Sixth International Conference on Perspectives in Hadronic Physics 12-16 May 2008, Trieste - Italy

QCD Resummation for Heavy Quarkonium Production in High Energy Collisions

- Brief introduction
- Success and failure of existing models
- Huge high order corrections?
- QCD resummation and new factorization
- Summary and conclusions

Jianwei Qiu Iowa State University

Based on work with Z.-B. Kang, G. Nayak, and G. Sterman

Heavy quarkonium production

QWG Report, N. Brambilla et al, hep-ph/0412158 Offers a unique perspective to the hadronization

Production of heavy quarks is effectively perturbative:

 $\Delta r \sim \frac{1}{2m_Q} \leq 0.1 \text{ fm (for a charm-quark pair)}$ $\leq 0.025 \text{ fm (for a b-quark pair)}$

Heavy quark pairs are produced at a distance scale much less than fm

Heavy quarkonium provides a non-relativistic system, potentially, very similar to a QED bound state:

Charm: $\frac{v^2}{c^2} \sim \frac{k_Q^2}{m_Q^2} \sim \frac{|M^2 - 4m_c^2|}{4m_c^2} \sim 0.3$ Bottom: $\frac{v^2}{c^2} \sim 0.1$ Heavy quark potential: $V_{Q\bar{Q}}(r)$ Large mass and small binding energy

Heavy quarkonium in medium

□ Could be a good probe for Quark Gluon Plasma (QGP)

The transition from a heavy quark pair to a quarkonium should be sensitive to the soft physics or medium properties

Quarkonium binding energy:

$$\frac{\left|M^2 - 4m_Q^2\right|}{4m_Q^2} \ll 1$$

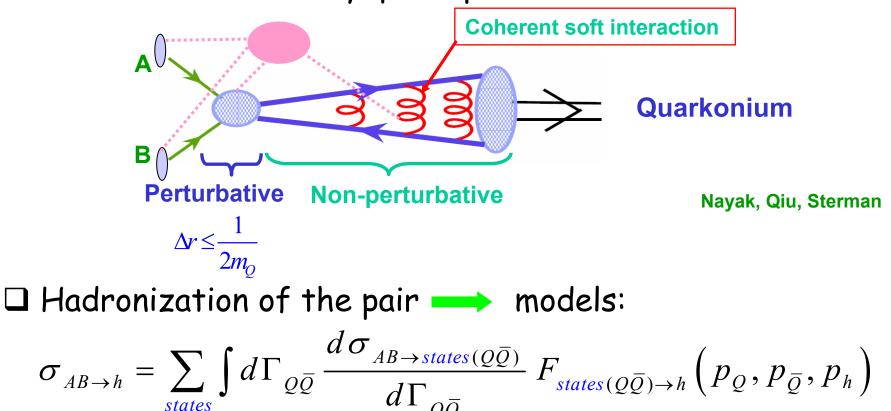
 $\boldsymbol{\ast}$ Color screening in QGP suppresses the formation of J/ψ

C Č Č

Potential:
$$V_{Q\bar{Q}}(r) \Rightarrow V_{Q\bar{Q}}(r,T)$$
 Matsui & Satz
(1986)
Wave function: $\Phi_{Q\bar{Q}}(r) \Rightarrow \Phi_{Q\bar{Q}}(r,T)$
 J/ψ formation rate $\propto \left| \Phi_{Q\bar{Q}}(r,T) \right|^2$

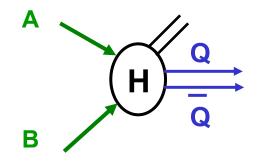
 J/ψ suppression \Leftrightarrow medium properties

Question

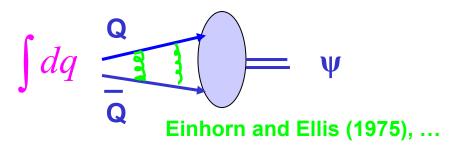

Do we understand the production mechanism of J/ψ well enough to calibrate the production rate and to extract the information on QGP?

May be, may be not

Note: it has been more than 30 years since the discovery of J/ψ !

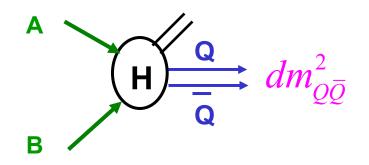

The basic production mechanism

□ Production of a heavy quark pair:


Different models \Leftrightarrow Different assumptions/treatments on how the heavy quark pair becomes a quarkonium?

Color singlet model

- color singlet pair
- * right quantum numbers
 for the quarkonium
- same wave function for production and decay

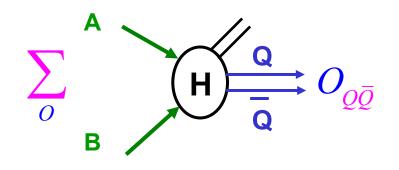

$$\sigma_{AB \rightarrow \psi} \propto \sigma_{AB \rightarrow (Q\bar{Q})} \left| R_{\psi} \left(0 \right) \right|^{2}$$

- absolutely normalized predictions
- * predictions on polarization
- quantum interference
 between production and
 formation suppressed

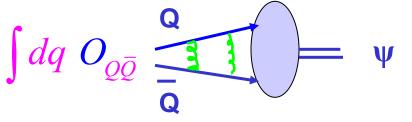
Works well for J/ψ production in photo-production and others But, one order of magnitude too small for CDF data, ...

Color Evaporation Model

- all pairs with invariant mass less than open flavor threshold
- color and spin average


Fritsch (1978); Halzen; ...

- A single constant for non-perturbative formation
- one constant for one quarkonium state


$$\sigma_{AB \to J/\psi} = f_{J/\psi} \int dm_{Q\bar{Q}}^2 \frac{d\sigma_{AB \to (Q\bar{Q})}}{dm_{Q\bar{Q}}^2}$$

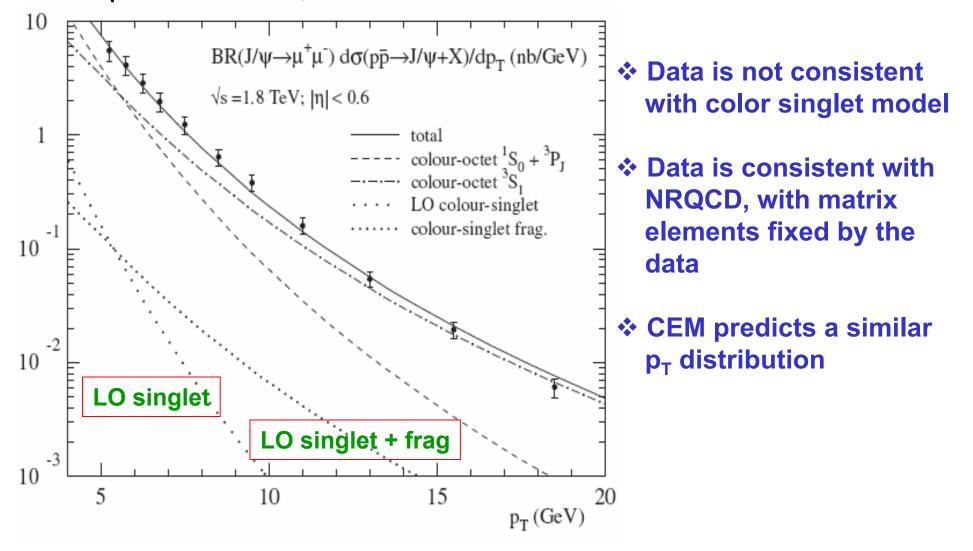
Works well for total cross sections, not perfect for distributions, Predicts zero polarization for quarkonium production

Non-relativistic QCD (NRQCD) model

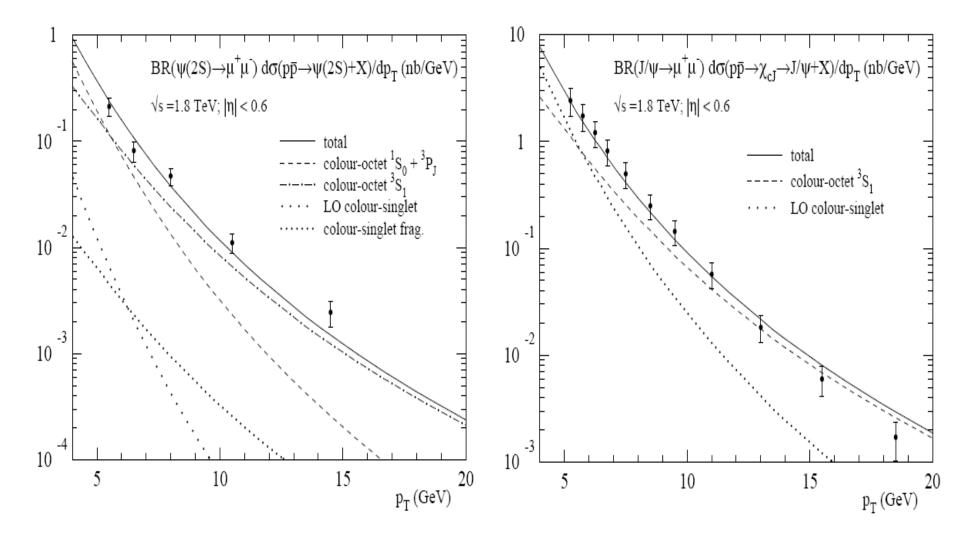
- A generalization of color singlet model
- All color and spin states
 of HQ pairs -> quarkonium
- Expansion of HQ velocity

Bodwin, Braaten, Lapage (1994); ...

- * "Integrate out" HQ dynamics: $(O(\alpha_s^n(m_Q)))$
- * Factorize hadronization: $(\mathcal{O}(v_{\mathrm rel}^n))$ universal matrix elements


$$\sigma_{AB \to J/\psi} \left(M_{J/\psi} \right) \approx \sum_{[O]} \sigma_{AB \to [O]} \left(2m_{c\overline{c}} = M_{J/\psi} \right) \left\langle O_{J/\psi}(0) \right\rangle$$

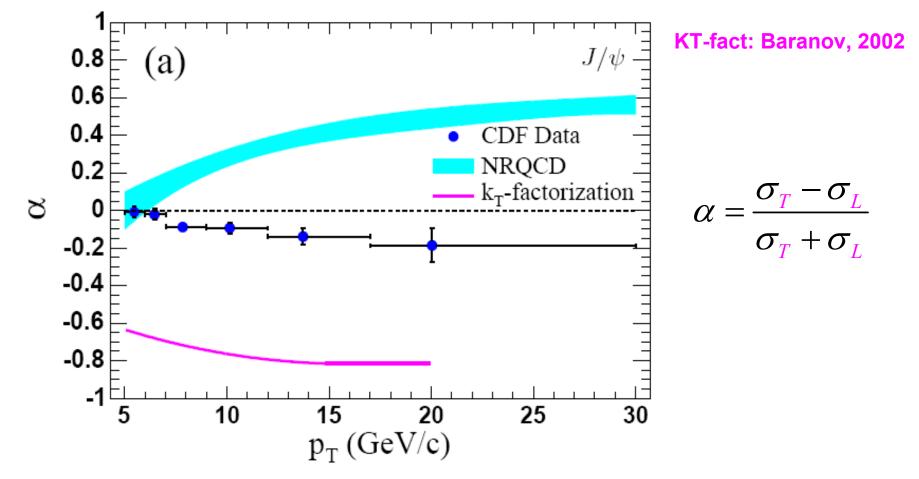
It has been the most successful model ...


Successes of the production models

 \Box Unpolarized J/ ψ at the Tevatron:

M. Kramer, 2001

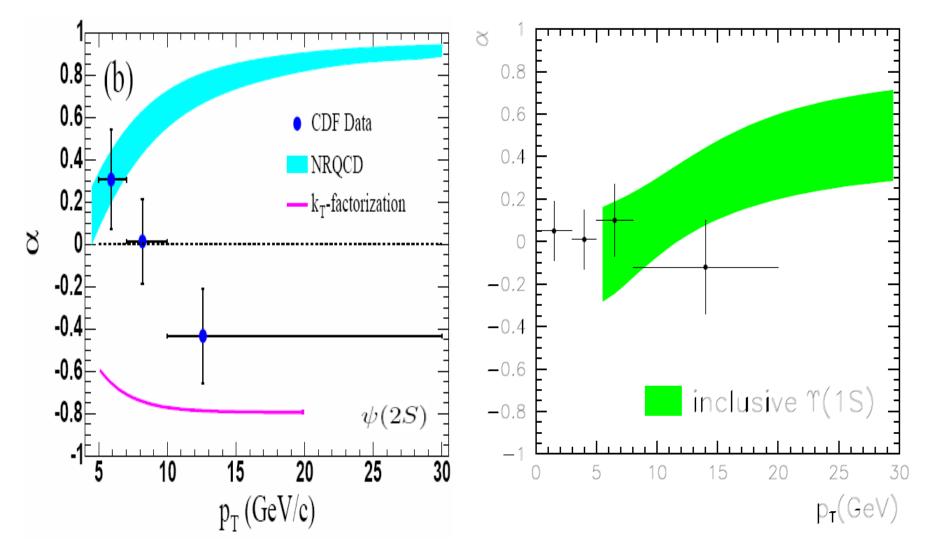
□ Works for other states too:



E. Braaten et al. Annu. Rev. Nucl. Part. Sci. 46, 197 (1996)

Difficulties

 \Box Transverse polarization at high p_T ?


NRQCD: Cho & Wise, Beneke & Rothstein, 1995, ...

CDF Collab. arXiv:0704.0638 [hep-ex]

Jianwei Qiu, ISU

□ Same problem for other states:

CDF Collab. arXiv:0704.0638 [hep-ex]

Braaton & Lee, PRD63, 071501 (2001)

Double cc production in e⁺e⁻

□ Inclusive production: $\sigma(e^+e^- \rightarrow J/\psi c \bar{c})$ Belle: $(0.87^{+0.21}_{-0.19} \pm 0.17)$ pb NRQCD: ~ 0.07 pb

Kiselev, et al 1994, Cho, Leibovich, 1996 Yuan, Qiao, Chao, 1997

□ Ratio to light flavors: $\sigma(e^+e^- \rightarrow J/\psi c \bar{c})/\sigma(e^+e^- \rightarrow J/\psi X)$ Belle: $0.59^{+0.15}_{-0.13} \pm 0.12$

Message:

Production rate of $e^+e^- \rightarrow J/\psi c\overline{c}$ is larger than all these channels: $e^+e^- \rightarrow J/\psi gg$, $e^+e^- \rightarrow J/\psi q\overline{q}$, ... combined ?

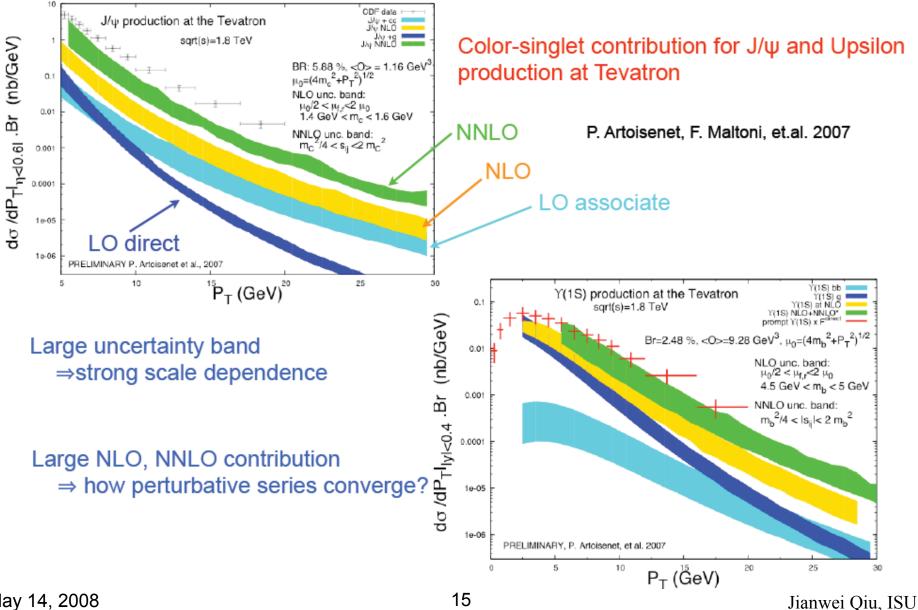
Question and facts

Question:

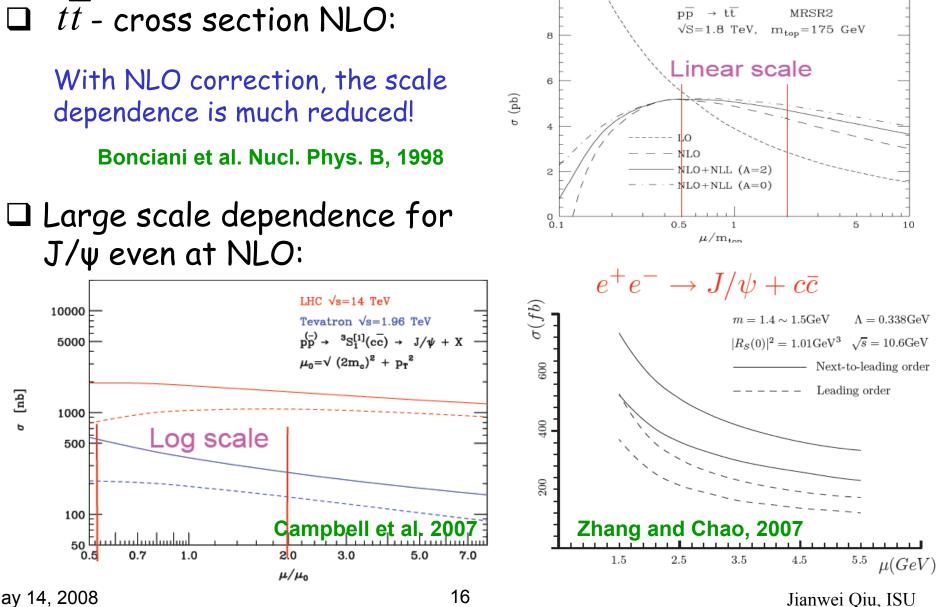
Is the factorization valid for these observables?

□ None of these production models have been proved!

- NRQCD formalism for heavy quarkonium decay was proved, but, not for production
 Bodwin, Braaten, Lapage (1994); ...
 Nayak, Qiu, Sterman, 2005, 2006
- Not work when additional heavy quark velocity is involved, such as, the associated production Nayak, Qiu, Sterman, 2007


□ Huge high order corrections to the singlet channel

Large scale dependence, even with high order terms

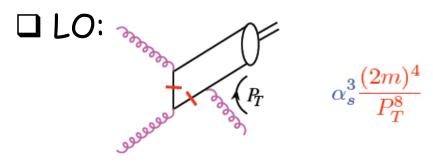

J. Campbell et al PRL 2007

P. Artoisnet, F. Maltoni, et al. 2008

Huge high order corrections

Scale dependence of cross sections

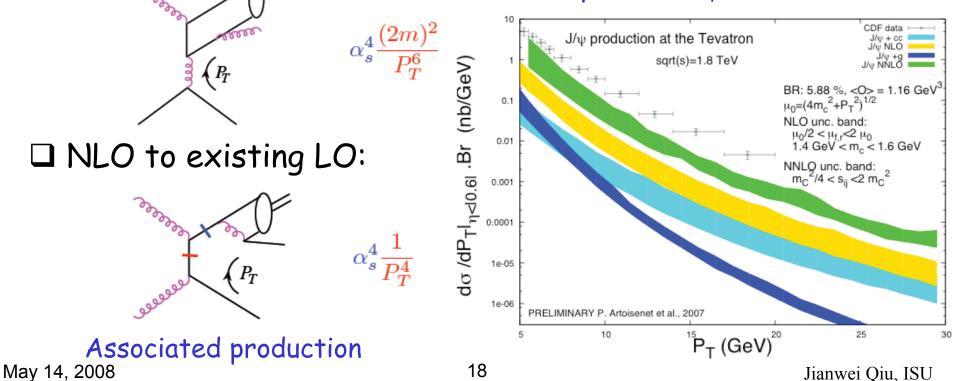
Goal of the rest discussion


□ Not to prove or disprove these production models

Nayak, Qiu, and Sterman, 2005-2007

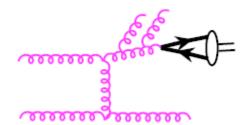
□ Re-organization of the perturbative part:

- Multiple hard scales
- Resummation of large logarithms
- More stable predictions
- The method is good for both NRQCD and Color Evaporation


Why high order terms are so large?

□ NLO - new subprocess:

* High power in $a_s(\mu)$ * Low power in P_{T}



Large logarithmic contribution

 $\alpha_s^4 \frac{1}{P_T^4} \cdot \left(\alpha_s \ln \left| \frac{P_T^2}{m^2} \right| \right)$

□ Fragmentation logarithms - NNLO:

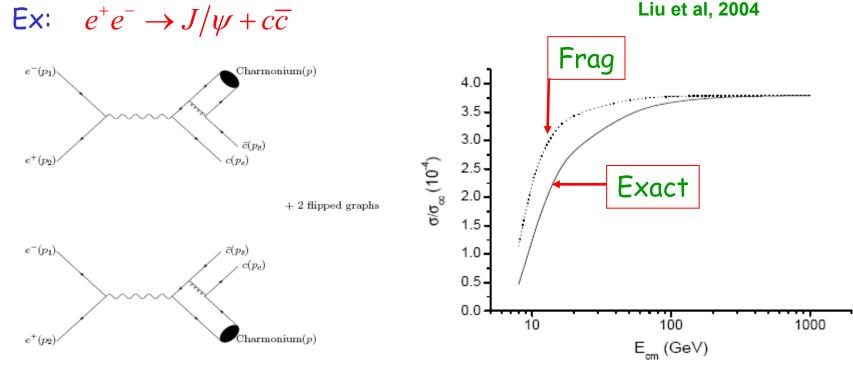
□ Same logarithms in the octet channels:

As well as in the calculation of color evaporation model – two scales

□ Large mass - the logarithms are perturbative

Resummation of such perturbative logarithms is necessary

Re-organization of the perturbative part


Resummation of fragmentation logarithms

□ Fragmentation contribution:

 $\sigma^F(pp \to H + X) = \sum_{i,j,k} \int dx_1 dx_2 dz \phi_{i/p}(x_1) \phi_{j/p}(x_2) \hat{\sigma} [ij \to k] D_{k \to H}(z)$

Dominant contribution when $P_T \gg m$

□ Interplay between the fixed order and fragmentation:

May 14, 2008

Jianwei Qiu, ISU

Braaten et al, 1993

Resum all logs

Factorization with QCD resummation

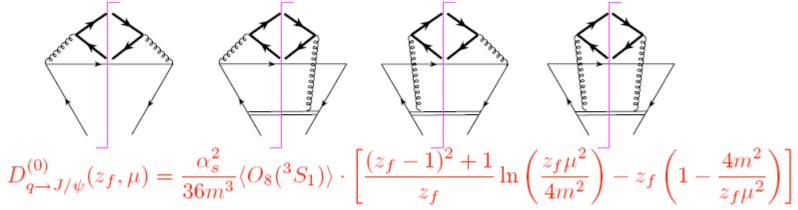
□ Relation between the fixed order and fragmentation:

 $P_T^2 \sim m^2$ $\sigma \approx \sigma^{\text{Pert}}$ Calculated by fixed order perturbation $P_T^2 \gg m^2$ $\sigma \approx \sigma^{\text{Frag}}$ Logs dominate and need to be resummed Questions:

How to transform smoothly between these two regimes?

How to avoid double counting beyond the LO?

□ New factorization formula: $\sigma = \sigma^{\text{Dir}} + \sigma^{\text{Frag}}$ Resum all logarithms between P_T and m $\sigma^{\text{Dir}} \equiv \sigma^{\text{Pert}} - \sigma^{\text{Asym}}$ No large logarithms, evaluated at 1/P_T


The separation between the "Direct" and the "Frag" contribution depends on the definition of the fragmentation function

Quarkonium fragmentation functions

□ Operator definition of $D_{f->J/\psi}(z_f,\mu^2)$:

$$D_{k \to H}(z_f, \mu^2) = \underbrace{\int_{k} \frac{1}{2} \int_{k^2 \le \mu^2} \frac{d^4k}{(2\pi)^4} \frac{z_f^2}{4k^+} \delta(z_f - \frac{P^+}{k^+}) \operatorname{Tr}\left[\gamma^+ T(k, P)\right]}_{k}$$

 \Box Calculation of the leading order $D^{(0)}_{f \rightarrow J/w}(z_f, \mu^2)$:

* HQ mass is a perturbative scale, and cuts off the collinear region

- * Scheme dependence from the $k^2 < \mu^2$
- Perturbative" different from the light-hadron fragmentation func

Resummation and inhomogeneous evolution

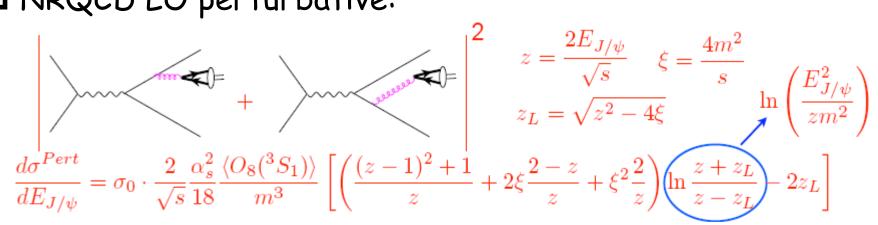
Resummation:

Qiu and Zhang, 2001

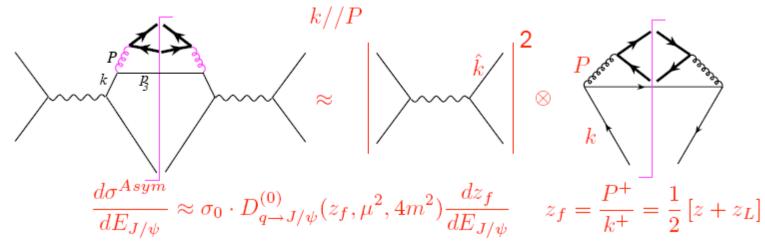
- Identify the logarithms
- Derive the renormalization group or evolution equation for the log
- Resummation solve the evolution equation

$$\mu^2 \frac{d}{d\mu^2} D_{q \to J/\psi}(z_f, \mu) = \gamma_{q \to J/\psi}(z_f, \mu) + \frac{\alpha_s}{2\pi} \int_{z_f}^1 \frac{d\xi}{\xi} P_{q \to q}\left(\frac{z_f}{\xi}\right) D_{q \to J/\psi}(\xi, \mu) + \cdots$$

 \Box "Perturbative" contribution \rightarrow inhomogeneous term:


$$\mu^{2} \frac{d}{d\mu^{2}} D_{q \to J/\psi}^{(0)}(z_{f}, \mu) = \gamma_{q \to J/\psi}(z_{f}, \mu)$$
$$\gamma_{q \to J/\psi}(z_{f}, \mu) = \frac{\alpha_{s}^{2}}{36m^{3}} \langle O_{8}(^{3}S_{1}) \rangle \left[\frac{(z_{f} - 1)^{2} + 1}{z_{f}} - \frac{4m^{2}}{\mu^{2}} \right] \theta \left(\mu^{2} - \frac{4m^{2}}{z_{f}} \right)$$

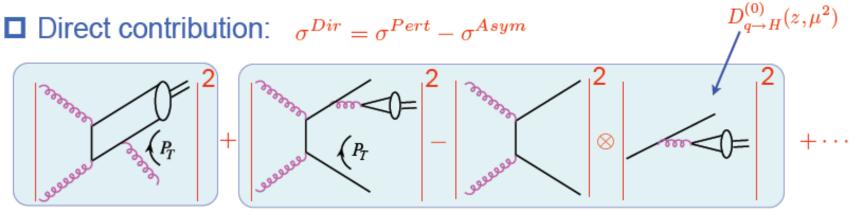
" "Input" distribution - boundary condition:


$$D_{q \to J/\psi} \left(z_f, \mu_0^2 = 4m^2/z_f \right) = 0$$

Case study: $e^+e^- \rightarrow J/\psi + X$

□ NRQCD LO perturbative:

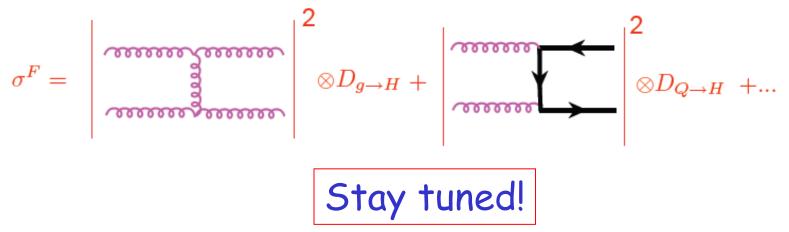
 \Box Identify the logarithm without full calculation - σ^{Asym}



Smooth transition

 $\Box \text{ Direct contribution: } \sigma^{\text{Dir}} = \sigma^{\text{Pert}} - \sigma^{\text{Asym}} = \sigma^{\text{Pert}} - 2\sigma_0 \cdot D_{q \to J/\psi}^{(0)}(z, \mu^2)$ $\frac{d\sigma^{Dir}}{dE_{J/\psi}} = \sigma_0 \cdot \frac{2}{\sqrt{s}} \frac{\alpha_s^2}{18} \frac{\langle O_8(^3S_1) \rangle}{m^3}$ $\times \left[\left(\frac{(z-1)^2 + 1}{z} + 2\xi \frac{2-z}{z} + \xi^2 \frac{2}{z} \right) \ln \frac{z+z_L}{z-z_L} - 2z_L \right]$ Cancellation of the logs $-\frac{z_f}{z_L} \left(\frac{(z_f - 1)^2 + 1}{z_f} \ln \left(\frac{z_f \mu^2}{4m^2} \right) - z_f \left(1 - \frac{4m^2}{z_f \mu^2} \right) \right) \right]$ v 10⁻³ √s/2₀do/dEi $\mu = 2E_{J/\psi}$ □ Full cross section: √s=91GeV σ^{Dir} $\sigma = \sigma^{\text{Dir}} + \sigma^{\text{Frag}}$ 0.15 - smooth transition: 0.1 0.05 0 10 15 5 -3 30 35 40 20 25 x 10 E, 25 May 14, 2008 Jianwei Qiu, ISU

Hadronic collision – in progress


$$\sigma = \sigma^{Dir} + \sigma^F$$

LO

Fragmentation contribution:

Summary

We proposed a QCD resummed factorization formula for heavy quarkonium production

We re-organize the perturbative series of any production models (NRQCD, Color Evaporation, ...)

The new formula is perturbatively more stable and reliable for a wide range of collision energies