The Angular Momentum Structure of the Nucleon

Perspectives in Hadronic Physics, May 12-16, 2008

Wolf-Dieter Nowak

DESY, 15738 Zeuthen, Germany

Wolf-Dieter.Nowak@desy.de

– p. 1

Table of Contents

- ▷ 3-dimensional picture of the nucleon
- Proton spin budget in a nutshell
- ▷ DIS results: Quark & gluon contributions, QCD fits
- Deeply Virtual Compton Scattering (DVCS)
- Beam-charge and beam-spin asymmetries
- ▷ Transverse target-spin asymmetries
- \triangleright Model-dependent constraints on J_u vs. J_d
- Summary and Outlook

– p. 2

3-dimensional Picture of the Proton

Nucleon momentum in Infinite Momentum Frame: $(p_{\gamma^*} + p_{nucl})_z \rightarrow \infty$

• Form factor

Nucleon's transv. charge distribution given by 2-dim. Fourier transform of **Form Factor**: \Rightarrow Parton's transverse localization b

· Parton density

Probability density to find partons of given long. mom. fraction xat resol. scale $1/Q^2$ (no transv. inform.) \Rightarrow Parton's longitudinal momentum distribution function (**PDF**) f(x) Generalized parton distribution at η=0

Generalized Parton Distrib.^s (**GPDs**) probe simultaneously transverse localization \mathbf{b}_{\perp} for a given longitudinal momentum fraction x. 2nd moment by Ji relation: $J_{q,g} = \frac{1}{2} \lim_{t \to 0} \int x \ dx$ $[H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t)]$

Proton Spin Budget in a Nutshell

NO unique and gauge-invariant decomposition of the nucleon spin:

(A) 'GPD-based':
$$\frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_q + \widehat{\Delta g} + L_g$$

- Total angular momenta of quarks (J_q) and gluons (J_g) are gauge-invariant and calculable in lattice gauge theory
- Intrinsic spin contribution and orbital angular momentum are gauge inv. for quarks $(\frac{1}{2}\Delta\Sigma$ and $L_q)$, but not for gluons $(\widehat{\Delta g}$ and $L_g)$
- Probabilistic interpretation only for $\frac{1}{2}\Delta\Sigma$ (well measured)
- J_q accessible through exclusive lepton nucleon scattering
- J_g very difficult to access experimentally
- (B) Light-cone gauge: $\frac{1}{2} = \mathcal{J}_q + \mathcal{J}_g = \frac{1}{2}\Delta\Sigma + \mathcal{L}_q + \Delta g + \mathcal{L}_g$
 - All 4 terms have a probabilistic interpretation
 - Δg is gauge invariant (being measured)

 $\Rightarrow \text{ Results from both decompositions must not be mixed, as} \\ \mathcal{L}_q \neq L_q, \Delta g \neq \widehat{\Delta g}, \mathcal{L}_g \neq L_g, \text{ even } \mathcal{J}_g \neq J_g \text{ !}$

DIS: Kinematics, Cross Sections, Asymmetry

Unpolarized cross section:

Virtual-photon kinematics: $Q^2 = -q^2 \qquad \nu = E - E'$

Fraction of nucleon momentum carried by struck quark: $x = \frac{Q^2}{2M\nu}$

fraction of virtual-photon energy carried by produced hadron *h*: $z = \frac{E_h}{\nu}$

Hadron transverse momentum: $P_{h\perp}$ $\sigma_{UU} \equiv \frac{1}{2}(\sigma^{\vec{\leftarrow}} + \sigma^{\vec{\Rightarrow}})$

Cross section (helicity) difference:
$$\sigma_{LI}$$

$$\sigma_{LL} \equiv \frac{1}{2} (\sigma^{\vec{\Leftarrow}} - \sigma^{\vec{\Rightarrow}})$$

• Double-spin asymmetry: $A_{||} \equiv \frac{\sigma_{LL}}{\sigma_{UU}} \simeq \frac{g_1}{F_1}$ (neglecting small g_2 contribution)

• Measured asymmetry: $A_{||} = \frac{1}{\langle P_B \rangle \langle P_T \rangle} \frac{\left(\frac{N}{L}\right)^{\Leftarrow} - \left(\frac{N}{L}\right)^{\Rightarrow}}{\left(\frac{N}{L}\right)^{\Leftarrow} + \left(\frac{N}{L}\right)^{\Rightarrow}}$

with $P_B(P_T)$: longitudinal beam (target) polarization

Direct determination of quark spin contribution $\Delta\Sigma$

Most precise g_1^d result: Hermes inclusive data [PRD75(2007)012007,hep-ex/0609039]:

Wolf-Dieter Nowak,

Next-to-leading Order QCD Fits

Results by AAC [PRD74(2006)014015,hep-ph/0603213]: NLO in α_s , \overline{MS} scheme

Impact of recent CLAS and COMPASS data [PRD75(2007)074027,hep-ph/0612360]: Fit with $\Delta g > 0$: $\Delta G = 0.13 \pm 0.17$ Fit with $\Delta g < 0$: $\Delta G = -0.20 \pm 0.41$

Impact of recent Phenix and Star data ($Q^2 = 10 \text{ GeV}^2$) {DSSV, arXiv:0804.0422 [hep-ph]}: Clear indication for flavor-asymmetric sea. For 0 < x < 1: $\Delta G = -0.084$ For 0.001 < x < 1: $\Delta G = 0.013$ with $^{+0.106}_{-0.120}$ for $\Delta \chi^2 = 1$; $^{+0.702}_{-0.314}$ for $\Delta \chi^2 / \chi^2 = 2\%$

Determination of Gluon Contribution to Nucleon Spin

- High- p_t hadron pairs or single hadrons quasi-real photoprod.: $\langle Q^2 \rangle \approx 0.1 \text{ GeV}^2$
- Sensitivity through γ^*g 'direct' hard scattering or 'resolved-photon' process left graphs: direct processes; right graphs: resolved-photon processes [COMPASS analysis]

- Compase: Open-charm production ($\gamma^*g \rightarrow c\bar{c}$) and hadron pairs
- HERMES: Single high- p_t hadrons. Pairs in old analysis (all Q^2 , $\langle x_g \rangle \simeq 0.17$ [PRL84 (2000) 2584] $\frac{\Delta g}{g} = 0.41 \pm 0.18_{stat} \pm 0.03_{sys-exp}$ (\pm unknown_{sys-Model})
 - RHIC: A_{LL} in inclusive direct γ & π^0 production, inclusive jet production Wolf-Dieter Nowak, Perspectives in Hadronic Physics, May 15, 2008

Results on Gluon Helicity Distribution $\frac{\Delta g}{g}(x)$

DIS results on $\frac{\Delta g}{g}(x)$:

COMPASS high- p_t hadron pairs:

 $Q^2 < 1 \text{ GeV}^2$ ($\langle x \rangle \simeq 0.085$): $\frac{\Delta g}{g} = 0.016 \pm 0.058_{stat} \pm 0.055_{syst}$ {PLB 612,154 (2005)}

 $Q^2 > 1 \text{ GeV}^2 (\langle x_g \rangle \simeq 0.13)$

 $\frac{\Delta g}{g} = 0.06 \pm 0.31_{stat} \pm 0.06_{syst}$ {prel.: K.Kurek,DIS06,hep-ex/0607061}

 $\label{eq:compass} \begin{array}{l} \hline \begin{array}{l} \mbox{COMPASS Open charm:} \\ \hline \frac{\Delta g}{g} = -0.47 \pm 0.44_{stat} \pm 0.15_{syst} \\ \mbox{(} \langle x_g \rangle \simeq 0.11 \mbox{)} \mbox{ (arXiv:0802.3023[hep-ex])} \end{array}$

 $Q^2 \simeq 0; (\langle x_g \rangle \simeq 0.22): \frac{\Delta g}{g} = 0.071 \pm 0.034_{stat} \pm 0.010_{sys-exp} \pm_{0.105}^{0.127} {}_{sys-Models}$ Phenix: Confidence limits for fits with different $\frac{\Delta g}{g}$ assumptions

Deeply Virtual Compton Scattering

Same final state in DVCS and Bethe-Heitler \Rightarrow Interference! $d\sigma(eN \rightarrow eN\gamma) \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \underbrace{\mathcal{T}_{BH}\mathcal{T}_{DVCS}^* + \mathcal{T}_{BH}^*\mathcal{T}_{DVCS}}_{\mathcal{T}_{BH}}$

- \mathcal{T}_{BH} is parameterized in terms of Dirac and Pauli Form Factors F_1, F_2 , calculable in QED.
- Image: T_{DVCS} is parameterized in terms of Compton form factors $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$ (which are convolutions of resp. GPDs $H, E, \widetilde{H}, \widetilde{E}$)
- (Certain Parts of) interference term I can be filtered out by forming certain cross section differences (or asymmetries)
- \Rightarrow GPDs $H, E, \widetilde{H}, \widetilde{E}$ indirectly accessible via interference term I

Azimuthal Asymmetries in DVCS

DVCS–Bethe-Heitler Interference term I induces differences or azimuthal asymmetries A in the measured cross-section:

- Beam-charge asymmetry $\mathcal{A}_C(\phi)$ [BCA] : $d\sigma(e^+, \phi) - d\sigma(e^-, \phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos \phi$
- Beam-spin asymmetry $\mathcal{A}_{LU}(\phi)$ [BSA]: $d\sigma(\vec{e},\phi) - d\sigma(\overleftarrow{e},\phi) \propto \operatorname{Im}[F_1\mathcal{H}] \cdot \sin \phi$
- Long. target-spin asymmetry $\mathcal{A}_{UL}(\phi)$: $d\sigma(\overleftarrow{P}, \phi) - d\sigma(\overrightarrow{P}, \phi) \propto \operatorname{Im}[F_1\widetilde{\mathcal{H}}] \cdot \sin \phi$ [LTSA]
- Transverse target-spin asymmetry $\mathcal{A}_{UT}(\phi, \phi_s)$ [TTSA]:

$$d\sigma(\phi,\phi_S) - d\sigma(\phi,\phi_S + \pi) \propto \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S)\cos\phi \\ + \operatorname{Im}[F_2\mathcal{H} - F_1\xi\mathcal{\widetilde{E}}] \cdot \cos(\phi - \phi_S)\sin\phi$$

 $(F_1, F_2 \text{ are the Dirac and Pauli elastic nucleon form factors})$

HERMES Combined BSA & BCA Analysis

Various asymmetry amplitudes \mathcal{A} contribute to polarized cross section σ_{LU} : $\sigma_{LU}(\phi; P_l, e_l) = \sigma_{UU}(\phi) [1 + e_l \mathcal{A}_C(\phi) + e_l P_l \mathcal{A}_{LU}^I(\phi) + P_l \mathcal{A}_{LU}^{DVCS}(\phi)]$ L: longitudinally polarized lepton beam of charge e_l & polarization P_l ; U: unpolarized proton target

BCA:
$$\mathcal{A}_C(\phi) = \frac{1}{\sigma_{UU}} c_1^I \cos \phi + \cdots \qquad c_1^I \propto \frac{\sqrt{-t}}{Q} F_1 \operatorname{Re} \mathcal{H} + [\cdots]$$

BSA (interference term): $\mathcal{A}_{LU}^{I}(\phi) = \frac{1}{\sigma_{IIII}} s_{1}^{I} \sin \phi + \cdots \qquad s_{1}^{I} \propto \frac{\sqrt{-t}}{O} F_{1} \mathrm{Im} \mathcal{H} + [\cdots]$ $\mathcal{A}_{LU}^{DVCS}(\phi) = \frac{1}{\sigma_{UU}} s_1^{DVCS} \sin \phi$ (small at Hermes energy) BSA (DVCS term):

Unpolarized cross section: $\sigma_{UU} = \sigma_{BH} + \sigma_{DVCS} + \sigma_I$

 F_1 : Dirac elastic nucleon form factor

 \mathcal{H} : Compton Form Factor (CFF), embodies GPD H

 $[\cdots]$: kinematically suppressed CFFs ($\tilde{\mathcal{H}}, \mathcal{E}$) embodying GPDs \tilde{H}, E

Fit to data:
$$\mathcal{A}_C(\phi) = \sum_{n=0}^3 A_C^{\cos n\phi} \cos n\phi$$

 $\mathcal{A}_{LU}^I(\phi) = \sum_{m=1}^2 A_{LU,I}^{\sin m\phi} \sin m\phi$
 $\mathcal{A}_{LU}^{DVCS}(\phi) = A_{LU,DVCS}^{\sin \phi} \sin \phi$

Fit results: 'effective' asymmetry amplitudes: $A_C^{\cos n\phi}$, $A_{LU,I}^{\sin m\phi}$, $A_{LU,DVCS}^{\sin m\phi}$

 \Rightarrow well defined in theory, can be compared to GPD models ! Wolf-Dieter Nowak.

Perspectives in Hadronic Physics, May 15, 2008

HERMES Combined BSA & BCA Results

Discussion of Combined BSA & BCA Analysis

!!! Asymmetries of 'associated (resonance) production' are unknown **!!!**

Kinematic dependence of fractions of associated production known from MC:

Average is 12%

- \Rightarrow In data associated production is part of the signal, while in models it is not included (still unknown)
- HERMES BSA agrees with Dual model Guzey, (Polyakov), Teckentrup 2006
- VGG model Vanderhaeghen, Guichon, Guidal 1999 clearly undershoots HERMES BSA (Improvement recently proposed Polyakov, Vanderhaeghen arXiv:0803.1271 [hep-ph])
- HERMES BCA disfavours factorized t dep., in both models and D-term in VGG
- Pure $|DVCS|^2$ asymmetries found compatible with zero (as models assume)
- \Rightarrow HERMES data precise enough to discriminate between models or their variants
 - New models eagerly awaited !!! Müller, Kumericki Wolf-Dieter Nowak.

Why TTSA Data Expected to be Sensitive to \mathbf{J}_{q} ?

 $A_{UT}(\phi,\phi_S) \propto \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \sin(\phi - \phi_S) \cos\phi + \operatorname{Im}[F_2\widetilde{\mathcal{H}} - F_1\xi\widetilde{\mathcal{E}}] \cos(\phi - \phi_S) \sin\phi$

ANSATZ: spin-flip Generalized Parton Distribution E is parameterized as follows:

- Factorized ansatz for spin-flip quark GPDs: $E_q(x,\xi,t) = \frac{E_q(x,\xi)}{(1-t/0.71)^2}$
- ▶ *t*-indep. part via double distr. ansatz: $E_q(x,\xi) = E_q^{DD}(x,\xi) \theta(\xi |x|)D_q\left(\frac{x}{\xi}\right)$
- using double distr. K_q : $E_q^{DD}(x,\xi) = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(x-\beta-\alpha\xi) \, K_q(\beta,\alpha)$
- with $K_q(\beta, \alpha) = h(\beta, \alpha) e_q(\beta)$ and $e_q(x) = A_q q_{val}(x) + B_q \delta(x)$ based on chiral QSM

• where coeff.s A, B constrained by Ji relation, and $\int_{1}^{+1} dx \ e_q(x) = \kappa_q$

- A_u, A_d, B_u, B_d are functions of J_u, J_d $\Rightarrow J_u, J_d$ are free parameters when calculating TTSA
 - Sensitivity to J_u (with $J_d = 0$) studied [EPJ C46, 729 (2006), hep-ph/0506264]

HERMES: First Measurement of TTSA

 $A_{UT}(\phi,\phi_S) = A_{UT}^{\sin(\phi-\phi_S)\cos\phi} \cdot \sin(\phi-\phi_S)\cos\phi + A_{UT}^{\cos(\phi-\phi_S)\sin\phi} \cdot \cos(\phi-\phi_S)\sin\phi + \dots$ 6.0 C کو دونه کو دونه ▲ PRD75, 011103 □ this work DD:Fac,́no D DD:Reg,D DD:Reg,no D 0.2 0 $A_{C}^{cos\varphi}$ 0.4 Dual:Reg Dual:Fac 0.2 0 $A_{UT}^{sin(\varphi-\varphi_S)}$ 8.1% scale uncertainty A_{UT, DVCS} • 0.2 A_{UT, I} J_u=0.6-0.4-0.2 J.,=0.6 --0.2 ${f A}_{UT}^{\sin(\varphi-\varphi_s)\cos\phi}$.005 8.1% scale uncertainty -0.4 0.4 0.6 0 -t (GeV²) 0.2 0.1 0.3 6 8 10 Q² (GeV²) 0.2 0.4 0 0 2 4 overall X_B

Wolf-Dieter Nowak,

Perspectives in Hadronic Physics, May 15, 2008

Model-dependent constraints on $J_{\rm u}$ vs $J_{\rm d}$

Double-distribution model: [Vanderhaghen,Guichon,Guidal] HERMES analysis method: [arXiv:0802.2499, subm. to JHEP] Unbinned maximum likelihood fit to all possible azimuthal asymmetry amplitudes at average kinematics: \Rightarrow 'combined fit' of HERMES BCA and TTSA data against various model calculations, leaving J_u and J_d as free parameters \Rightarrow model-dep. 1- σ constraints on J_u vs. J_d :

 $J_u + J_d/2.8 = 0.49 \pm 0.17(\exp_{\text{tot}})$

- Dual model [Guzey, Teckentrup]: $J_u + J_d/2.8 = -0.02 \pm 0.27 (\exp_{tot})$
- Lattice gauge theory: QCDSF [Göckeler et al.], LHPC [Hägler et al.]
- DFJK model: zero-skewness GPDs extracted from nuclear form factor data using valence-quark contributions only [Diehl et al.])

Summary and Outlook

- ▷ No unique and gauge-invariant decomposition of the nucleon spin
- HERMES and COMPASS results on Deep Inelastic Scattering yield intrinsic quark and gluon contribution to the nucleon spin (in light-cone gauge)
- Total angular momenta of quarks and gluons accessible in context of Generalized Parton Distributions
- Deeply Virtual Compton Scattering is prime candidate to constrain total quark angular momenta (no feasible approach known for gluons)
- Pioneering HERMES results on azimuthal asymmetries, and first promising JLAB results on cross section differences in DVCS, allow us to severely constrain GPD models
- ▷ Increasing theoretical activities on improved and new GPD models
- Short-term future: for DVCS and other exclusive reactions final HERMES results and many more very precise JLAB 6 GeV data expected
- Medium-term future: hopefully unique Compass BCA data, presumably many very precise JLAB 12 GeV data

Back-up Slides

- p. 19

JLab E00-110 Scaling Test of DVCS Cross Section

- 5.75 GeV e⁻ beam (76% pol.), unpol. LH₂ target, [PRL 97 (2006) 262002]
- Detect e' by HRS, γ by EM calorimeter, recoil p by scintillator array
- 3 different kinematic settings with $x_{Bi} = 0.36$ fixed: $Q^2 = 1.5, 1.9, 2.3 \text{ GeV}^2$. For each: -t = 0.17, 0.23, 0.28, 0.33 GeV
- Measured separately: $\frac{d^4\Sigma}{d^4\Phi} = \frac{1}{2} \left[\frac{d^4\sigma^+}{d^4\Phi} \frac{d^4\sigma^-}{d^4\Phi} \right]$ and $\frac{d^4\sigma}{d^4\Phi} = \frac{1}{2} \left[\frac{d^4\sigma^+}{d^4\Phi} + \frac{d^4\sigma^-}{d^4\Phi} \right]$

0.02

0.01

0.1

- \Rightarrow distinct information on GPDs: $\frac{d^4\Sigma}{d^4\Phi} \propto \text{Im } I$: as in BSA numer. $\frac{d^4\sigma}{d^4\Phi} \propto \text{Re } I$: same as in BCA
- -0.01 Fit following terms separately: -0.02 $|BH^2|$ (dot-dot-dashed), twist-2 int. term (dashed), twist-3 int. term (dot-dashed) 0.05 $(|DVCS|^2 \text{ found below few \%})$
- **Twist-3 terms small**

Wolf-Dieter Nowak

 $\frac{d^4\sigma}{d^4\Phi} > |BH^2| \rightarrow BSA$ and $\operatorname{Im} I/|BH^2|$ are not exactly the same over Φ

270

 $d^4\Sigma$ (nb/GeV⁴)

 $d^4\sigma$ (nb/GeV⁴)

180

90

360

 $\phi_{\gamma\gamma}$ (deg)

CLAS E01-113: High-stat. Beam-spin Asymmetry

- Ist dedicated Hall-B DVCS exp't: 5.76 GeV e^- beam, pol. 76-82%; unpol. LH₂
- CLAS spectrometer upgraded by inner calorimeter to detect γ 's at small angles \rightarrow all 3 final state particles (e' N γ) detected !
- Broad kinematic coverage at medium x (0.1...0.5), combined with high lumi \rightarrow 3-dim. binning possible. Unpublished (White Paper) preview:

 \Rightarrow Very promising first glimpse into statistical power of JLab DVCS measurements