

The Abdus Salam International Centre for Theoretical Physics

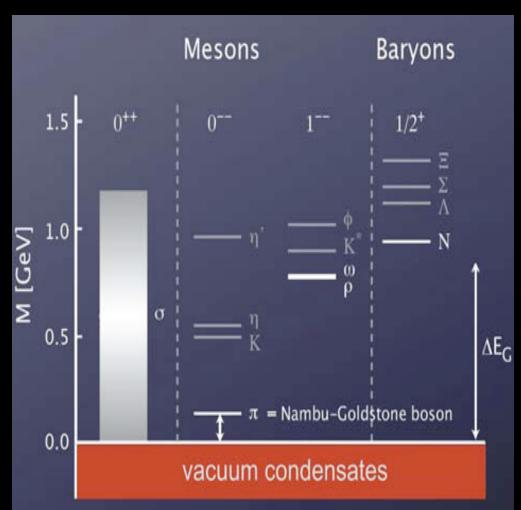
Sixth International Conference on PERSPECTIVES IN HADRONIC PHYSICS 12 - 16 May 2008

Medium Modifications of Light Vector Mesons in Nuclei

C. Djalali, M. H. Wood (University of South Carolina) R. Nasseripour (George Washington University)

D. P. Weygand (Jefferson Lab)

and CLAS Collaboration



Outline

- Physics Motivations
 Models and Predictions
- Some key experiments
- Photo-production of vector mesons at JLab
 - ρ meson mass spectra
 - ω and ϕ absorption
- Summary and Outlook
- > Disclaimer: Not all experiments and models listed!

The study of medium modifications of hadrons has a long history in hadronic physics. Widespread theoretical and experimental work.

QCD vacuum is very complicated <q-qbar>, <GG>,etc...

-The spontaneous breaking of Chiral Symmetry in vacuum is at the origin of 98% of the mass of hadrons.

-The properties of hadrons ("excitations of the QCD vacuum") depend on these condensates.

-Changes in the medium of the properties of hadrons <u>may</u> signal: -Chiral symmetry restoration -exotic state of matter,....

As $< 0 | q\bar{q} | 0 > \Rightarrow 0$, Restoration of chiral symmetry.

Mass, decay, coupling constants will change (?).

Medium modification of properties of light mesons

Experiments roughly fall under two categories

1) Looking at the modification of the meson-nucleon interaction in medium:

-Deeply bound pionic states in nuclei (missing mass techniques),

-elastic pion-nucleus scattering at low energy,

-Double pion production in nuclei (invariant mass technique),

2) Mass and width changes of light vector mesons ρ , ω and ϕ :

-in relativistic heavy ion collisions (invariant mass technique),

-in nuclei (invariant mass technique),

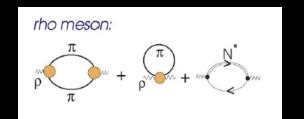
Model predictions of the in medium properties of vector mesons

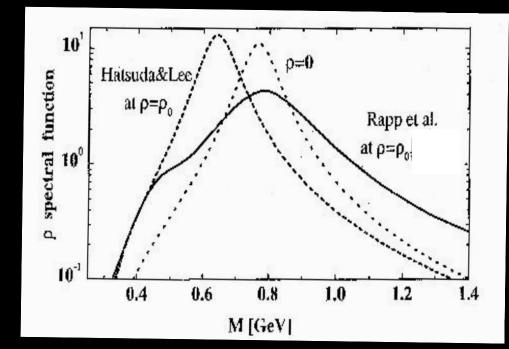
Bernard and Meissner, NPA 489 (1988) 647

Scale invariance in effective Lagrangian:

G.E. Brown and M Rho, *Phys. Rev Lett.* 66 (1991) 2720

$$\frac{m_V^*}{m_V} = \frac{m_N^*}{m_N} = \frac{f_{\pi}^*}{f_{\pi}} \approx 0.8 \quad \text{at } \rho_0$$

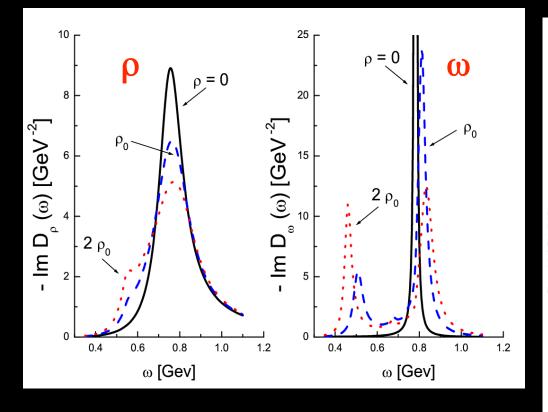

QCD sumrules:


T. Hatsuda and S. Lee Phys. Rev. C46 (1992) R34

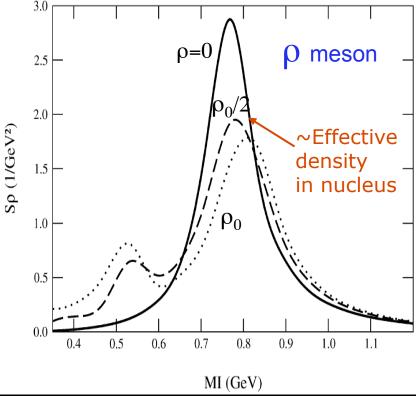
$$\frac{m_V^*}{m_V} = 1 - \alpha \frac{\rho_B}{\rho_0} \quad \alpha \approx 0.16 \pm 0.06$$

Many body effects:

B Friman, H.J. Pirner, *Nucl Phys. A617 (1997) 496* R. Rapp, G. Chanfray, J Wambach, *Nucl Phys. A617 (1997) 472*

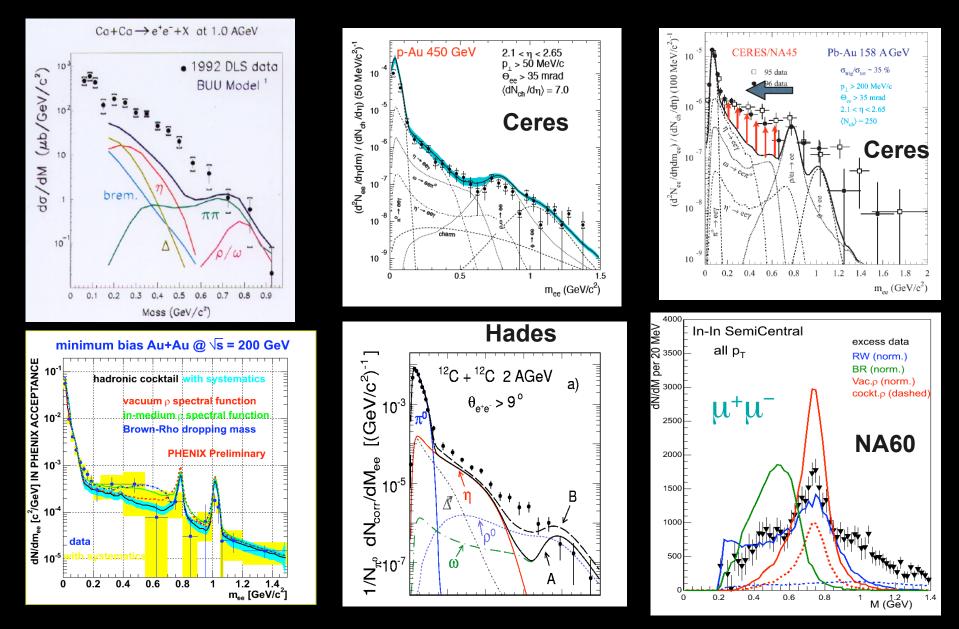


Model predictions of the in medium properties of vector mesons


M. Lutz et. al. , Nucl. Phys. A 705 (2002) 431

D. Cabrera et. al. , Nucl. Phys. A 705 (2002) 90

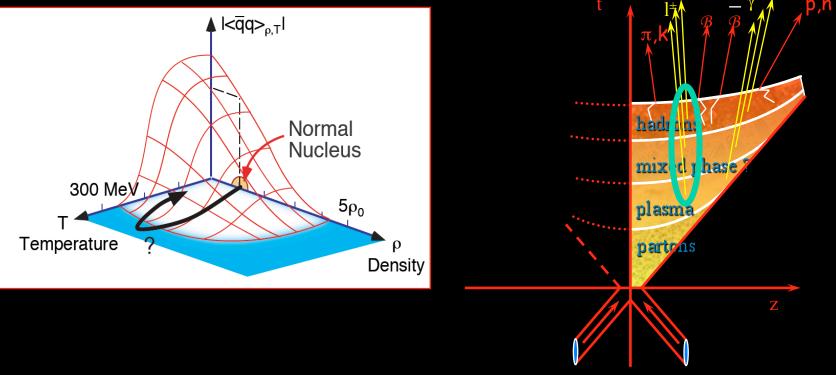
D. Cabrera et al. / Nuclear Physics A 705 (2002) 90–118



Coupling to baryon resonances

Any observations??

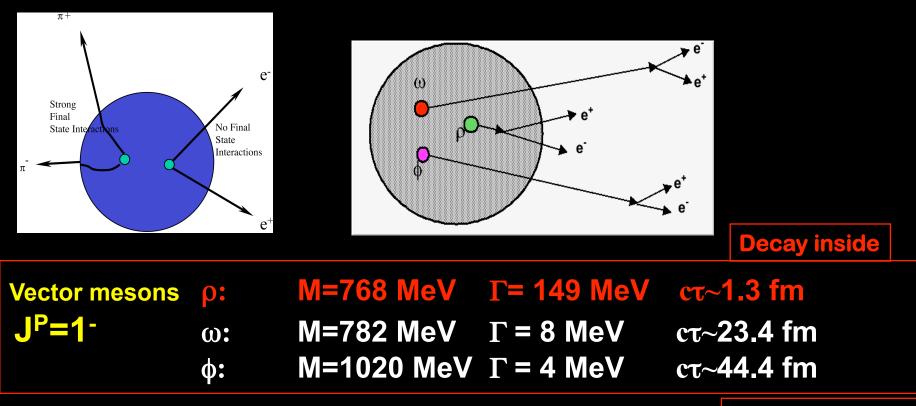
In RHI collisions (nuclear matter under extreme conditions)



Clear excess of di-leptons observed. NA60: Γ ,/no ΔM "

Trieste, May 15, 2008

Medium modification of Vector Meson propertiesseem to explain HI resultsHOWEVER

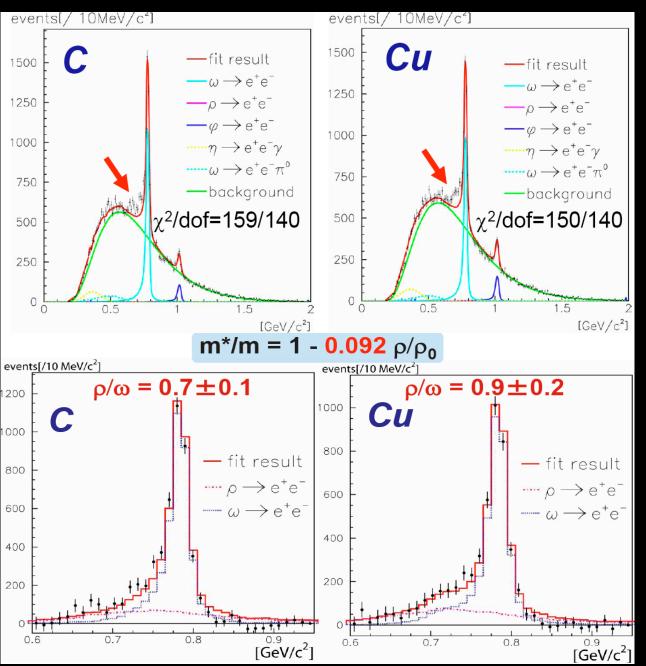

- In A+A collisions, the results are integrated over a whole range of ρ and T;
 "it is hard to get easily to the elementary process"!
- 4) In A+A collisions, the interesting phase of matter is produced (if at all!) in the very early stages of the reaction, generally far from equilibrium, making it hard to directly compare to the theoretical models which all assume equilibrium.
- 3) In A+A collisions, many channels are involved

Medium modification of vector mesons properties in nuclei

The predicted medium modifications are so large that even at normal nuclear density, they can be observed, so: •Vector mesons can be produced in nuclei with probes that leave the nucleus in almost an equilibrium state γ, π, p , • (probo) + $\Lambda \rightarrow V X \rightarrow a^{+}a^{-} X$ (no FSI)

• (probe) + A --> V X --> e^+e^-X (no FSI)

Need very low p

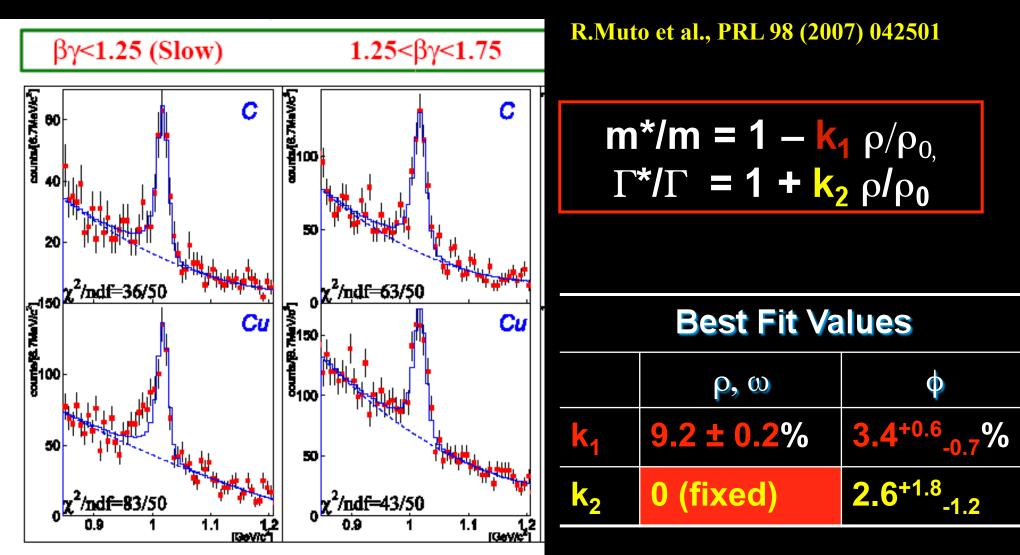

Present and planned "elementary reactions" (not exhaustive list):

<u>Experiment</u>	Reactions	<u>Results</u>
TAGX	γ +³He> ρ +Χ (ρ->π⁺π⁻)	full BR, α ~ 0.06
<u>KEK</u>	ρ+Α-> ρ,ω,φ +Χ (ρ,ω->e ⁺ e ⁻)	α = 0.092±0.002
<u>KEK</u>	ρ+A-> φ+X (φ->e ⁺ e [−])	α ~0.04
SPring-8	γ + A> φ +A*(φ> K ⁺ K ⁻)	no effect
TAPS	γ +A> ω+X (ω> π ⁰ γ)	α~ 0.13-015
JLab-g7a	γ +A>(ρ,ω,φ)+ A* (VM>e⁺e⁻)	α = 0.02±0.02
JPARC	ρ+Α-> ρ,ω,φ +Χ (ρ,ω,φ->e ⁺ e ⁻)	proposal #16
HADES	p+p,d-> ρ,ω,φ +Χ (ρ,ω,φ->e ⁺ e ⁻)	(running)
	π+A-> ρ,ω,φ +X (ρ,ω,φ-> e ⁺ e ⁻)	2009/10

-Only g7 with EM interaction in entrance and exit channels -TAGX, Spring8 and TAPS have hadronic FSI.

ΚΕΚ-ΡS Ε325 (ρ, ω)

$p+A \rightarrow \rho, \omega, \phi+X (\rho, \omega, \phi \rightarrow e+e-)$ M. Naruki et al, PRL 96 (2006) 092301


Subtract the background and constrain the ω/ρ ratio to include ρ Using a model that predicts the probability for ρ mesons decaying inside the nucleus.

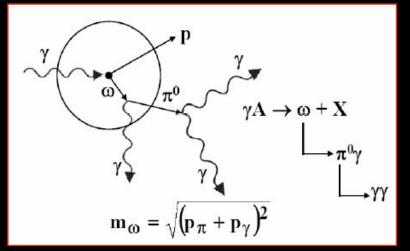
 α = 0.092 +/- 0.002

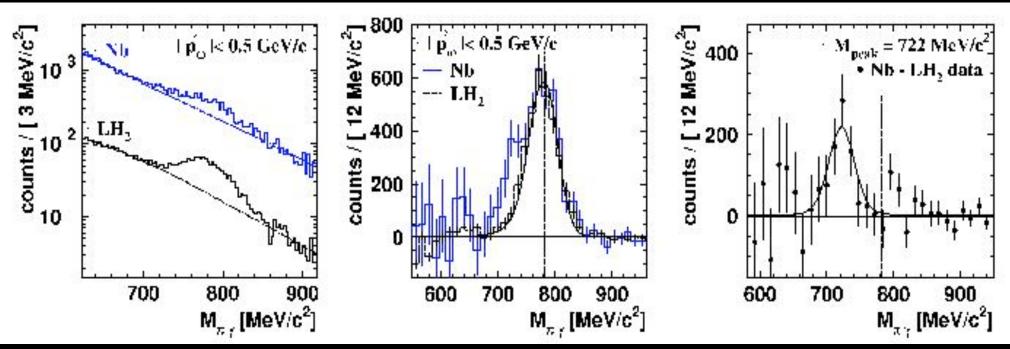
"the fit ... reproduces the data qualitatively well"

Trieste, May 15, 2008

ΚΕΚ-ΡS Ε325(φ)

<u>mass shift for low recoil momenta ϕ in Cu</u>


Bonn- TAPS results


γ**+A-->**ω+X (ω --> π⁰ γ)

clean (no ρ) channel, however FSI of π Small signal to background ratio

 $m^* = m_0 (1 - 0.14 \, \rho / \rho_0)$

 $\Gamma_{\omega} (\rho = \rho_0, <|p_{\omega}| > \approx 750 \text{ MeV/c}) \approx 95 \text{ MeV} (\text{old})$

D. Trnka et al., Phys.Rev.Lett. 94 (2005) 192303

Valencia group object to the conclusion on Δm ; EJP J A 31 (2007) 245

Trieste, May 15, 2008

C. Djalali

Experimental Results

Elementary Reactions Rel. Heavy-Ion

	KEK	CBELSA/TAPS		CERES	NA 60
Reaction	pA → (ρ,ω,φ) A' VM → e+e-	$\gamma A \rightarrow \omega A'$ $\omega \rightarrow \pi^0 \gamma$		p+Au,Pb+Au ρ → e+e-	In+In ρ → μ+μ-
Condition	ρ=0.53ρ ₀ , T~0 MeV	ρ=0.55ρ ₀ , T~0 MeV		158 A GeV	158 A GeV
Mass	∆m _° ~-9% ∆m _° ~ -4%	∆m _∞ ~ -14%*		∆m not favored	No mass shift
Width	$\Delta \Gamma_{\rho} = 0 \text{ MeV}$ $\Gamma_{\phi}(\rho = \rho_0) = 47 \text{ MeV}$	Γ _∞ (ρ=ρ ₀)≈140 MeV (newly published)		Broadening fa∨ored	Strong broadening
Note	No direct extraction of ρ meson (BKGD)	π⁰ FSI Large background	f	p , T not constant	ρ, T not constant
	R. Muto et al., PRL 98 (2007)	*D. Trnka et al, PRL 94 (2005)		Adamova et al, RL 91 (2003)	R. Arnaldi et al, PRL 96 (2006)
Trieste N	lay 15, 2008	C. Djalali			14

Photoproduction of Vector Mesons off Nuclei "looking for medium modifications"

 $\gamma A \longrightarrow VX$

_____e⁺e⁻

> Original idea:

P. Y. Bertin and P. A. M. Guichon, Phys Rev C42, 1133 (1990)

Jlab Experiment E01-112 (also called g7)

Spokespersons: C. Djalali (USC), M. Kossov (ITEP), D. Weygand (Jlab)

> Photon beam (minimal disturbance to initial sate) :

 $E_{\gamma} \sim .6$ to 3.8 GeV (tagged γ)

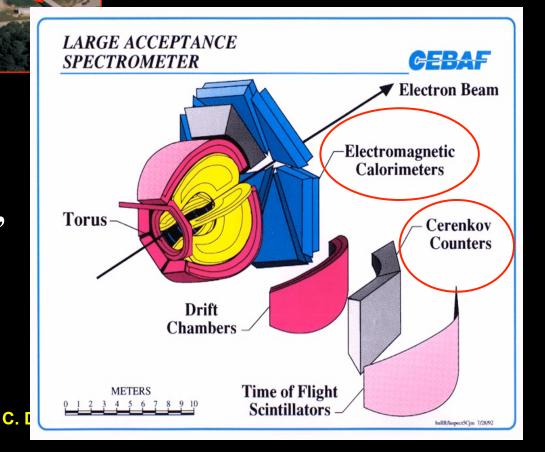
Targets: LD₂, C, Ti, Fe, (Pb)

Leptonic decay :

Almost no final state interaction! HOWEVER (NO FREE LUNCH!)

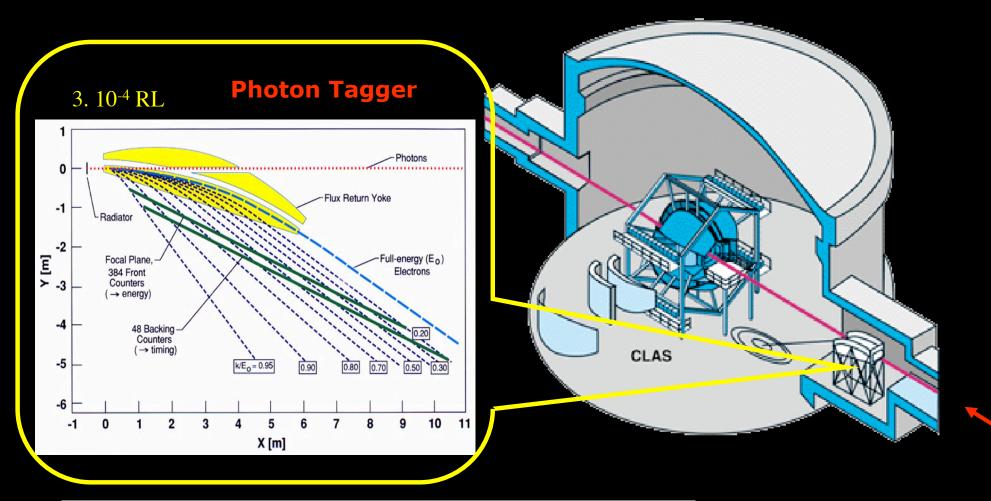
Low branching ratio : ~5 10⁻⁵

needs high photon flux : 5 10⁷ tagged γ /s


CEBAF (Continuous Electron Beam Accelerator Facility) at Jefferson Laboratory

South linac

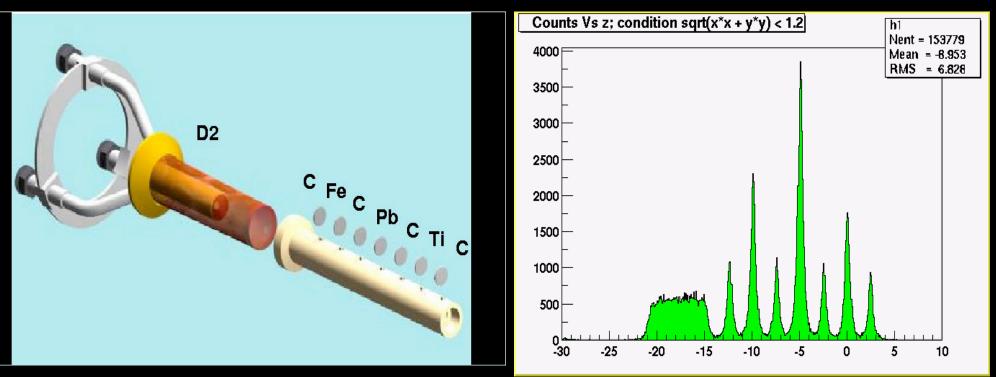
E_{max} ~ 6 GeV I_{max} ~ 200 μA Duty Factor ~ 100%


- Toroidal magnetic field (6 superconducting coils), Drift chambers, Scintillators, Cerenkovs, Electromagnetic Calorimeter.

North linac

CIO

Hall B @ Jlab (The tagger)

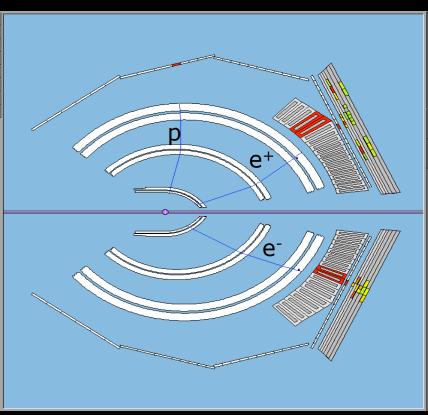


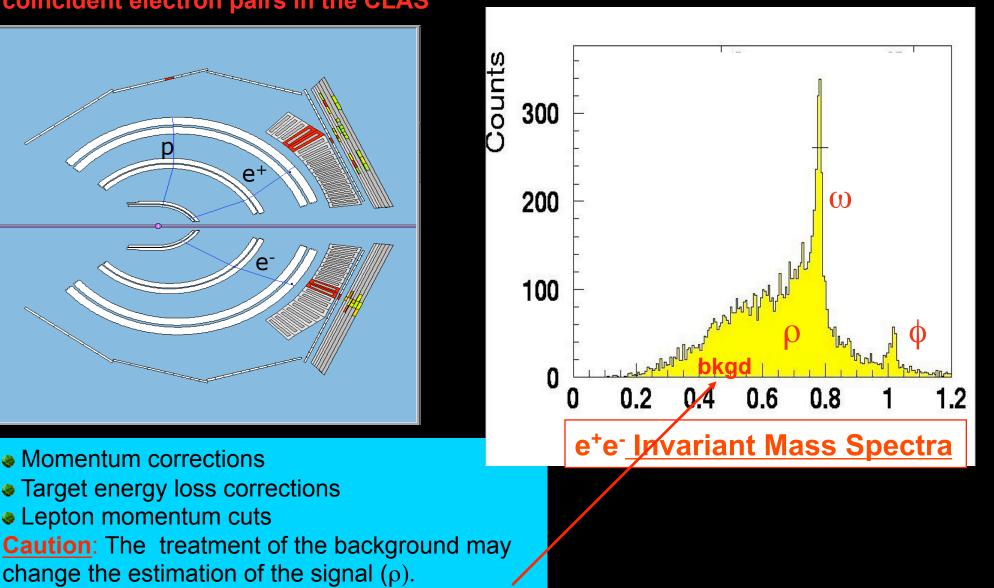
Bremsstrahlung Tagging Spectrum (20%-95%)

- •E(e⁻) = 3.0 GeV E(γ) = 0.60 2.85 GeV
- •E(e⁻) = 4.0 GeV E(γ) = 0.80 3.80 GeV

Multi-Segment Nuclear Target

Contains materials with different average densities.
 LD2 and seven solid foils of C, Fe, Pb, and Ti.
 Each target material 1 g/cm² and diameter 1.2 cm
 Approximately same number of nucleons/target




Proper spacing 2.5 cm to reduce multiple scattering

Deuterium target as reference, small nucleus, no modification is expected.

Particle Detection with CLAS

coincident electron pairs in the CLAS

•Excellent π/e discrimination: 5.4x10 ⁻⁴ for one and 2.9x10⁻⁷ for two arms.

Momentum corrections

Lepton momentum cuts

Target energy loss corrections

change the estimation of the signal (ρ).

Possible channels that contribute to e⁺e⁻ mass spectrum

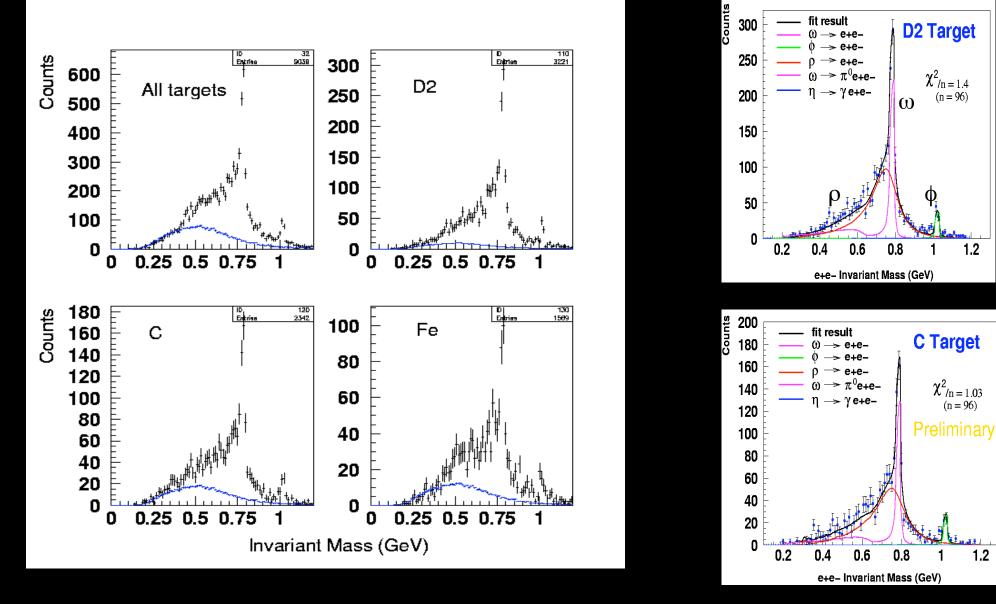
Correlated:

Monte-Carlo simulations using a model (Giessen BUU) (Nucl. Phys. A671, 503 (2000)) including various decay channels and nuclear effects, and CLAS detector.

- $\eta \rightarrow \gamma e+e-$
- $\omega \rightarrow \pi^{\circ} e^+e^-$

"Semi-correlated":

- Bethe-Heitler
- $\succ \quad \gamma \mathbf{A} \rightarrow \pi^{o} \pi^{o} \mathbf{X} \rightarrow \gamma \mathbf{e+e-} \gamma \mathbf{e+e-}$
- > $\pi^{0} \rightarrow e+e-e+e-$

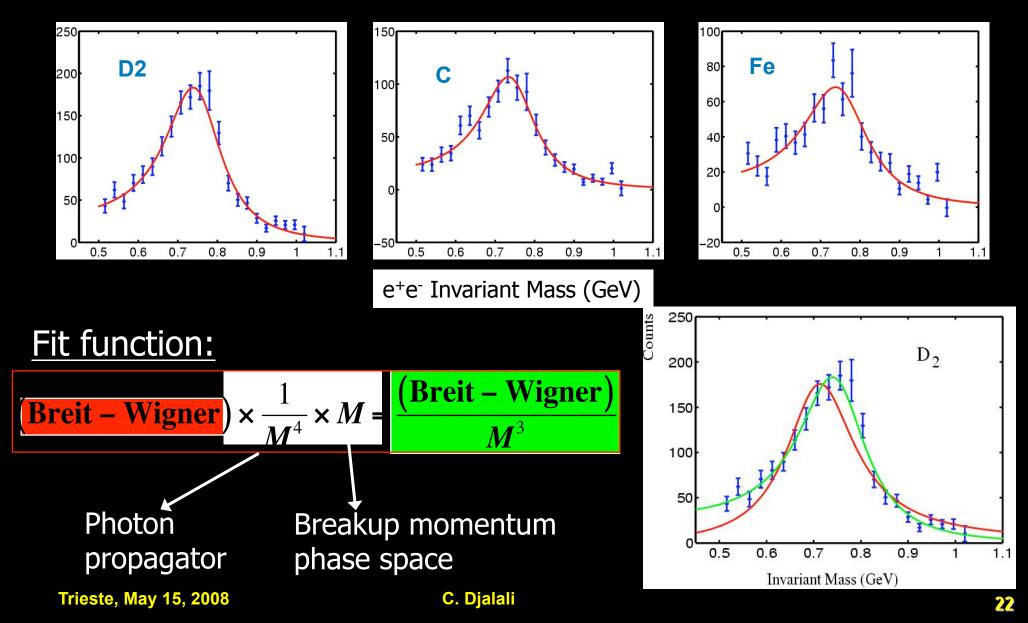

GiBUU Code

calculated by Mosel's group \rightarrow negligible 2 π^0 Dalitz decay mixed \rightarrow negligible double Dalitz \rightarrow low mass

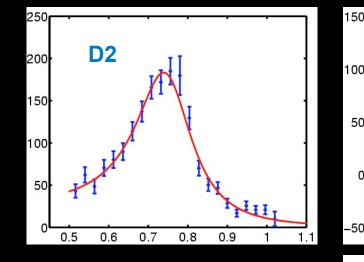
Uncorrelated:

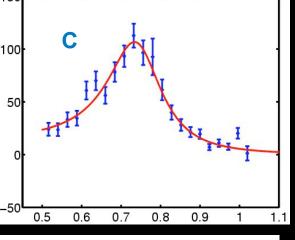
Mixed event technique. Pairs of identical (e+e+, e-e-) leptons, which are produced only by combinatorial background provide a natural normalization and samples of uncorrelated particles.

Combinatorial Background (mixed events and same sign pairs)

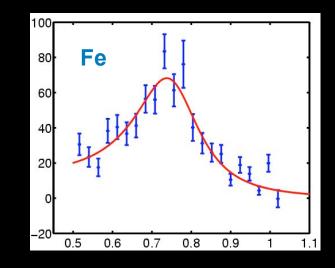


<u>μ+μ- measurement:</u> at CERN-SPS *IPNO-DR-02.015* (2002) <u>π+π- measurement:</u> at CERN-ISR (*Nucl. Phys. B124* (1977) 1-11). <u>e+e- measurement:</u> at RHIC (*Nucl.Phys. A774* (2006) 743-746).


C. Djalali


The ρ Mass Spectra

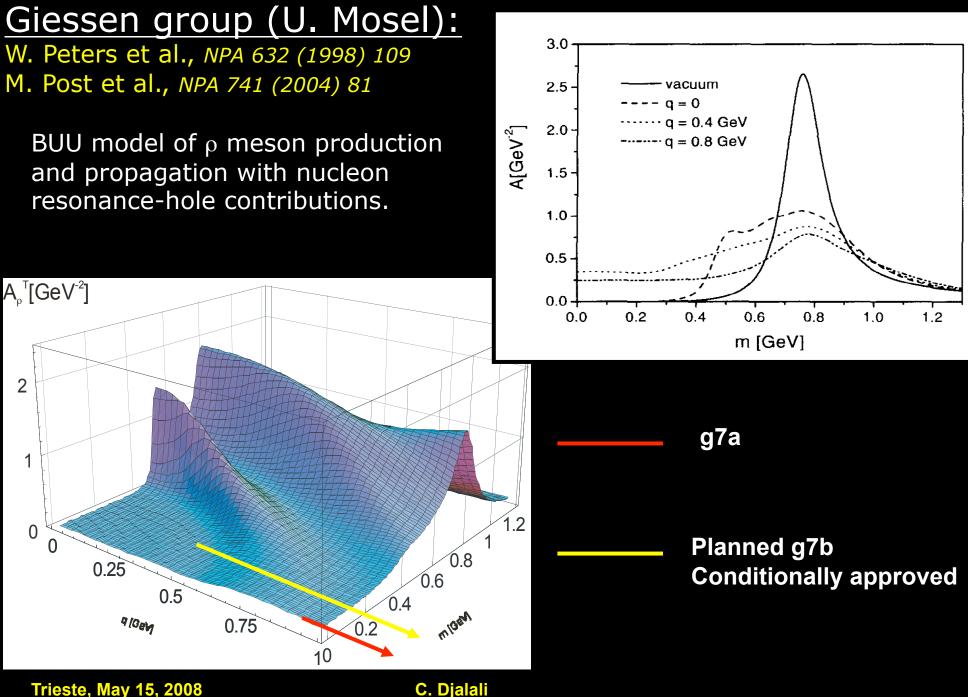
After removing the ω , ϕ , and background contributions:



The ρ **Mass Spectra**

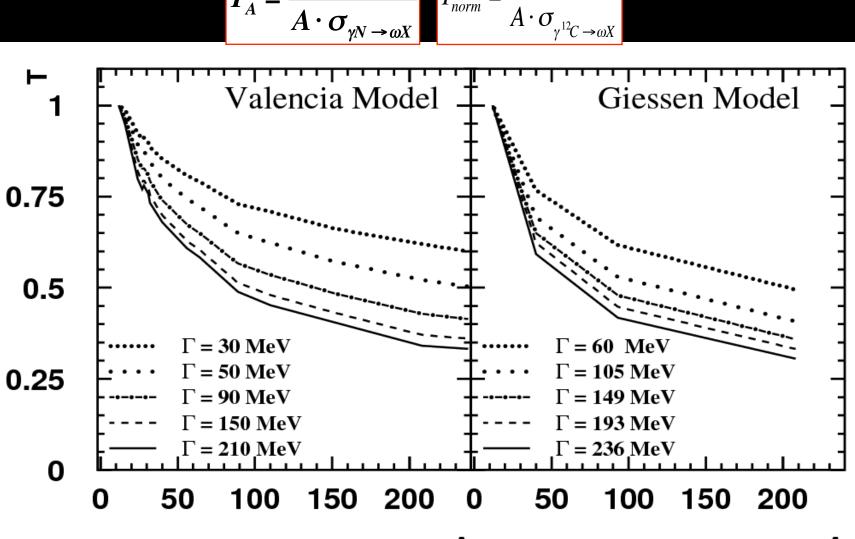
e⁺e⁻ Invariant Mass (GeV)

Target	Mass (MeV/c²) CLAS data	Width(MeV/c ²) CLAS data	Mass(MeV/c²) Giessen Sim.	Width(MeV/c²) Giessen Sim.
12 C	762.5 +/- 3.7	176.4 +/- 9.5	773.8 +/- 0.9	177.6 +/- 2.1
⁴⁸ Ti- ⁵⁶ Fe	779.0 +/- 5.7	217.7 +/- 14.5	773.8 +/- 5.4	202.5 +/- 11.6


The mass of the ρ meson close to vacuum value **m** ~770 MeV/c² and the broadening of the width is consistent with many-body effects.

<u>Summary on the ρ meson</u>

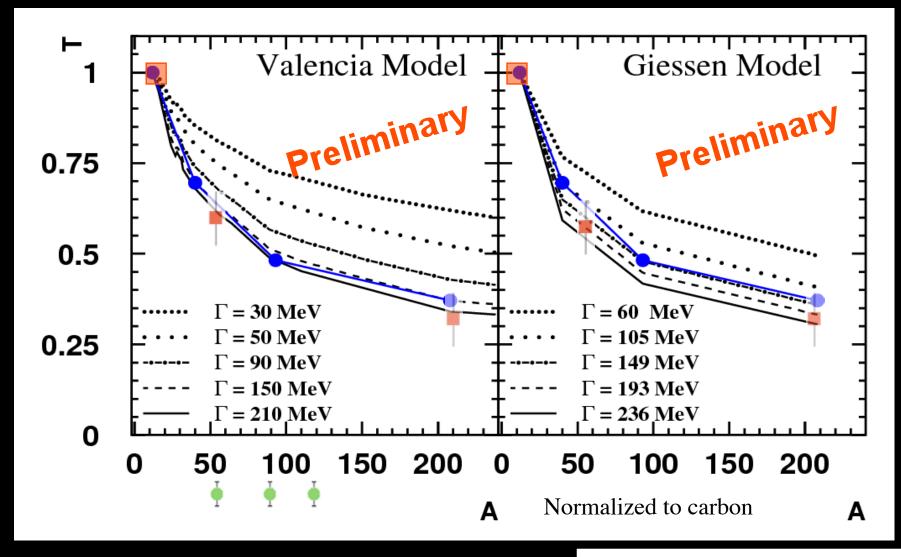
- -Our result ($\alpha = 0.02 \pm 0.02$) is compatible with no mass shift. -Result does not confirm the KEK results ($\alpha \sim 0.09$). -Rule out ΔM à la Brown/Rho (20%) and Hatsuda/Lee ($\alpha \sim 0.16$). -Width reproduced by GiBUU. -Mass spectra not directly comparable with spectral function! -Momentum of ρ between 0.8 and 2 GeV.
- -Need to study momentum dependence.


•PRL published – R. Nasseripour et al., PRL 99 (2007) 262302
•PRC article submitted March 2008. arXiv:0803.0492v1 [nucl-ex]

<u>Momentum dependence – ρ meson</u>

Absorption of ω Meson and its In-medium width

The in-medium width is $\Gamma = \Gamma_0 + \Gamma_{coll}$ where $\Gamma_{coll} = \gamma \rho v \sigma^*_{VN}$ Transparency ratio: $T_A = \frac{\sigma_{\gamma A \to \omega X}}{\Lambda - \sigma}$ $T_{norm} = \frac{12 \cdot \sigma_{\gamma A \to \omega X}}{\Lambda + \sigma}$

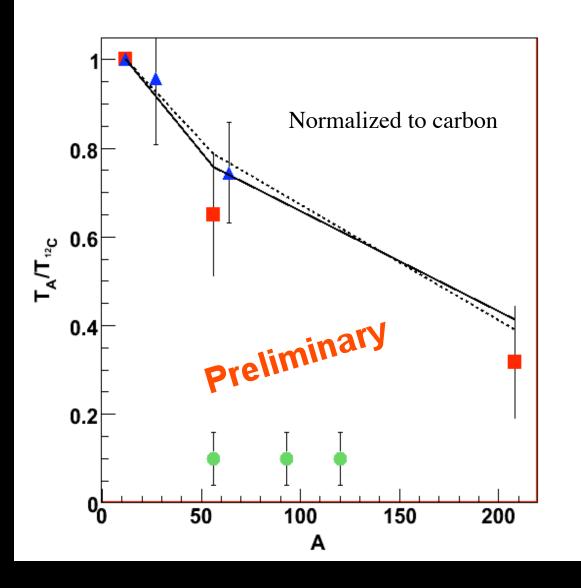

Normalized to carbon

Α

Kaskulov, Hernandez & Oset EPJ A 31 (2007) 245Trieste, May 15, 2008C. Djalali

P. Mühlich and U. Mosel NPA 773 (2006) 156

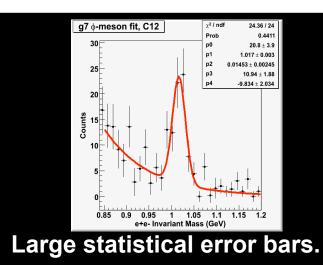
<u>Comparison to Theory – @ Meson</u>


Preliminary g7a result showed greater absorption than TAPS!!! Latest TAPS $\Gamma_{\omega} \sim 130\text{-}150$ MeV now closer to JLAB results which are larger!

Trieste, May 15, 2008

C. Djalali

JLab (preliminary) TAPS (latest analysis) Proposed JLab run


<u>Comparison to Expt. – ϕ Meson</u> Spring8 γ A → ϕ A' → K⁺K⁻ A' (Eγ=1.5-2.4 GeV)

- Giessen calculations

- – Giessen calculations
 w/ Spring8 absorption
 strengths
- JLab (preliminary)
- Spring8 T. Ishikawa et al. Phys. Lett. B 608, 215 (2005)

Planned JLab data

Summary and Conclusions

CLAS excellent tool for these studies:

- e⁺e⁻ from rare leptonic decay of light vector mesons are identified.
- ${\scriptstyle \bullet}$ Clear $\rho,\,\omega$ and ϕ signals in the invariant mass spectrum.
- "Mixed-event" technique gives both shape and normalization of the combinatorial background.

The ρ **meson (Final):**

- Correct mass shape is extracted.
- No mass shift and width increased by 40% in Fe (as predicted by GiBUU) The ω meson (preliminary):
- From transparency ratios, width at least ~ 150 MeV!

The ϕ meson (preliminary):

From transparency ratios, in medium total cross section ~ 30 mb

Medium modification studies continue to be a hot topic!

Next at Jlab by g7 group:

•High Statistics measurement of e^+e^- production on H_2 (Currently running with g12) •Conditionally approved g7b high statistics data on LD_2 , C, Fe, Nb and Sn to measure the ρ meson mass spectra in four momentum bites from 0.4 to 2 GeV/c and transparency ratios.