ(kp − kF (p))(Ne/V )·

·H(kp)



 ke + 3
4kF (e)

√
ke ·

√
3
4kF (e)




(

VCoulomb(k)
ke − k2

e/2mN − 3
4kF (e)

)2

$H(k_p)=1-f_p(k_p,T=0)$ accounts for the number of free holes 
needed to avoid Pauli blocking for the proton which interacted 
with the electron.



High momentum component is evaluated in the framework of 
Feynman diagrams-nonrelativistic Schrodinger equation is inapplicable  
in the important kinematics.  We accounted for the probability of 
(p-n) short range nucleon correlation -    Pp,n.  kp     is  the proton 
momentum within SRC.                  is the density of the constituent 
“i” .  

Ni/V



It follows from the sum rule accounting for the conservation of 
electron number that Coulomb  (e-p) interaction between proton 
from SRC and electron from Fermi sea produces holes in the electron 
Fermi sea.   Thus Pauli blocking of neutron decay is not absolute in the 
electron sector also because of  Coulomb (e-p) attraction .  

So neutron star with any mass is unstable to  β       decay .  
Energy-momentum conservation in the neutron    β   decay when 
electron fills the hole,  dominance of attraction in 
(p-n), (p-e) interactions  lead to the collapse of neutron star.  
     Inverse   β decay:  e+p→n +ν   helps to keep 
p/n ratio approximately constant. It produces low energy 
neutrino which easily leave star -gravity did not   influence much 
on such a neutrino. 
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Width of a neutron within neutron star at nuclear density and 
zero temperature:

we evaluate  life time of a neutron within the neutron star:    109        
years .   This is an estimate  only, since Np/Nn=0.1  is  significantly 

larger than the ideal gas number.

Np/Nn = 0.1 kF (e) = 250MeV

(
Γn(medium)

Γn(free)

)
≈ (1− fp(< kp >,T = 0))

(
〈ke〉

kF (e)

)3 ∫
(V/Nn)fe(ke)d3ke/(2π)3Θ(ke ≥ kF (e))
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Assuming  the ideal gas approximation for electrons and neutrons 
which do not belong to SRC and :



Quark-gluon stage of a neutron star  is also unstable 
to        decay of “d” quark because of larger number of   “d” quarks 
and dominance of  Coulomb interaction between u quarks and 
electrons. Combination of these effects  allowed           decay of 
“d”quark.  Quantitative calculation of life  time of  such stage of a 
star requires better understanding of QCD.

β

Energy of an electron in the decays of  hyperon , muon
is significantly larger than that for a neutron decay. But 
phase volume for electron holes with larger momenta is 
significantly larger.  As a result life  time of hyperon, muon stars , 
strange matter (if it is not lowest energy state of the matter ) 
should be significantly less  than life time of a neutron star- 
however analysis of the role of absorption of high energy neutrino 
is needed.

β

β



Enhancement of  neutrino cooling of the neutron stars at 
finite  temperatures.

Common wisdom: dominant process of neutrino cooling of 
neutron stars at finite temperature is URCA process:

n→ p + e− + ν̄e, p + e− → n + νe

It is  allowed    by  the energy-momentum conservation 
law if the proton concentration exceeds 

(Lattimer et al)(11− 15)%

Neutrino luminosity  in the Fermi liquid approach:   

εURCA = c(kT )6θ(kF (e) + kF (p)− kF (n))
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where enhancement factor R is

Account for the high momentum proton component  leads to 
more rapid neutrino cooling-larger  neutrino luminocity:  

εURCA = c(kT )6R

R ≈
∫

fp(kp, T = 0)θ(kF (e) + k(p)− kF (n))d3kp/(2π)3∫
(1− fp,bare(kp, T ))θ(kF (e) + kF (p)− kF (n))d3kp/(2π)3

.

Major enhancement is due to presence of proton holes in the proton 
Fermi sea.  Approximate estimate gives for 

T ! 1MeV R ≈ 0.16(MeV/kT )3/2
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for R =∞ Np/Nn ! 0.1



Conclusions

It seems that neutron star has no ground state in QCD. The fate  
of any neutron star is to collapse into quark-gluon state and 
probably eventually into black hole. More heavy neutron star - 
more rapid transition to black hole.
Hyperon, muon..stars, (strange matter  if not ground state
of matter)  should be more rapidly transformed into black holes.

Internucleon interactions lead to enhancement of neutrino 
cooling of neutron stars at non zero temperature as compared 
to Fermi liquid approximation.
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